541 |
Adhésion et mécanique standardisées de lymphocytes T : rôles dans l'activation par anticorps et cellules présentatrices d'antigène, sous force / Standardized adhesion and mechanics of T lymphocytes : roles in activation by antibodies and antigen-presenting cells, under forceSadoun, Anaïs 05 December 2018 (has links)
Les événements biochimiques de l'activation T ont été décrits depuis longtemps et sont bien connus. A l'échelle moléculaire la liaison du Récepteur des Cellules T (TCR) présent à la surface du lymphocyte T avec un peptide (du soi ou non soi), ce dernier étant chargé sur le Complexe Majeur d'Histocompatibilité (MHC), présent à la surface des Cellules Présentatrices d'Antigène (CPA) conduit à l'initiation de la réponse immunitaire. La réponse des lymphocytes T est extrêmement spécifique, sensible, robuste et semble présenter des caractéristiques de mécano-transduction. En effet, il a été démontré récemment que le TCR agirait comme un mécanosenseur alors que le lymphocyte T peut sentir la mécanique de son environnement à une échelle cellulaire. Cependant, la majorité de ces études ont été réalisées en opposant un lymphocyte T à un substrat inerte limitant la compréhension sur la contribution éventuelle de chaque partenaire cellulaire car la présence de l'APC peut induire des changements dans l'organisation du lymphocyte T.Le but de cette thèse a été de mettre en place un suivi de l’activation des lymphocytes T pat une APC modèle, sous force grâce à l’utilisation de la microscopie à force atomique. Il a mené à plusieurs développements méthodologiques originaux validés de manière expérimentale avec un système cellulaire modèle (hybridomes murins vs. Cellules COS modifiées pour être des APC pouvant être modifiées à souhait grâce à l’expression d’une grande variété de molécules impliquées dans la réponse immunitaire). / The biochemical events of T activation have been described for a long time and are well known. At the molecular level, the binding of the T-cell receptor (TCR) present on the surface of the T-cell with a peptide (self or non-self) loaded on the Major Histocompatibility Complex (MHC), present on the surface of the Antigen Presenting Cells (APC), leads to the initiation of the immune response. In addition, the T cell response is extremely specific, sensitive, robust and appears to have mechano-transduction characteristics. Indeed, it has recently been demonstrated that the TCR would act as a mechanosensor while the T lymphocyte can feel the mechanics of its environment on a cellular scale. However, the majority of these studies were performed by opposing/facing a T cell to an inert substrate (e.g., bead, functionnlized glass slides molecularly decorated or not), limiting the understanding of the possible contribution of each cell partner because the presence of APC can induce changes in the organization of the T cell. The aim of this thesis was to set up a follow-up of the activation, under force, between a model APC and a T lymphocyte. It has led to several original methodological developments experimentally validated with a model cell system (mouse hybridomas vs. COS cells modified to be complexifiable APCs).
|
542 |
Impairment of the Type I Interferon Response in HIV-Infected Macrophages Facilitates their Infection and Killing by the Oncolytic Virus, MG1Sandstrom, Teslin Stella 28 May 2019 (has links)
HIV remains an incurable viral infection and a significant global health concern. Despite the advent of antiretroviral therapy, there are 36.9 million recorded cases of HIV worldwide, with an additional 1.8 million new infections recorded in 2017 alone. An HIV cure is therefore one of several priorities within the field, and will require HIV “reservoir” cells—comprised of latently-HIV infected CD4+ T cells and productively-infected, tissue resident macrophages—to be selectively killed in vivo.
HIV reservoir cells are rarely found within the peripheral circulation, residing instead within inaccessible tissue sanctuaries. Consequently, their characterization has been limited to in vitro laboratory models. To complicate matters further, a definitive cellular surface marker of HIV infected cells has yet to be identified. Impairment of the type I interferon (IFN1) response has been observed during HIV infection, however, making it a unique intracellular maker of HIV-infected cells. The recent development of oncolytic viruses (OV) designed to selectively kill IFN-defective cancer cells also suggests that these IFN1 defects possess therapeutic value.
