• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Single-phase vs. Three-phase High Power High Frequency Transformers

Xue, Jing 09 June 2010 (has links)
This thesis proposes one comparison methodology for single and three-phase high power high frequency transformers in power conversion systems. The objective is to compare the volume of the transformers. And single and three-phase Dual Active Bridge Converter (DAB1 and DAB3) topologies with single and three-phase isolating transformers are selected for the transformer comparison. Design optimization of power transformer has been studied and simplified models have been built for the single and three-phase transformer design optimization in this work, including assumptions for core shapes, materials, winding structures and thermal model. Two design methods have been proposed according to different design constraints, named T – B Method and J – B Method separately. T – B Method is based on feature of the core, which has the major limits of maximum flux density and temperature rise. The flux density should not reach the saturation value of the core, and temperature rise should meet specifications in different applications to assure the performance of the core (permeability, saturation flux density, and core loss) and the insulation of the wire. And J – B Method starts from the comparison of area product in conventional design method. The relationship between area product of transformer cores and the flux and current of the transformer in design is analyzed. There is specified relationship between area product of single and three-phase transformers if flux and current densities are specified for both. Thus J – B Method is proposed with the design constraints of specified current and flux density. Both design methods include both single and three-phase transformer design. One example case for single and three-phase transformer comparison is selected as high power high frequency DAB conversion system. Operation principles are studied for both DAB1 and DAB3 based on previous work. And transformer design based on the T – B and J – B Methods are carried out and transformer volumes are compared. And results show that three-phase transformer has little benefit in volume or thermal than single-phase transformer, when they are utilized in single-phase DAB and three-phase DAB converters separately. Scaled-down single and three-phase DAB systems have been built and volume and thermal tests have been carried out. / Master of Science
12

Thermal and EMI Modeling and Analysis of a Boost PFC Circuit Designed Using a Genetic-based Optimization Algorithm

Hertz, Erik M. 31 July 2001 (has links)
The boost power factor correction (PFC) circuit is a common circuit in power electronics. Through years of experience, many designers have optimized the design of these circuits for particular applications. In this study, a new design procedure is presented that guarantees optimal results for any application. The algorithm used incorporates the principles of evolution in order to find the best design. This new design technique requires a rethinking of the traditional design process. Electrical models have been developed specifically for use with the optimization tool. One of the main focuses of this work is the implementation and verification of computationally efficient thermal and electro-magnetic interference (EMI) models for the boost PFC circuit. The EMI model presented can accurately predict noise levels into the 100's of kilohertz range. The thermal models presented provide very fast predictions and they have been adjusted to account for different thermal flows within the layout. This tuning procedure results in thermal predictions within 10% of actual measurement data. In order to further reduce the amount of analysis that the optimization tool must perform, some of the converter design has been performed using traditional methods. This part of the design is discussed in detail. Additionally, a per unit analysis of EMI and thermal levels is introduced. This new analysis method allows EMI and thermal levels to be compared on the same scale thus highlighting the tradeoffs between the both behaviors. / Master of Science
13

Výpočet tepelné sítě rozváděče typu UniGear a porovnání se zkouškou oteplením jmenovitým proudem / Computation of thermal network of switchgear type UniGear and comparison with the real temperature rise test

Rybka, Michal January 2011 (has links)
The Master’s thesis deals with thermal network computation of UniGear type switchgear and it compares the calculated results with the real temperature rise test. The thesis describes both electrical and non-electrical characteristics of such a switchgear as well as its application in variol fields of industry. Description of switchgear auxiliary equipment is obvious part of the thesis. Modelling of current carrying track in software environment of Autodesk Inventor and preparing of this current carrying track for thermal network calculation in software environment of ANSYS follows. Main part of this thesis is presentation of thermal analysis results and their comparison with the real temperature rise test.
14

The effect of condenser backpressure on station thermal efficiency : Grootvlei Power Station as a case study / Kathryn Marie-Louise van Rooyen

