• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 35
  • 14
  • 12
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Performance Analysis and Tank Test Validation of a Hybrid Wave-Current Energy Converter with a Single Power Takeoff

Jiang, Boxi 01 July 2020 (has links)
Marine and hydrokinetic (MHK) energy, including ocean waves, tidal current, ocean current and river current, has been recognized as a promising power source due to its full-day availability and high energy potential. At this stage, ocean current energy, tidal energy and ocean wave energy are currently the most competitive sourves among all the categories of MHK. The state of art MHK energy harvesting technology mainly focus on harvesting either ocean wave energy or current energy, but not both. However, a significant amount of ocean waves and tidal/ ocean current coexist in many sites and traditional devices that harvest from a single form of MHK energy, cannot make full use of the coexisting ocean energy. Furthermore, MHK energy harvesting devices need to advance to be cost-effective and competitive with other energy sources. This is difficult to achieve. Ocean wave excitation is irregular, which means that ocean wave height and wave periods are unpredictable and excitation forces on energy harvesting devices can have large variance in amplitude and frequency. Such problems/ restrictions can be possibly addressed by the concept of a hybrid energy converter. In this sense, a hybrid wave-current ocean energy conveter (HWCEC) that simutaneously harvests energy from current and wave with one single power takeoff (PTO) is designed.The wave energy is extracted through relative heaving motion between a floating buoy and a submerged second body, while the current energy is extracted using a marine current turbine (MCT). Energy from both sources are integrated by a hybrid PTO whose concept is based on a mechanical motion rectifier (MMR). In this study, different working modes are investigated together with switching criteria.Simulations were conducted with hydrodynamic coefficients obtained from computational fluid dynamics analysis and boundary element method. Tank tests were conducted for a HWCEC under co-existing wave and current inputs. For comparison, separate baseline tests of a turbine and a two-body point absorber, each acting in isolation, are conducted. Experimental results validate the dynamic modeling and show that a HWCEC can increase the output power with a range between 29-87 percent over either current turbine and wave energy converter acting individually, and it can reduce by up to 70 percent the peak-to-average power ratio compared with the wave energy converter on the tested conditions.Such results demonstrate the potential of the HWCEC as an efficient and cost-effective design. / Master of Science / Ocean energy has been recognized as a promising power source due to its full-day availability and high energy potential. At this stage, ocean current energy, tidal energy and ocean wave energy are currently the most competitive sources among all the categories of ocean energy. The state of art ocean energy harvesting technology mainly focus on harvesting either ocean wave energy or current energy, but not both. However, a significant amount of ocean waves and tidal/ ocean current coexist in many sites and traditional devices that harvest from a single form of ocean energy, cannot make full use of the coexisting energy resource. Furthermore, MHK energy harvesting devices need to advance to be cost-effective and competitive with other energy sources. This is difficult to achieve. Ocean wave height and wave periods are unpredictable and excitation forces on energy harvesting devices can have large variance in amplitude and frequency. Such restrictions can be possibly addressed by the concept of a hybrid energy converter. In this sense, a hybrid wave-current ocean energy converter (HWCEC) that simultaneously harvests energy from current and wave with one single power takeoff (PTO), which consists of ball screw, gearbox, and generator, is designed.The wave energy is extracted through relative heaving motion between a floating buoy and a submerged second body, while the current energy is extracted using a marine current turbine (MCT). Energy from both sources are integrated by a hybrid PTO whose concept is based on a mechanical motion rectifier (MMR). In this study, different working modes are investigated together with switching criteria.Simulations were conducted with hydrodynamic coefficients obtained from computational fluid dynamics analysis and boundary element method. Tank tests were conducted for a HWCEC under co-existing wave and current inputs. For comparison, separate baseline tests of a turbine and a two-body, wave-energy-harvesting structure, each acting in isolation, are conducted. Experimental results validate the dynamic modeling and show that a HWCEC can increase the output power with a range between 29-87 percent over either current turbine and wave energy converter acting individually, and it can reduce by up to 70 percent the peak-to-average power ratio compared with the wave energy converter on the tested conditions.Such results demonstrate the potential of the HWCEC as an efficient and cost-effective design.
22