It was therefore hypothesized that the impairment of the IFN1 response in HIV-infected CD4+ cells and macrophages could serve as a target for oncolytic virus-mediated killing. The induction of several antiviral IFN-stimulated proteins, including PKR and ISG15, was inhibited in HIV-infected monocyte-derived macrophages (MDM) following stimulation with IFNα or a synthetic RNA. Consequently, HIV-infected MDM were more susceptible to infection and killing by the oncolytic Maraba virus, MG1. Importantly, MG1-mediated killing required the presence of replication-competent OV, and could not be potentiated by UV-inactivated MG1 or supernatants from MG1-infected cells. The ability of MG1 to target the HIV reservoir was further confirmed using alveolar macrophages collected from the lungs of cART-suppressed individuals living with HIV.
These findings indicate that IFN1 defects are a feature of HIV infected cells, which can be exploited for selective killing by OV. This project is therefore unique in that it demonstrates that HIV reservoir cells can be eradicated in a targeted manner by exploiting an intracellular marker of HIV infection. As MG1-based cancer therapies are currently being explored in Phase I/II clinical trials, there is potential for this approach to be adapted for use within the HIV cure field.
|
543 |
Development of three-dimensional super-resolution imaging using a double-helix point spread functionCarr, Alexander Roy January 2018 (has links)
Single-molecule localisation microscopy (SMLM), has allowed for optical microscopy to probe biological systems beyond the diffraction limit. The intrinsic 3D nature of biology has motivated the development of 3D-SMLM with novel techniques, including the double-helix point spread function (DHPSF). A bespoke microscope platform employing the DHPSF transformation was built, achieving ~10 nm lateral and ~20 nm axial localisation precision over a ~4 μm axial depth. Until recently, the DHPSF has been limited by spherical aberration present when imaging away from coverslip surfaces to the study of small volumes close to the coverslip. By matching the refractive index of the objective lens immersion liquid to that of the imaging media, this aberration can be minimised, facilitating large-volume imaging away from unphysiological flat surfaces. The work presented in this thesis illustrates the capabilities of the DHPSF for 3D-SMLM and single-particle tracking (SPT) in previously inaccessible areas of biological samples (e.g. in the nucleus and on the apical cell surface). Application of the DHPSF for SPT in eukaryotic cells are presented; tracking the motion of T-cell membrane proteins on the apical surface and components of the chromosome remodelling complex in the nucleus of embryonic stem cells. For these applications, meansquared displacement and jump distance diffusion analysis methodologies were extended into 3D and benchmarked against simulated datasets. A variety imaging applications that are facilitated by the extended depth of focus of the DHPSF are presented, focusing on quantification of T-cell membrane protein reorganisation upon immunological activation. Finally, the clustering distribution of the T-cell receptor is investigated by Ripley’s K analysis enabled by duel labelling of its position and the outer membrane in primary T cells.
|
544 |
Régulation des voies de signalisation des lymphocytes T par la protéine SAP et ses partenaires / Regulation of T cell signaling pathways by the SAP protein and its partnersProust, Richard 21 December 2012 (has links)
Une réponse immunitaire adéquate nécessite la participation coordonnée de plusieurs populations de cellules immunitaires, comme les lymphocytes T et B, les macrophages, les cellules dendritiques ou les cellules NK. L’activation de ces types cellulaires est modulée par différents récepteurs membranaires dont la fonction est de déclencher une cascade de signalisation.L’activation des lymphocytes T, acteurs cruciaux de la mise en place de la réponse immunitaire adaptative, s’initie par l’engagement du récepteur T (TCR). Plusieurs autres types de récepteurs participent à la modulation des réponses cellulaires. Ainsi, les récepteurs aux facteurs de croissance, aux cytokines et aux chimiokines ainsi que les molécules d’adhésion et les récepteurs de la famille SLAM (pour Signaling Lymphocyte Activation Molecule) influencent l’activation cellulaire. Des travaux récents ont montré que l’activation des récepteurs SLAM induit leur association avec les membres de la famille SAP et est nécessaire à l’induction d’une réponse humorale, au développement des cellules NKT ainsi qu’à la cytotoxicité médiée par