• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 42
  • 42
  • 38
  • 22
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

On the Use of Light-Emitting Freewheeling/Blocking Diodes for Optical Wireless Communications

Pawlikowski, Warren January 2019 (has links)
Integration of optical wireless communications (OWC) within switched-mode power supplies (SMPS) / Although visible light communication(VLC) systems can provide high density links for use with IoT devices, an energy efficient, high rate method of designing a VLC transmitter is still unclear. Present designs for transmitters such as the bias-T, designs with switch manipulation, and interleaved converters are not commercially viable due to costly and complex designs that sacrifice energy efficiency for data rate. A design allowing for efficient, high rate communications, while maintaining a low cost would allow for widespread adoption of this technology. In this thesis, a novel approach of integrating power converters and VLC systems is explored by replacing commutating diodes with LEDs. By leveraging switched-mode power supply(SMPS) structures, the power dissipated within the converter may be harnessed and used for communications. The result is a simple and energy efficient solution capable of high rate links. Simulation and experimental results demonstrate buck and boost SMPS topologies that simultaneously increase energy efficiency and provide communications at SMPS switching rate without increasing component count. / Thesis / Master of Applied Science (MASc)
32

Electronics Instrumentation For Ion Trap Mass Spectrometers

Shankar, Ganesh Hassan 12 1900 (has links)
The thesis aims at building an experimental setup for conducting the boundary ejection and resonance ejection experiments on wide variety of ion trap mass analyzers. The experimental setup has two parts namely power electronics circuits and mechanical assembly. The focus of the thesis is on the electronics hardware which provides various power sources required for the operation of ion trap mass spectrometer. The electronics circuits discussed in the thesis have better performance, flexibility and ruggedness compared to the existing setup. The traditional power supplies used in ion trap mass spectrometers are all linear supplies. But one major drawback of these supplies is the high power dissipation and consequently, the power efficiency degrades. We are trying to introduce switch mode power supplies to reduce the power dissipation loss and eventually increase the power efficiency. In the course of the work the following power supplies have been developed. The supplies are - 1.Constant current source, 2.Filament base, 3.gating power supply and pulsing circuit, 4.High voltage DC power supply and 5. High voltage RF generator.
33

Control and Analysis of Pulse-Modulated Systems

Almér, Stefan January 2008 (has links)
The thesis consists of an introduction and four appended papers. In the introduction we give an overview of pulse-modulated systems and provide a few examples of such systems. Furthermore, we introduce the so-called dynamic phasor model which is used as a basis for analysis in two of the appended papers. We also introduce the harmonic transfer function and finally we provide a summary of the appended papers. The first paper considers stability analysis of a class of pulse-width modulated systems based on a discrete time model. The systems considered typically have periodic solutions. Stability of a periodic solution is equivalent to stability of a fixed point of a discrete time model of the system dynamics. Conditions for global and local exponential stability of the discrete time model are derived using quadratic and piecewise quadratic Lyapunov functions. A griding procedure is used to develop a systematic method to search for the Lyapunov functions. The second paper considers the dynamic phasor model as a tool for stability analysis of a general class of pulse-modulated systems. The analysis covers both linear time periodic systems and systems where the pulse modulation is controlled by feedback. The dynamic phasor model provides an $\textbf{L}_2$-equivalent description of the system dynamics in terms of an infinite dimensional dynamic system. The infinite dimensional phasor system is approximated via a skew truncation. The truncated system is used to derive a systematic method to compute time periodic quadratic Lyapunov functions. The third paper considers the dynamic phasor model as a tool for harmonic analysis of a class of pulse-width modulated systems. The analysis covers both linear time periodic systems and non-periodic systems where the switching is controlled by feedback. As in the second paper of the thesis, we represent the switching system using the L_2-equivalent infinite dimensional system provided by the phasor model. It is shown that there is a connection between the dynamic phasor model and the harmonic transfer function of a linear time periodic system and this connection is used to extend the notion of harmonic transfer function to describe periodic solutions of non-periodic systems. The infinite dimensional phasor system is approximated via a square truncation. We assume that the response of the truncated system to a periodic disturbance is also periodic and we consider the corresponding harmonic balance equations. An approximate solution of these equations is stated in terms of a harmonic transfer function which is analogous to the harmonic transfer function of a linear time periodic system. The aforementioned assumption is proved to hold for small disturbances by proving the existence of a solution to a fixed point equation. The proof implies that for small disturbances, the approximation is good. Finally, the fourth paper considers control synthesis for switched mode DC-DC converters. The synthesis is based on a sampled data model of the system dynamics. The sampled data model gives an exact description of the converter state at the switching instances, but also includes a lifted signal which represents the inter-sampling behavior. Within the sampled data framework we consider H-infinity control design to achieve robustness to disturbances and load variations. The suggested controller is applied to two benchmark examples; a step-down and a step-up converter. Performance is verified in both simulations and in experiments. / QC 20100628
34