A Design Study of Single-Rotor Turbomachinery Cycles

Thiagarajan, Manoharan 23 August 2004 (has links)
Gas turbine engines provide thrust for aircraft engines and supply shaft power for various applications. They consist of three main components. That is, a compressor followed by a combustion chamber (burner) and a turbine. Both turbine and compressor components are either axial or centrifugal (radial) in design. The combustion chamber is stationary on the engine casing. The type of engine that is of interest here is the gas turbine auxiliary power unit (APU). A typical APU has a centrifugal compressor, burner and an axial turbine. APUs generate mechanical shaft power to drive equipments such as small generators and hydraulic pumps. In airplanes, they provide cabin pressurization and ventilation. They can also supply electrical power to certain airplane systems such as navigation. In comparison to thrust engines, APUs are usually much smaller in design. The purpose of this research was to investigate the possibility of combining the three components of an APU into a single centrifugal rotor. To do this, a set of equations were chosen that would describe the new turbomachinery cycle. They either were provided or derived using quasi-one-dimensional compressible flow equations. A MathCAD program developed for the analysis obtained best design points for various cases with the help of an optimizer called Model Center. These results were then compared to current machine specifications (gas turbine engine, gasoline and diesel generators). The result of interest was maximum specific power takeoff. The results showed high specific powers in the event there was no restriction to the material and did not exhaust at atmospheric pressure. This caused the rotor to become very large and have a disk thickness that was unrealistic. With the restrictions fully in place, they severely limited the performance of the rotor. Sample rotor shapes showed all of them to have unusual designs. They had a combination of unreasonable blade height variations and very large disk thicknesses. Indications from this study showed that the single radial rotor turbomachinery design might not be a good idea. Recommendations for continuation of research include secondary flow consideration, blade height constraints and extending the flow geometry to include the axial direction. / Master of Science
23

Helical rail guns : the application of linear electric motors to aircraft launching

Fitch, Osa Edward. January 1982 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Physics, 1982 / Vita. / Includes bibliographical references (leaf 185). / by Osa Edward Fitch. / B.S. / B.S. Massachusetts Institute of Technology, Department of Physics
24

Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects

Nuhalt, Abdullah O. January 1988 (has links)
A general numerical simulation of closely coupled lifting surfaces in steady and unsteady ground effects was developed. This model was coupled with the equations of motion to simulate aerodynamic-dynamic interaction. The resulting model was then coupled with a feedback-control law to form a general nonlinear unsteady numerical simulation of control of an aircraft in and out of ground effect. The aerodynamic model is based on the general unsteady vortex-lattice method and the method of images. It is not restricted by planform, angle of attack, sink rate, dihedral angle, twist, camber, etc. as long as stall or vortex bursting does not occur. In addition, it has the versatility to model steady and unsteady aerodynamic interference. The present model can be used to simulate any prescribed flare and to model the effects of cross and/or head winds near the ground. The present results show the influences of various parameters on the aerodynamic coefficients for both steady and unsteady flows. Generally, the ground increases the aerodynamic coefficients; the greater the sink rates, the stronger the effects. Increasing the aspect ratio increases both the steady and unsteady ground effects. An exception is a large aspect-ratio wing with large camber. The present results are generally in close agreement with limited exact solutions and experimental data. In the aerodynamic-dynamic simulation, the equations of motion were solved by Hammlng's predictor-corrector method. The aircraft, air stream, and control surfaces were treated as a single dynamic system. The entire set of governing equations was solved simultaneously and interactively. The aerodynamic-dynamic model was used to study a configuration that resembles a Cessna 182 airplane. The ground lowers the effectiveness of the tail in controlling pitch, increases the lift and drag, and makes the hinge-moment less negative. Proportional and rate control laws were used in a feedback system to control pitch. One set of gains was used in and out of ground effect. For the same control input, the pitch angle responds faster and overshoots more near the ground than it does far from the ground. The present results demonstrate the feasibility of using the current simulation to model more complicated motions and the Importance of including the unsteady ground effects when analyzing the performance of an airplane during a landing maneuver. / Ph. D.
25