les lymphocytes T CD8 et les cellules NK. L’altération du gène sh2d1a codant pour SAP conduit à l’apparition du syndrome lymphoprolifératif lié à l’X-1 (XLP-1). Les patients atteints de ce syndrome développent trois principaux phénotypes cliniques qui sont une mononucléose infectieuse fulminante, une dysgammaglobulinémie, et des désordres lymphoprolifératifs.L’objectif de mon travail de thèse a été d’étudier les étapes précoces d’activation des lymphocytes T et de comprendre comment la protéine SAP, associée à d’autres protéines ou domaines protéiques intracellulaires, est impliquée dans la régulation de ces mécanismes d’activation. Mon travail s’est donc orienté vers l’identification de nouveaux partenaires de SAP, autres que les récepteurs SLAM, et qui nous permettraient de mieux définir la fonction de SAP dans la signalisation T. Par une approche de biochimie, mon travail a permis de démontrer que SAP s’associe directement à la chaîne CD3 du complexe TCR-CD3, régule la signalisation induite par l’activation du récepteur T et permet la sécrétion de cytokines. Enfin, par une approche de double hybride, nous avons identifié Pecam-1 comme nouveau partenaire de SAP. Nous avons par la suite observé que l’association de SAP avec Pecam-1 régule l’adhérence des lymphocytes T. Par ces deux études, mon travail de thèse a permis de démontrer l’implication de SAP dans de nouvelles voies de signalisation et permet de mieux comprendre les mécanismes dérégulés lors de l’absence de SAP. / Immune responses need a coordinate involvement between different immune cell populations, as T and B cells, macrophages, dendritic cells or NK cells. Activation of these different cell populations is mediated by different receptors whose function is to initiate a signal transduction cascade. T cell activation, a crucial event in adaptive immune response, begins with T cell receptor (TCR) triggering. A large number of receptors can modulate T cell responses. Thus, cytokines, chimiokines and growth factors receptors, adhesion molecules and SLAM (for Signaling Lymphocyte Activation Molecule) family receptors regulate cell activation. Recent works have shown that SLAM receptors triggering induce their association with SAP (for SLAM-Associated Protein) family members and is vital for humoral immunity, NKT cell development and T CD8+ and NK cells cytotoxicity. Mutations in sh2d1a gene, which code for SAP, are responsible of X-linked Lymphoproliferative-1 (XLP-1) syndrome. Patients, who suffer from this syndrome, develop three main clinical manifestations: a fulminant infectious mononucleosis, dysgammaglobulinemia and lymphoproliferative syndromes. My thesis work was to study early steps of T cell activation and to understand how the SAP protein, associated with its partners, regulates these cellular mechanisms. Thus, my work was to identify new SAP partners, others than SLAM receptors, in order to better understand SAP function in T cell signaling. With a biochemical approach, my work has demonstrated that SAP directly associates with CD3 chain of TCR-CD3 complex, regulates cell signaling and cytokines secretion following TCR triggering. Finally, with a two-hybrid assay, we have identified the adhesion molecule Pecam-1 as a new SAP partner. Then, we have observed that SAP directly interacts with Pecam-1 to regulate T cell adhesion. During my thesis work, we have identified new cellular signaling pathways that are regulated by SAP and permit to better understand the cellular mechanisms that are affected when SAP is absent.
|
545 |
Micose fungóide foliculotrópica: descrição clínico-epidemiológica, análise histológica e investigação do colapso do imunoprivilégio do folículo piloso / Folliculotropic mycosis fungoides: clinical and epidemiological description, histological analysis and investigation of hair follicle immune privilege collapseDeonizio, Janyana Marcela Doro 27 April 2015 (has links)
Introdução: A micose fungóide foliculotrópica (MFF) é subtipo de linfoma cutâneo de células T que atinge especialmente o folículo piloso e parece ter prognóstico mais reservado. Informações clínicas sobre a população acometida por linfomas cutâneos no Brasil são escassas. O fenômeno de imunoprivilégio (IP) diz respeito à habilidade de alguns órgãos em permanecer protegidos contra reações inflamatórias. Tem sido sugerido que o folículo piloso normal represente um local de IP. Nesse estudo aventou-se a possibilidade de haver uma quebra no equilíbrio desse fenômeno na MFF, com alteração na expressão de moléculas do complexo maior de histocompatibilidade (MHC) e na expressão de MHC não-clássicos (HLA-G), com algum papel no mecanismo do foliculotropismo. Os