Spelling suggestions: "subject:"surfaces rationnelle"" "subject:"surfaces opérationnelles""
1 |
Représentations matricielles en théorie de l'élimination et applications à la géométrieBusé, Laurent 29 April 2011 (has links) (PDF)
Ce mémoire d'habilitation présente des travaux qui développent une approche matricielle de la théorie de l'élimination et l'illustrent au travers d'applications à la modélisation géométrique. Cette approche matricielle, qui correspond essentiellement à un changement de représentation, permet de livrer des problèmes géométriques à la puissance des algorithmes d'algèbre linéaire numérique. Le premier chapitre traite de la représentation matricielle implicite d'une hypersurface rationnelle dans un espace projectif et propose une nouvelle méthode pour traiter le problème d'intersection entre une courbe et une surface rationnelles dans l'espace projectif de dimension trois. Le deuxième chapitre propose une représentation matricielle implicite d'une courbe rationnelle dans un espace projectif de dimension arbitraire, représentation qui est illustrée par un algorithme répondant au problème d'intersection entre deux courbes rationnelles. Le dernier chapitre est dédié à une approche matricielle du test d'irréductibilité de Ruppert qui conduit au raffinement du dénombrement des fibres réductibles dans un pinceau d'hypersurfaces algébriques génériquement irréductible.
|
2 |
Quelques aspects de la positivité du fibré tangent des variétés projectives complexesParis, Matthieu 14 December 2010 (has links) (PDF)
Dans cette thèse, on étudie comment la positivité du fibré tangent d'une variété projective complexe infl uence la géométrie de la variété sous-jacente. Dans la première partie, on étudie les variétés (principalement les surfaces) dont le fibré tangent est pseudo-effectif. Dans la deuxième partie on montre que pour un entier strictement positif p, si la puissance tensorielle p-ème du fibré tangent d'une variété projective contient la puissance p-ème d'un fibré en droites ample, alors la variété est isomorphe à un espace projectif ou à une quadrique.
|
3 |
Real algebraic curves in real del Pezzo surfaces / Courbes algébriques réelles dans les surfaces de del Pezzo réellesManzaroli, Matilde 28 June 2019 (has links)
L’étude topologique des variétés algébriques réelles remonte au moins aux travaux de Harnack, Klein, et Hilbert au 19éme siecle; en particulier, la classification des types d’isotopie réalisés par les courbes algébriques réelles d’un degré fixé dans RP2 est un sujet qui a connu un essor considérable jusqu'à aujourd'hui. En revanche, en dehors des études concernants les surfaces de Hirzebruch et les surfaces de degré au plus 3 dans RP3, à peu près rien n’est connu dans le cas de surfaces ambiantes plus générales. Cela est du en particulier au fait que les variétés construites en utilisant le "patchwork" sont des hypersurfaces de variétés toriques. Or, il existe de nombreuses autre surfaces algébriques réelles. Parmi celles-ci se trouvent les surfaces rationnelles réelles, et plus particulièrement les surfaces rèelles minimales. Dans cette thèse, on élargit l’étude des types d’isotopie réalisés par les courbes algébriques réelles aux surfaces réelles minimales de del Pezzo de degré 1 et 2. En outre, on termine la classification des types topologiques réalisés par les courbes algébriques réelles séparantes et non-séparantes de bidegré (5,5) sur la quadrique ellipsoide. / The study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves with a fixed degree in RP2 is a classical subject that has undergone considerable evolution. On the other hand, apart from studies concerning Hirzebruch surfaces and at most degree 3 surfaces in RP3, not much is known for more general ambient surfaces. In particular, this is because varieties constructed using the patchworking method are hypersurfaces of toric varieties. However, there are many other real algebraic surfaces. Among these are the real rational surfaces, and more particularly the $mathbb{R}$-minimal surfaces. In this thesis, we extend the study of the topological types realized by real algebraic curves to the real minimal del Pezzo surfaces of degree 1 and 2. Furthermore, we end the classification of separating and non-separating real algebraic curves of bidegree $(5,5)$ in the quadric ellipsoid.
|
Page generated in 0.1229 seconds