Utveckling av flygtaktiken för att möta det nya hotet

Nilsson, Johanna January 2011 (has links)
Vid deltagande i internationella insatser kan Flygvapnet komma att möta nya typer av hot som Flygvapnet tidigare inte stött på, vilket medför att en anpassning eller förändring av flygtaktiken är en förutsättning för att undvika flygplansskador. 2000-talets lättviktflygplan medför en skyddsnivå på flygplanen som är låg och motståndaren kan påverka materialet samt konstruktionen i flygplanen genom beskjutning med finkalibriga projektiler. Syftet med uppsatsen är att analysera hur den nya hotbilden skiljer sig från vad Flygvapnet ställs inför nationellt samt analysera hur finkalibrig eld påverkar kompositmaterial och hur det i sig påverkar flygtaktiken. Inledningsvis utgår jag i uppsatsen från en beskrivande metod av empirin i syfte att läsaren skall få förståelse samt bakgrund inom de belysta ämnena för att förstå det som senare diskuteras i uppsatsen. Därefter övergå uppsatsen till en hotbildsanalys i syfte att senare diskutera och dra slutsatser om hur flygtaktiken bör anpassas för internationella insatser. I slutsatsen har jag kommit fram till att finkalibrig elds påverkan på kompositmaterial är mycket effektiv vilket innebär att projektilen slår igenom och deformerar materialet. Vidare diskuteras alternativ till genomförande av start och landning för att minska exponeringstiden och undvika att motståndaren kan påverka flygplanen. / While participating in international missions, the Swedish Air force may encounter new kinds of threats. This result in a needed adaptation or change in flight tactics to avoid aircraft damage. The light weight plans of the 21th century have a low degree of protection and the opponent can affect the material and construction with small arms. The purposes of this essay is to analyze how the new threats differ from what the Swedish Air force faces on a national level, and also analyze how small arms affects composite and in turn affects the flight tactics. I have initially used a descriptive method of the empiri and thereafter I used an analytic method in order to later on discuss and finding a conclusion on how the flight tactics need to be adapted and changed for international missions. In the conclusion I found that low caliber fire affects the composite material in a high degree, which means that the projectile will deform, disfigure and go straight through the material. I also discuss alternatives for the takeoff and landing procedures in a way that will reduce the exposure time and avoid the affects that the opponents can make on the aircraft.
26

Development of real-time flight control system for low-cost vehicle

Du, Yongliang 01 1900 (has links)
In recent years, more and more light aircraft enter our daily life, from Agricultural applications, emergency rescue, flight experiment and training to Barriers to entry, light aircraft always have their own advantages. Thus, they have become more and more popular. However, in the process of GDP research about Flight Control System design for the Flying Crane, the author read a lot of literature about Flight Control System design, then noticed that the research in Flight Control System have apparently neglected to Low-cost vehicles. So it is necessary to do some study about Flight Control System for this kind of airplane. The study will more concern the control law design for ultra-light aircraft, the author hopes that with an ‘intelligence’ Flight Control System design, this kind of aircraft could sometimes perform flying tasks according to a prearranged flight path and without a pilot. As the Piper J-3 cub is very popular and the airframe data can be obtained more easily, it was selected as an objective aircraft for the control law design. Finally, a ¼ scale Piper J-3 cub model is selected and the aerodynamics coefficients are calculated by DATCOM and AVL. Based on the forces and moments acting on the aircraft, the trim equilibrium was calculated for getting proper dynamics coefficients for the selected flight conditions. With the aircraft aerodynamics coefficients, the aircraft dynamics characteristics and flying qualities are also analyzed. The model studied in this thesis cannot answer level one flying qualities in the longitudinal axis, which is required by MIL-F- 8785C. The stability augment system is designed to improve the flying qualities of the longitudinal axis. The work for autopilot design in this thesis includes five parts. First, the whole flight profile is designed to automatically control aircraft from takeoff to landing. Second, takeoff performance and guidance law is studied. Then, landing performance and trajectory is also investigated. After that, the control law design is decoupled into longitudinal axis and later-directional axis. Finally, simulation is executed to check the performance for the auto-controller.
27

Preliminary Scale of Reference Values for Evaluating Reactive Strength Index-Modified in Male and Female NCAA Division I Athletes

Sole, Christopher J., Suchomel, Timothy J., Stone, Michael H. 29 October 2018 (has links)
The purpose of this analysis was to construct a preliminary scale of reference values for reactive strength index-modified (RSImod). Countermovement jump data from 151 National Collegiate Athletic Association (NCAA) Division I collegiate athletes (male n = 76; female n = 75) were analyzed. Using percentiles, scales for both male and female samples were constructed. For further analysis, athletes were separated into four performance groups based on RSImod and comparisons of jump height (JH), and time to takeoff (TTT) were performed. RSImod values ranged from 0.208 to 0.704 and 0.135 to 0.553 in males and females, respectively. Males had greater RSImod (p < 0.001, d = 1.15) and JH (p < 0.001, d = 1.41) as compared to females. No statistically significant difference was observed for TTT between males and females (p = 0.909, d = 0.02). Only JH was found to be statistically different between all performance groups. For TTT no statistical differences were observed when comparing the top two and middle two groups for males and top two, bottom two, and middle two groups for females. Similarities in TTT between sexes and across performance groups suggests JH is a primary factor contributing to differences in RSImod. The results of this analysis provide practitioners with additional insight as well as a scale of reference values for evaluating RSImod scores in collegiate athletes.
28