objetivos foram: descrever o perfil clínico-epidemiológico de paciente com MFF, descrever a histologia e imunofenótipo dos casos de MFF e investigar os mecanismos envolvidos na predileção dos linfócitos atípicos pelo folículo piloso. Metodologia: Os prontuários de pacientes com diagnóstico de MFF provenientes do ambulatório de Linfomas Cutâneos da Faculdade de Medicina da Universidade de São Paulo (FMUSP) foram revisados (n=33). O material histológico de biópsias de pele dos pacientes com MFF provenientes dos ambulatórios de Linfomas Cutâneos da FMUSP e da Northwestern University foi analisado por meio de escala semi-quantitativa (n=43). Na coloração de hematoxilina-eosina foram avaliados os seguintes parâmetros: infiltrado neoplásico epidérmico, infiltrado neoplásico dérmico, presença de acantose/espongiose, de mucinose folicular, de fibroplasia do tecido conjuntivo, de eosinófilos, de plasmócitos, o tamanho celular e o grau de dano folicular. Analisou-se a positividade do infiltrado neoplásico para os seguintes marcadores celulares: CD1a, CD56, TIA-1 e CD117. As expressões do complexo de histocompatibilidade HLA-G e do MHCII no infiltrado celular e no epitélio folicular foram investigadas no grupo de pacientes com MFF e comparadas com o grupo de pacientes com micose fungóide clássica (MFC) e pele normal. A expressão do complexo de histocompatibilidade MHCII também foi investigada na epiderme. Resultados: A mediana das idades ao diagnóstico foi de 46 anos com 61% dos pacientes classificados como portadores de estágio avançado. A proporção entre homens e mulheres foi de 1,54 e a mediana de duração de doença antes do diagnóstico foi de três anos. Ao final de três anos de acompanhamento, 67% dos casos estavam vivos com a doença. O prurido foi relatado em 82% dos casos. Histologicamente, encontrou-se associação entre a presença de eosinófilos e de plasmócitos com fibroplasia do tecido conjuntivo. Observou-se diminuição da expressão do HLA-G no epitélio folicular nos grupos MFF e MFC em relação à pele normal. Observou-se aumento da expressão do MHCII no epitélio folicular na MFF em comparação à pele normal e na epiderme na MFC quando comparada à MFF. Conclusões: Dados clínicos da população estudada assemelharam-se aos dados da literatura como estágio avançado ao diagnóstico e prognóstico reservado. Cerca de metade dos casos de MFF foi positiva para o marcador citotóxico TIA-1. Demonstrou-se haver um provável colapso do imunoprivilégio folicular nos linfomas cutâneos com expressão diminuída de moléculas HLA-G em comparação à pele normal. O aumento da expressão do MHCII poderia relaciona-se com o foliculotropismo na MFF e com o epidermotropismo na MFC / Introduction: Folliculotropic mycosis fungoides (FMF) is a subtype of cutaneous T cells lymphoma affecting mainly the hair follicle and seems to have a less favorable prognosis. Clinical information on the population affected by cutaneous lymphomas in Brazil is scarce. The immune privilege (IP) phenomenon involves the ability of some body sites remaining protected from inflammatory reactions. It has been suggested that normal hair follicle represents an IP location. We hypothesized that a collapse of this phenomenon would occur in FMF, with changes in the expression of classical major histocompatibility molecules (MHC) and in the expression of nonclassical MHC molecules (HLA-G) with a role in folliculotropism mechanism. The objectives of this study were to describe the clinical and epidemiological profile of patients with MFF, describe the histology and immunophenotype of cases of MFF and investigate the expression of MHC molecules. Methods: The medical records of patients from the outpatient Cutaneous Lymphoma Clinic of the University of Sao Paulo Medical School (FMUSP) diagnosed with MFF were reviewed (n = 33). The histological material from skin biopsies of patients with MFF from the Cutaneous Lymphomas Clinic of FMUSP and Northwestern University was stained and evaluated by semi-quantitative scale. In hematoxylin-eosin staining the following parameters were evaluated: epidermal neoplastic infiltrate, dermal neoplastic infiltrate, acanthosis/spongiosis, follicular mucinosis, connective tissue fibroplasia, presence of eosinophils and plasma cells, cell size and degree of follicular damage. We analyzed the positivity of the neoplastic infiltrate for the following cellular markers: CD1a, CD56, TIA-1, and CD117. Finally, the expression of histocompatibility complex HLA-G and MHC II in the neoplastic infiltrate and the follicular epithelium was investigated in MFF group and compared to patients with classical mycosis fungoides (CMF) and to normal