Modelling Of Switched Mode Power Converters : A Bond Graph Approach

Umarikar, Amod Chandrashekhar 08 1900 (has links)
Modelling and simulation are essential ingredients of the analysis and design process in power electronics. It helps a design engineer gain an increased understanding of circuit operation. Accordingly, for a set of specifications given, the designer will choose a particular topology, select component types and values, estimate circuit performance etc. Typically hierarchical modelling, analysis and simulation rather than full detailed simulation of the system provides a crucial insight and understanding. The combination of these insights with hardware prototyping and experiments constitutes a powerful and effective approach to design. Obtaining the mathematical model of the power electronic systems is a major task before any analysis or synthesis or simulation can be performed. There are circuit oriented simulators which uses inbuilt mathematical models for components. Simulation with equation solver needs mathematical models for simulation which are trimmed according to user requirement. There are various methods in the literature to obtain these mathematical models. However, the issues of multi-domain system modelling and causality of the energy variables are not sufficiently addressed. Further, specifically to power converter systems, the issue of switching power models with fixed causality is not addressed. Therefore, our research focuses on obtaining solutions to the above using relatively untouched bond graph method to obtain models for power electronic systems. The power electronic system chosen for the present work is Switched Mode Power Converters (SMPC’s) and in particular PWM DC-DC converters. Bond graph is a labelled and directed graphical representation of physical systems. The basis of bond graph modelling is energy/power flow in a system. As energy or power flow is the underlying principle for bond graph modelling, there is seamless integration across multiple domains. As a consequence, different domains (such as electrical, mechanical, thermal, fluid, magnetic etc.) can be represented in a unified way. The power or the energy flow is represented by a half arrow, which is called the power bond or the energy bond. The causality for each bond is a significant issue that is inherently addressed in bond graph modelling. As every bond involves two power variables, the decision of setting the cause variable and the effect variable is by natural laws. This has a significant bearing in the resulting state equations of the system. Proper assignment of power direction resolves the sign-placing problem when connecting sub-model structures. The causality will dictate whether a specific power variable is a cause or the effect. Using causal bars on either ends of the power bond, graphically indicate the causality for every bond. Once the causality gets assigned, bond graph displays the structure of state space equations explicitly. The first problem we have encountered in modelling power electronic systems with bond graph is power switching. The essential part of any switched power electronic system is a switch. Switching in the power electronic circuits causes change in the structure of the system. This results in change in dynamic equations of the circuit according to position of the switch. We have proposed the switched power junctions (SPJ) to represent switching phenomena in power electronic systems. The switched power junctions are a generalization of the already existing 0-junction and 1-junction concepts of the bond graph element set. The SPJ’s models ideal switching. These elements maintain causality invariance for the whole system for any operational mode of the system. This means that the state vector of the resulting state equation of the system does not change for any operating mode. As SPJs models ideal power switching, the problem of stiff systems and associated numerical stability problems while simulating the system is eliminated. Further, it maintains one to one correspondence with the physical system displaying all the feasible modes of operation at the same time on the same graph. Using these elements, the switched mode power converters (SMPC's) are modelled in bond graph. Bond graph of the converter is the large signal model of the converter. A graphical procedure is proposed that gives the averaged large signal, steady state and small signal ac models. The procedure is suitable for the converters operating in both Continuous Conduction Mode (CCM) and in Discontinuous Conduction Mode (DCM). For modelling in DCM, the concept of virtual switch is used to model the converter using bond graph. Using the proposed method, converters of any complexity can be modelled incorporating all the advantages of bond graph modelling. Magnetic components are essential part of the power electronic systems. Most common parts are the inductor, transformer and coupled inductors which contain both the electric and magnetic domains. Gyrator-Permeance approach is used to model the magnetic components. Gyrator acts as an interface between electric and magnetic domain and capacitor model the permeance of the magnetic circuits. Components like inductor, tapped inductor, transformer, and tapped transformer are modelled. Interleaved converters with coupled inductor, zero ripple phenomena in coupled inductor converters as well as integrated magnetic Cuk converter are also modelled. Modelling of integrated magnetic converters like integrated magnetic forward converter, integrated magnetic boost converter are also explored. To carry out all the simulations of proposed bond graph models, bond graph toolbox is developed using MATLAB/SIMULINK. The MATLAB/SIMULINK is chosen since it is general simulation platform widely available. Therefore all the analysis and simulation can be carried out using facilities available in MATLAB/SIMULINK. Symbolic equation extraction toolbox is also developed which extracts state equations from bond graph model in SIMULINK in symbolic form.
35