Van Rooyen, Kathryn Marie-Louise January 2014 (has links)
Grootvlei Power Station’s thermal efficiency had been on a steady declining trend since it was re-commissioned in 2008, which had tremendous financial implications to the company at the time of writing. The main contributory factor to the thermal efficiency losses was identified to be the condenser backpressure losses that the station was experiencing. This loss was responsible for approximately 17% of the total efficiency losses. Therefore an investigation was conducted to determine the potential impact of the condenser backpressure loss on the thermal efficiency and the financial implications thereof. The deliverables were to determine the cause of the condenser backpressure loss and propose possible resolutions, to quantify the financial effect and to produce a cost benefit analysis in order to justify certain corrective actions. Grootvlei Power Station is one of the older power stations in South Africa and it was used as the first testing facility for dry-cooling in South Africa. It consists of six 200MW units, two of which are dry-cooled units. In 1990 it was mothballed and due to rising power demands in South Africa, it was re-commissioned in 2008. Thermal efficiency has been playing a great role due to the power constraints and therefore it was deemed necessary to conduct this study. The approach that was used was one of experimental and quantitative research and analyses, incorporating deductive reasoning in order to test various hypotheses of factors that could have been contributing to the backpressure losses. In order to do so, a logic diagram was designed which could be used to aid in the identification of possible causes of the condenser backpressure losses. The logic diagram was able to identify whether the problem had to do with the cooling tower or the condenser. It was able to identify which area on the condenser was defective i.e. whether the pumps were not performing, or whether the air ejectors were not performing. It was also able to indicate whether the inefficiency was due to air ingress or fouling. Alongside the logic diagram, a condenser efficiency analysis was used in order to strengthen and improve on the investigation. This analysis was able to identify whether the condenser was experiencing fouling conditions, air ingress, passing valves or low cooling water flow. After the investigation commenced, it was decided to focus on the two largest contributing units since the largest contributor was a dry-cooled unit and the second largest contributor was a wet-cooled unit, thus some comparison between the units was incorporated. The condenser efficiency analysis on Unit 3 (wet-cooled unit) indicated a low cooling water flow, fouling as well as air ingress. The logic diagram indicated poor cooling tower performance, high air ingress as well as fouling. Further tests and analyses as well as visual inspections confirmed these phenomena and condenser fouling was identified to be the largest contributor to the backpressure loss on this unit. The condenser efficiency analysis on Unit 6 indicated that air was entering the condenser. The logic diagram indicated that a segment of the backpressure loss was due to poor cooling tower performance. Inspection of the cooling tower indicated damage and leaks. A cooling tower performance test was conducted and the result of the test indicated that the tower was in need of cleaning. Further analyses according to the logic diagram indicated that the condenser was experiencing air ingress which concurred with the condenser efficiency analysis. A helium test, condensate extraction pump pressure test as well as a flood test was conducted on this unit and various air in-leakage points were identified. The financial implications of the backpressure losses were investigated and found to be costing millions each month. The condenser backpressure loss was contributing more than 2% to the thermal efficiency loss. The cost benefit analysis indicated that the cost of cleaning the condenser on Unit 3 would be made up within six months and a return on investment of 16,6% was calculated. The cost benefit analysis motivates for extended outage times for the purpose of cleaning the condensers from a financial perspective. Therefore, it was recommended to clean the condenser on Unit 3 and fix all known defects on the unit as well as on Unit 6. The cooling towers were recommended to be refurbished. Further investigation was recommended to determine the feasibility of installing an online cleaning system on the wet-cooled units’ condensers such as a Taprogge system. Alternative investigation methods were suggested such as smoke stick analyses for air ingress determination. It was also recommended to review the maintenance strategies that were being used since many of the defects were found to be maintenance related. If the identified problem areas are attended to, the condenser backpressure loss will decrease and the condensers transfer heat more efficiently which will lead to financial gains for Grootvlei Power Station as well as efficiency gains, plant reliability and availability gains. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2015
15

The effect of condenser backpressure on station thermal efficiency : Grootvlei Power Station as a case study / Kathryn Marie-Louise van Rooyen