skin. MHCII expression in the epidermis was also investigated. Results: The median age at diagnosis was 46 years, with 61% classified as advanced stage disease. The ratio between men and women was 1.54, the median disease duration before diagnosis was three years. After a median time of follow-up of three years, 67% of the cases were alive with disease. Pruritus was reported in 82% of the cases. Histologically, an association between the presence of eosinophils and plasma cells with fibroplasia of collagen was found. There was a decrease of HLA-G expression in the follicular epithelium in MFF and CMF groups compared to normal skin. There was an increase of MHCII expression in the follicular epithelium in FMF group compared to normal skin. There was an increased MHCII expression in the epidermis in CMF compared to FMF. Conclusions: Clinical data from the studied population were similar to the previous literature in relation to advanced stage at diagnosis and prognosis. There was a relationship between the presence of eosinophils and plasma cells in neoplastic infiltrate and the connective tissue fibrosis. Near half of the cases of FMF was positive for the cytotoxic marker TIA-1. A possible hair follicle immune privilege collapse was suggested by a decreased expression of HLA-G molecules in FMF and CMF compared to normal skin. Increased MHCII expression appears to be involved in the folliculotropism of FMF and epidermotropism of CMF
|
546 |
The effects of ageing on murine NKT cell and macrophage populationsPattison, Mari Anne January 2017 (has links)
The immune system is a complex network of tissues, cells and proteins which protects us against infections and invading pathogens we encounter every day. Immunosenescence refers to age-related impairments in immune function which may contribute to increased prevalence and severity of infectious disease in the elderly. How and why ageing affects the immune system is not fully understood. Using a naturally aged mouse model, work in this thesis shows that the abundance of a rare type of lymphocyte, known as NKT cells, increased across multiple immune organs. Additionally, macrophage abundance was also altered in the lymph nodes of aged mice. Invariant NKT (iNKT) cells express an invariant T cell receptor (TCR) which recognises lipids presented on the CD1d molecule. iNKT cells can be activated and respond to invading pathogens either by recognition of antigens through TCR-CD1d interactions or cytokine-dependent means. Less is known about NKT-like cells, which also express NK cell-associated surface markers, such as CD49b, but lack an invariant TCR. Data within this thesis show that both iNKT and NKT-like cell populations are abundant in the spleen and liver of aged mice. iNKT and NKT-like cells can be divided into subpopulations based on their expression of surface markers or transcription factors, and data suggests that not all subpopulations of these cells are affected by age equally. For instance, flow cytometry showed that while spleen-derived iNKT cells are significantly increased in aged mice, within the iNKT cell population the percentage representation of CD4+ cells are significantly reduced with age. Additionally, data indicates that both iNKT and NKT-like cells from aged mice show compromised responses to in vitro stimulation compared to young controls. Using bone marrow chimeras, where either young cells are reconstituted within an aged mouse or old cells are reconstituted within a young mouse, provided the opportunity to determine whether the aged environment contributes to this diminished response. Data demonstrates that the aged environment plays at least a partial role in these age-related changes to response to stimulation, however the young environment seems unable to reverse these changes. Macrophages are phagocytes which are found within all organs of the body. Studies in this thesis show that CD169+ macrophages have diminished numbers in the lymph nodes of aged mice, but this did not seem to affect the capture of the model antigen, dextran. Further studies revealed ageing affects macrophage populations differently in the different tissues within the body. For example, macrophage numbers remain constant in the spleen with ageing, but appear to increase in density in the lungs. To conclude, ageing can cause dramatic changes to the numbers and function of different cells of the immune system across multiple organs. Furthering our understanding of the ageing immune system and the underlying mechanisms which cause age-related decline in immune function is important to design strategies to improve the quality of the lives of the elderly.