Advanced take-off and flight control algorithms for fixed wing unmanned aerial vehicles

De Hart, Ruan Dirk 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis presents the development and implementation of a position based kinematic guidance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a thorough analysis of an aircraft’s runway interactions, which is used to implement automated take-off of a fixed wing UAV. The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and aerodynamic effects are first analysed individually, after which the combined system is analysed. The various types of feedback control are investigated and the best solution suggested. Supporting controllers are designed and combined to successfully implement autonomous take-off, with acceleration based guidance. A computationally efficient position based kinematic guidance architecture is designed and implemented that allows a large percentage of the flight envelope to be utilised. An airspeed controller that allows for aggressive flight is designed and implemented by applying Feedback Linearisation techniques. A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving ground based object at a constant distance (radius). This algorithm is implemented and verified through non-linear simulation. / AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome opstygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word. Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde opstygprosedure benodig word, is ontwerp. ’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbeheerder , wat in staat is tot aggressiewe vlug, te ontwerp. ’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoorwerp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre simulasie.
29

IFC-Based Systems and Methods to Support Construction Cost Estimation

Temitope Akanbi (10776249) 10 May 2021 (has links)
<div>Cost estimation is an integral part of any project, and accuracy in the cost estimation process is critical in achieving a successful project. Manually computing cost estimates is mentally draining, difficult to compute, and error-prone. Manual cost estimate computation is a task that requires experience. The use of automated techniques can improve the accuracy of estimates and vastly improve the cost estimation process. Two main gaps in the automation of construction cost estimation are: (1) the lack of interoperability between different software platforms, and (2) the need for manual inputs to complete quantity take-off (QTO) and cost estimation. To address these gaps, this research proposed a new systems to support the computing of cost estimation using Model View Definition (MVD)-based checking, industry foundation classes (IFC) geometric analysis, logic-based reasoning, natural language processing (NLP), and automated 3D image generation to reduce/eliminate the labor-intensive, tedious, manual efforts needed in completing construction cost estimation. In this research, new IFC-based systems were developed: (1) Modeling – an automated IFC-based system for generating 3D information models from 2D PDF plans; (2) QTO - a construction MVD specification for IFC model checking to prepare for cost estimation analysis and a new algorithm development method that computes quantities using the geometric analysis of wooden building objects in an IFC-based building information modeling (BIM) and extracts the material variables needed for cost estimation through item matching based on natural language processing; and (3) Costing – an ontology-based cost model for extracting design information from construction specifications and using the extracted information to retrieve the pricing of the materials for a robust cost information provision.</div><div><br></div><div>These systems developed were tested on different projects. Compared with the industry’s current practices, the developed systems were more robust in the automated processing of drawings, specifications, and IFC models to compute material quantities and generate cost estimates. Experimental results showed that: (1) Modeling - the developed component can be utilized in developing algorithms that can generate 3D models and IFC output files from Portable Document Format (PDF) bridge drawings in a semi-automated fashion. The developed algorithms utilized 3.33% of the time it took using the current state-of-the-art method to generate a 3D model, and the generated models were of comparative quality; (2) QTO – the results obtained using the developed component were consistent with the state-of-the-art commercial software. However, the results generated using the proposed component were more robust about the different BIM authoring tools and workflows used; (3) Extraction – the algorithms developed in the extraction component achieved 99.2% precision and 99.2% recall (i.e., 99.2% F1-measure) for extracted design information instances; 100% precision and 96.5% recall (i.e., 98.2% F1-measure) for extracted materials from the database; and (4) Costing - the developed algorithms in the costing component successfully computed the cost estimates and reduced the need for manual input in matching building components with cost items.</div>
30

Inertial encoding mechanisms and flight dynamics of dipteran insects

Yarger, Alexandra Mead 02 June 2020 (has links)
No description available.

Page generated in 0.3822 seconds