High performance DSP-based servo drive control for a limited-angle torque motor

Zhang, Yi January 1997 (has links)
This thesis describes the analysis, design and implementation of a high performance DSP-based servo drive for a limited-angle torque motor used in thermal imaging applications. A limited-angle torque motor is an electromagnetic actuator based on the Laws' relay principle, and in the present application the rotation required was from - 10° to + 10° in 16 ms, with a flyback period of 4 ms. To ensure good quality picture reproduction, an exceptionally high linearity of ±0.02 ° was necessary throughout the forward sweep. In addition, the drive voltage to the exciting winding of the motor should be less than the +35 V ceiling of the drive amplifier. A research survey shows that little literature was available, probably due to the commercial sensitivity of many of the applications for torque motors. A detailed mathematical model of the motor drive, including high-order linear dynamics and the significant nonlinear characteristics, was developed to provide an insight into the overall system behaviour. The proposed control scheme uses a multicompensator, multi-loop linear controller, to reshape substantially the motor response characteristic, with a non-linear adaptive gain-scheduled controller to compensate effectively for the nonlinear variations of the motor parameters. The scheme demonstrates that a demanding nonlinear control system may be conveniently analysed and synthesised using frequency-domain methods, and that the design techniques may be reliably applied to similar electro-mechanical systems required to track a repetitive waveform. A prototype drive system was designed, constructed and tested during the course of the research. The drive system comprises a DSP-based digital controller, a linear power amplifier and the feedback signal conditioning circuit necessary for the closed-loop control. A switch-mode amplifier was also built, evaluated and compared with the linear amplifier. It was shown that the overall performance of the linear amplifier was superior to that of the switch-mode amplifier for the present application. The control software was developed using the structured programming method, with the continuous controller converted to digital form using the bilinear transform. The 6- operator was used rather than the z-operator, since it is more advantageous for high speed sampling systems. The gain-scheduled control was implemented by developing a schedule table, which is controlled by the DSP program to update continuously the controller parameters in synchronism with the periodic scanning of the motor. The experimental results show excellent agreement with the simulated results, with linearity of ±0.05 ° achieved throughout the forward sweep. Although this did not quite meet the very demanding specifications due to the limitations of the experimental drive system, it clearly demonstrates the effectiveness of the proposed control scheme. The discrepancies between simulated and experimental results are analyzed and discussed, the control design method is reviewed, and detailed suggestions are presented for further work which may improve the drive performance.
36

Spínané zdroje velkých výkonů - paralelní řazení zdrojů / High power switch-mode supplies - parallel connection