|
547 |
Role of Mitogen-activated Kinases in Cd40-mediated T Cell Activation of Monocyte/macrophage and Vascular Smooth Muscle Cell Cytokine/chemokine ProductionMilhorn, Denise M. 01 August 1999 (has links)
This dissertation represents efforts to determine the functional consequences acquired by vascular smooth muscle cells (SMC) in response to CD40 ligation by activated CD154+ T cells, and to elucidate components of the signaling pathway(s) activated in response to CD40 signaling in both monocytes and SMC. To study the consequences of CD40 stimulation, primary human monocytes and aortic SMC were treated with plasma membranes purified from CD154 + , CD4+ T cells. The results presented in this dissertation demonstrate that SMC, like monocytes/macrophages, are capable of interacting with T cells in a manner that results in reciprocal activation events. SMC were shown to present antigen to, and activate T cells. In turn T cell stimulus resulted in the activation of proinflammatory function in SMC initiated through the CD154:CD40 interaction. CD40 stimulation of SMC resulted in the production of the chemokines interleukin 8 (IL-8) and macrophage chemotactic protein-1 (MCP-1), and the upregulation of intercellular adhesion molecule (ICAM). Examination of the intracellular signaling pathways activated through CD40 signaling revealed the involvement of MAPKs in the pathway leading to induction of proinflammatory activity. Evaluation of CD40 signaling in monocytes demonstrated the activation of the MAPK family members ERK1/2, but not the MAPK family members p38 or c-jun-N-terminal kinase (JNK). In contrast, CD40 signaling in SMC was shown to result in ERK1/2 and p38 activation, and both of these kinases were shown to play a critical role in the induction of chemokine synthesis. An examination of the ability of anti-inflammatory cytokines to modulate CD40 signaling in monocytes and SMC demonstrated that the anti-inflammatory cytokines IL-4 and IL-10 abrogate CD40-mediated induction of inflammatory cytokine production by monocytes. This inhibition was shown to be a result of a negative influence of IL-4 and IL-10 on CD40 mediated ERK1/2, activation in monocytes. However, IL-4 and IL-10 did not inhibit SMC proinflammatory responses indicating a difference in the intracellular responses to these cytokines by the two cell types. (Abstract shortened by UMI.)
|
548 |
The Roles of Selectin Ligands and Innate Immune Responses in Modulating Resistance to Intracellular Bacterial Infections in Murine Hosts with Altered ImmunityAgbayani, Gerard Patrick 29 August 2018 (has links)
Listeria monocytogenes (LM) and Salmonella enterica serovar Typhimurium (ST) are intracellular bacterial pathogens that cause invasive disease in immune-altered individuals, including the immunocompromised and pregnant women. The mechanisms that modulate innate immunity to intracellular infection, particularly during pregnancy, are not well-understood. Functional selectin ligands play critical roles in leukocyte recruitment during inflammation. Increased control of LM infection in functional selectin ligand-deficient (FtDKO) mice is associated with increased levels of circulating innate immune cells, despite defective leukocyte migration compared to WT mice. Adoptive transfer of WT and FtDKO bone marrow (BM) cells to irradiated WT and FtDKO recipients demonstrates that BM reconstitution and the increased neutrophil phenotype of FtDKO mice is independent of functional selectin ligand expression within the host environment. Thus, functional selectin ligand deficiency enhances inherent innate immune resistance to intracellular infection. We then examined the impact of pregnancy-associated immunological changes on maternal susceptibility to intracellular infections. ST infection in pregnant mice results in profound systemic infection, increased fetal loss and enhanced serum and placental expression of pro-inflammatory cytokines. Pregnant mice showed decreased ratios of pro-inflammatory Th17 cells relative to anti-inflammatory regulatory T cells (Tregs) when compared to non-pregnant mice during infection. Functional inactivation of Tregs in vivo restored control of infection and normal Th17-to-Treg ratios, and reduced fetal loss. These indicate that modulation of Th17 and Treg responses impacts maternal and fetal protection from ST infection. Lastly, we examined the roles of type I interferons (IFNs) in modulating innate immunity to intracellular infections during pregnancy. Type I IFN receptor deficiency (IFNAR-/-) enhances immunity to LM and ST in the non-pregnant state by limiting pathogen-induced leukocyte death. We show that pregnant IFNAR-/- mice infected with LM retain increased protection from infection relative to WT controls. In contrast, protection conferred by IFNAR deficiency against ST infection in the non-pregnant state is abrogated during pregnancy. Distinctive maternal responses to LM and ST are associated with differential regulation of leukocyte distribution and cytokine expression in maternal systemic and/or placental compartments. Taken together, modulation of key mechanisms involved in leukocyte recruitment, immune-regulation and cytokine signaling impact host susceptibility to intracellular infections.