Van Rooyen, Kathryn Marie-Louise January 2014 (has links)
Grootvlei Power Station’s thermal efficiency had been on a steady declining trend since it was re-commissioned in 2008, which had tremendous financial implications to the company at the time of writing. The main contributory factor to the thermal efficiency losses was identified to be the condenser backpressure losses that the station was experiencing. This loss was responsible for approximately 17% of the total efficiency losses. Therefore an investigation was conducted to determine the potential impact of the condenser backpressure loss on the thermal efficiency and the financial implications thereof. The deliverables were to determine the cause of the condenser backpressure loss and propose possible resolutions, to quantify the financial effect and to produce a cost benefit analysis in order to justify certain corrective actions. Grootvlei Power Station is one of the older power stations in South Africa and it was used as the first testing facility for dry-cooling in South Africa. It consists of six 200MW units, two of which are dry-cooled units. In 1990 it was mothballed and due to rising power demands in South Africa, it was re-commissioned in 2008. Thermal efficiency has been playing a great role due to the power constraints and therefore it was deemed necessary to conduct this study. The approach that was used was one of experimental and quantitative research and analyses, incorporating deductive reasoning in order to test various hypotheses of factors that could have been contributing to the backpressure losses. In order to do so, a logic diagram was designed which could be used to aid in the identification of possible causes of the condenser backpressure losses. The logic diagram was able to identify whether the problem had to do with the cooling tower or the condenser. It was able to identify which area on the condenser was defective i.e. whether the pumps were not performing, or whether the air ejectors were not performing. It was also able to indicate whether the inefficiency was due to air ingress or fouling. Alongside the logic diagram, a condenser efficiency analysis was used in order to strengthen and improve on the investigation. This analysis was able to identify whether the condenser was experiencing fouling conditions, air ingress, passing valves or low cooling water flow. After the investigation commenced, it was decided to focus on the two largest contributing units since the largest contributor was a dry-cooled unit and the second largest contributor was a wet-cooled unit, thus some comparison between the units was incorporated. The condenser efficiency analysis on Unit 3 (wet-cooled unit) indicated a low cooling water flow, fouling as well as air ingress. The logic diagram indicated poor cooling tower performance, high air ingress as well as fouling. Further tests and analyses as well as visual inspections confirmed these phenomena and condenser fouling was identified to be the largest contributor to the backpressure loss on this unit. The condenser efficiency analysis on Unit 6 indicated that air was entering the condenser. The logic diagram indicated that a segment of the backpressure loss was due to poor cooling tower performance. Inspection of the cooling tower indicated damage and leaks. A cooling tower performance test was conducted and the result of the test indicated that the tower was in need of cleaning. Further analyses according to the logic diagram indicated that the condenser was experiencing air ingress which concurred with the condenser efficiency analysis. A helium test, condensate extraction pump pressure test as well as a flood test was conducted on this unit and various air in-leakage points were identified. The financial implications of the backpressure losses were investigated and found to be costing millions each month. The condenser backpressure loss was contributing more than 2% to the thermal efficiency loss. The cost benefit analysis indicated that the cost of cleaning the condenser on Unit 3 would be made up within six months and a return on investment of 16,6% was calculated. The cost benefit analysis motivates for extended outage times for the purpose of cleaning the condensers from a financial perspective. Therefore, it was recommended to clean the condenser on Unit 3 and fix all known defects on the unit as well as on Unit 6. The cooling towers were recommended to be refurbished. Further investigation was recommended to determine the feasibility of installing an online cleaning system on the wet-cooled units’ condensers such as a Taprogge system. Alternative investigation methods were suggested such as smoke stick analyses for air ingress determination. It was also recommended to review the maintenance strategies that were being used since many of the defects were found to be maintenance related. If the identified problem areas are attended to, the condenser backpressure loss will decrease and the condensers transfer heat more efficiently which will lead to financial gains for Grootvlei Power Station as well as efficiency gains, plant reliability and availability gains. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2015
16

Finns utarbetade riktlinjer för hur vi ska bevara de unika svenska naturmiljöerna i ett förändrat klimat? / Are there drafted guide-lines for the preservation of the unique Swedish natural environments in a changing climate?