Kadlec, Josef January 2016 (has links)
This doctoral thesis deals with the issue of high power switched-mode power supplies that are designed as modular systems. The thesis describes series, parallel and series-parallel possibility of connected converters. System can achieve extremely high output current for converters connected in parallel. For converters connected in series, the system can achieve extremely high output voltage. The main goal of this thesis is to develop so-called reconfigurable modular system. It is a system that can change converters connection of serial, parallel or series-parallel connection - during its operation. This option to change converters connection significantly extends the control range of output voltage and output current of the whole system. For all these mentioned variants of the modular system there are described and simulated suitable control schemes. The issue of interleaved PWM is described in the thesis. Output voltage ripple and current ripple equations were derived for each converters connection. These equations, which were derived either for systems with interleaved PWM or for systems without of phase shifted PWM, are also proved by simulations. Design of reconfigurable modular system with power of 9.6 kW that contains four converters was introduced in this thesis. Converters use modern transistors and diodes of SiC material. The proposed reconfigurable modular system was successfully manufactured. The measurement results are also shown in the work.
37

Design and Heterogeneous Integration of Single and Dual Band Pulse Modulated Class E RF Power Amplifiers

Rashid, S M Shahriar January 2018 (has links)
No description available.
38

Digital control strategies for DC/DC SEPIC converters towards integration

Li, Nan 29 May 2012 (has links) (PDF)
The use of SMPS (Switched mode power supply) in embedded systems is continuously increasing. The technological requirements of these systems include simultaneously a very good voltage regulation and a strong compactness of components. SEPIC ( Single-Ended Primary Inductor Converter) is a DC/DC switching converter which possesses several advantages with regard to the other classical converters. Due to the difficulty in control of its 4th-order and non linear property, it is still not well-exploited. The objective of this work is the development of successful strategies of control for a SEPIC converter on one hand and on the other hand the effective implementation of the control algorithm developed for embedded applications (FPGA, ASIC) where the constraints of Silicon surface and the loss reduction factor are important. To do it, two non linear controls and two observers of states and load have been studied: a control and an observer based on the principle of sliding mode, a deadbeat predictive control and an Extended Kalman observer. The implementation of both control laws and the Extended Kalman observer are implemented in FPGA. An 11-bit digital PWM has been developed by combining a 4-bit Δ-Σ modulation, a 4-bit segmented DCM (Digital Clock Management) phase-shift and a 3-bit counter-comparator. All the proposed approaches are experimentally validated and constitute a good base for the integration of embedded switching mode converters
39

Spínané zdroje / Switched Mode Power Supplies

Španěl, Petr January 2020 (has links)
This thesis deals with switched mode power supplies based on resonant principle to achieve high efficiency. Several ways of switched mode power supplies optimalisation are described as part of the work to achieve better efficiency. Priparily, the new generation of switching elements based on SiC and resonant topology are used to achieve significant switching loss minimization. The selected resonant topology is simualted in detail and then built with focus on high efficiency. The main content of the work consists in the design and realization of the switched mode power supply with selected control algorithms and their comparison. The problems associated with usage of new SiC MOSFET generation in TO-247-4L package are being solved within the design and implementation of the power source. To solve the main problems, new 3rd SiC MOSFET gate driver was developer for working with switching frequencies in hundreds of kHz and resisting very high voltage stress on the controlled transistor. The next part of the gate driver is the overcurrent protection. The overcurrent limit can be set easily by changing one component. This protection reacts very quickly in hundreds of nanoseconds, so it is capable of saving the converter even in branch failure and going to hard short circuit. The functional sample of the series resonant converter was built and revated in the work. The converter based on 3. Generation of SiC MOSFET transistors from Cree in a modern case TO-247-4L was built. For this inverter, it was also necessary to develop both the control scheme and the resonance frequency tracking to achieve accurate switching and thus achieve the use of the resonant principle of the converter to the maximum extent possible. The result of this work is up to 3 kW converter with adjustable output voltage while maintaining high efficiency up to 96%.
40

Spínaný zdroj se spínáním při nulovém napětí / Switching power supply with zero voltage switching

Pešl, Jiří January 2016 (has links)
Diploma thesis describes the design of an switched mode power supply with switching at zero voltage for driving the anode of Anode-layer type ion source. First aim of thesis is ion sources and specialy Anode-layer type of ion source in detail. Main aim of thesis are important aspects of the design of switching mode power supply, which comes later the detailed construction of an switched mode power supply with output voltage 2800 V at output power 2800 W.

Page generated in 0.0982 seconds