|
549 |
Ebola virus: entry, pathogenesis and identification of host antiviral activitiesRhein, Bethany Ann 01 December 2015 (has links)
Ebola virus (EBOV) is a member of the Filoviridae family of highly pathogenic viruses that cause severe hemorrhagic fever and is the causative agent of the 2014 West Africa outbreak. Currently, there are no approved filovirus vaccines or treatments to combat these sporadic and deadly epidemics. One target for EBOV antiviral therapy is to block viral entry into host cells. Recently, phosphatidylserine (PtdSer) receptors, primarily known for their involvement in the clearance of dying cells, were shown to mediate entry of enveloped viruses including filoviruses. The PtdSer receptors, T-cell immunoglobulin mucin domain-1 (TIM-1) and family member TIM-4, serve as filovirus receptors, significantly enhancing EBOV entry. TIM-dependent virus uptake occurs via apoptotic mimicry by binding to PtdSer on the surface of virions through a conserved PtdSer binding pocket within the amino terminal IgV domain. TIM-4 is expressed on antigen presenting cells (APCs), including macrophages and dendritic cells (DCs), which are critical in early EBOV infection. My studies are the first to define the molecular details of virion/TIM-4 interactions and establish the importance of TIM-4 for EBOV infection of murine resident peritoneal macrophages. In addition, previous work has utilized only in vitro models to establish the importance of the TIM proteins in EBOV entry. My studies are the first to demonstrate the importance of TIM-1 and TIM-4 for in vivo EBOV pathogenesis and to confirm them as relevant targets of future filovirus therapeutics.
Macrophage phenotypes can vary greatly depending upon chemokine and cytokine signals from their microenvironment. Historically, macrophages have been classified into two major subgroups: classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophages are a critical early target of EBOV infection and my work primarily focused on interferon gamma-stimulated (M1) macrophages since this treatment profoundly inhibited EBOV infection of human and murine macrophages. Interferon gamma treatment blocked EBOV replication in macrophages, reducing viral RNA levels in a manner similar to that observed when cultures were treated with the protein synthesis inhibitor, cycloheximide. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited EBOV infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit infection of negative strand RNA viruses including EBOV. In addition and most exciting, using MA-EBOV, we found that murine interferon gamma, when administered either 24 hours before or after infection, protects lethally challenged mice and significantly reduces morbidity. Our findings suggest that interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option.
|
550 |
Cytokine requirements for the differentiation and expansion of Il-17a- and Il-22-producing human Vγ2vδ2 T cellsNess, Kristin Jennifer 01 December 2011 (has links)
Human γδ T cells expressing the Vγ2Vδ2 T cell antigen receptor play important roles in immune responses to microbial pathogens by monitoring prenyl pyrophosphate isoprenoid metabolites. Most adult Vγ2Vδ2 cells are memory cytotoxic cells that produce interferon-γ (IFN-γ). Recently, murine γδ T cells were found to be major sources of interleukin (IL)-17A in anti-microbial and autoimmune responses. To determine if primate γδ T cells play similar roles, we characterized IL-17A and IL-22 production by Vγ2Vδ2 T cells. IL-17A-producing memory Vγ2Vδ2 T cells exist at low but significant frequencies in adult humans (1:2,762 T cells) and at even higher frequencies in adult rhesus macaques. Higher levels of Vγ2Vδ2 T cells produce IL-22 (1:1,864 T cells) although few produce both IL-17A and IL-22. Unlike adult humans where many IL-17A+ V#947;2Vδ2 T cells also produce IFN-#947; (T#947;δ1/17), the majority of adult macaques IL-17A+ Vδ2 T cells (T#947;δ17) do not produce IFN-#947;. To define the cytokine requirements for T#947;δ17 cells, we stimulated human neonatal V#947;2Vδ2 T cells with the bacterial antigen, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, and various cytokines and mAbs in vitro. We find that IL-6, IL-1β, and transforming growth factor-β (TGF-β) are required to generate T#947;δ17 cells in neonates whereas T#947;δ1/17 cells additionally required IL-23. In adults, memory T#947;δ1/17 and T#947;δ17 cells required IL-23, IL-1β, and TGF-β but not IL-6. IL-22-producing cells showed similar requirements. Both neonatal and adult IL-17A+ V#947;2Vδ2 T cells expressed elevated levels of retinoid-related orphan receptor-#947;t. Our data suggest that, like Th17 αβ T cells, V#947;2Vδ2 T cells can be polarized into T#947;δ17 and T#947;δ1/17 populations with distinct cytokine requirements for their initial polarization and later maintenance.
|
Page generated in 0.0341 seconds