Löf, Eva January 2016 (has links)
The aim of this study is to find out if there are regional/national strategies, and thus evaluate, how well prepared Sweden is to preserve the unique Swedish natural environments in view of the ongoing climate change. In this work the study is limited to comprise the preservation of protected areas in the Swedish forests. The data collection for the study was done by qualitative interviews to obtain data for the analysis template, where interviews were processed and indexed. The study reveals that the authorities have not come that far. More research is needed with reference to how our unique Swedish natural environments are affected by the changing climate in order to find relevant data for a strategy. In terms of strategy for the preservation of biodiversity, results indicate a slightly better outcome for the authorities.
17

Automatizovaný systém pro měření teplotních zkoušek senzorů / Measuring system for temperature test of sensors

Turanský, Luboš January 2012 (has links)
In this work is described design of measuring and evaluation system for temperature rise tests in cooperation with ABB company. As temperature sensors are used thermocouples type L and measuring hardware consists of chassis cRIO 9073 and measuring card NI 9213. In LabVIEW 2011 is created software for cRIO and as well for control PC and structure of both programs is described in detail. Thesis includes also practical estimation of metrological parameters of created system.
18

Importance des interactions entre plantes et mycorhizes dans le maintien de la productivité des écosystèmes pastoraux montagnards soumis à des forçages climatiques / Plant-fungus interactions in the alpine environment subjected to future climatic conditions

Wahl, Anne-Lena 13 June 2016 (has links)
Bien que les champignons mycorhiziens arbusculaires (AMF) soient présents des habitats collinaires aux habitats alpins, les recherches sur leur rôle dans l’écosystème montagnard sont encore incomplètes. Les objectifs de cette thèse sont d’analyser l’écologie et le fonctionnement des AMF ainsi que leur réponse au changement global dans les écosystèmes montagnards. Nous tentons de répondre aux questions de recherche suivantes : quels sont les effets de l’altitude sur les AMF indépendamment des effets des autres gradients et de la relation AMF-plante hôte ? Quelles relations de facilitation se développent dans les écosystèmes montagnards et quels bénéfices les plantes tirent-elles des AMF ?Avec l’augmentation d’un stress environnemental la symbiose AMF-plante doit théoriquement devenir plus mutualiste. Nous émettons l’hypothèse d’une modification du fonctionnement des interactions AMF-plante selon un gradient altitudinal dans les conditions environnementales actuelles, puis dans les conditions futures. Afin de vérifier ces hypothèses, une expérimentation in situ a été mise en place dans les Alpes Centrales d’Italie pour évaluer les variations des taux de mycorhization et leur abondance dans la communauté microbienne du sol, étudier la nature des relations entre plantes et mycorhizes ainsi que la productivité végétale le long d’un gradient altitudinal. De plus, les influences d’une augmentation de la température et d’une réduction des précipitations sont analysées séparément dans une chambre de croissance sous conditions contrôlées, ce qui permet de distinguer leurs effets respectifs sur la productivité des plantes et sur les interactions plantes – mycorhizes.Cette thèse montre que les AMF sont omniprésents dans les écosystèmes de montagne et qu’une diminution de leur abondance avec l'altitude dépend du contexte climatique global. D'autre part, la relation des AMF avec les plantes est fortement dépendante de la plante-hôte, ainsi que du contexte biotique et abiotique. Troisièmement, un changement des interactions AMF-plante avec l'altitude est suggéré par des indices indirects, mais est également très probablement dépendant de l'identité de la plante hôte. Cette thèse propose aussi une nouvelle orientation de recherche pour bien évaluer les hypothèses présentées. Il est nécessaire de réaliser des études sur le terrain où la présence des AMF est contrôlée et les interactions AMF-plante peuvent être évaluées. Afin de généraliser les résultats, ces expérimentations doivent être menées à différentes échelles spatiales et représenter différentes aires géographiques.Il est particulièrement important de comprendre et de qualifier ces processus en zone montagnarde pour prévoir leur évolution possible dans un contexte de changement global. Nos expérimentations montrent en effet que le réchauffement est un facteur important car il aggrave les conditions de sécheresse en basse altitude et entraine une baisse de la productivité des plantes. Nous démontrons que la présence de mycorhizes atténue l’impact du changement climatique sur la productivité des plantes mais que le niveau de cette atténuation varie selon les espèces de plantes.Les connaissances actuelles concernant les AMF en milieu montagnard sont peu développées sur les processus en jeu dans les interactions AMF-plantes. Grâce aux hypothèses présentées et à leur approche expérimentale cette thèse offre de nouvelles perspectives sur l’analyse de ces processus. / Even though arbuscular mycorrhizal fungi (AMF) are present from foothills to all alpine habitats, research on their role in mountain ecosystems remains incomplete. The main objective of this dissertation was to investigate interactions between AMF and plants along altitudinal gradients under both, natural conditions and simulated future climate change conditions.A novel framework is suggested for the functioning of the AMF-plant relationship along altitudinal gradients based on the stress gradient hypothesis. The first hypothesis expects the AMF-relationship to shift along the mutualism–parasitism continuum following changing environmental stress along the altitudinal gradient. The relationship might be most mutualistic at the subalpine zone. In a second hypothesis, this shift along the mutualism-parasitism continuum is predicted to be different under climate change conditions, and the most mutualistic expression of the AMF-plant relationship expected in the montane and alpine zone. Studies to validate the presented hypotheses will help to identify important mechanisms underlying plant-AMF interaction and with that the mediation of plant-plant interactions by AMF. In the scope of this thesis, the framework was addressed in field experiment as well as under controlled conditions in a climate chamber experiment.From a literature review and from a field experiment along a dry inner-alpine altitudinal gradient this thesis proposes the following conclusions: First, AMF are also ubiquitous in mountain ecosystems, but a decrease in their abundance with increasing altitude is dependent on the overall climatic context. Second, their relationship to plants is however strongly dependent on the host plant species as well as the biotic and abiotic context. Third, a shift of the AMF-relationship along with altitude is expected but will quite possibly also depend on the plant species identity. Fourth, to fully assess the suggested working hypotheses for AMF-plant interactions field studies must be conducted at different spatial scales and covering different mountain systems.It is particularly important to understand and investigate the drivers of AMF plant relationship in mountain ecosystems to be able to make sound predictions for AMF-plant interactions under future climate change conditions. The presented field and climate chamber experiments on climate change show that temperature is an important factor because it aggravates the conditions of drought in lowland and a threshold is surpassed. It becomes also clear that whether AMF mitigate climate change effects for plants or not is dependent on the plant species. Altogether this thesis contributes to current research questions in ecology, climate change mitigation and plant–soil interactions, because it addresses the role of AMF in mountain grassland ecosystem, investigates the effects of climate change and provides a new framework concerning the functioning of the AMF-plant relationship ranging from parasitism to mutualism.
19

Etude des phénomènes électro-thermiques dans l'appareillage haute tension / Study of electro-thermal phenomenons on high tension switchgear

Rebzani, Nesrine 01 December 2014 (has links)
Après sa production dans des centrales, l'électricité est acheminée sur de longues distances à travers le réseau électrique qui comporte des appareils haute tension destinés à la protection des installations. Parmi ces dispositifs, le GIS (Gaz Insulated Switchgear), dans lequel l'isolation électrique est assurée par le gaz SF6, est très utilisé. Il est soumis à des normes de sécurité imposant, notamment, des seuils de température à ne pas dépasser durant son fonctionnement. La connaissance et la maîtrise des phénomènes électromagnétiques et thermiques à l'origine des augmentations de température dans le GIS sont des enjeux cruciaux. Elles permettent un dimensionnement plus rapide et plus précis des appareils, aboutissant à un unique essai de validation des critères fixés par les normes. Elles fourniront également des solutions visant à réduire les échauffements des GIS. Cette réduction est importante car elle permet la circulation d'un courant plus élevé dans le GIS, ce qui aboutit à une amélioration des performances de l'appareil. Les travaux effectués dans le cadre de cette thèse présentent une analyse des phénomènes électro-thermiques dans le GIS et plus précisément dans les jeux de barres. Ils permettent la détermination des paramètres influençant l'augmentation de température dans cette géométrie. La contribution de chaque mode de transfert de chaleur (convection, rayonnement) est estimée et discutée. Une modélisation numérique du champ de température induite par la circulation du courant dans les jeux de barres est également proposée, en tenant compte du couplage avec le champ de vitesse induit. / Electricity is produced by power stations and is transported throughout the electric-power transmission at long distances with high voltage apparatus. The GIS (Gas Insulated Switchgear) is widely used switchgear. The electric insulation is ensured by the gas SF6. Security IEC norms impose temperature rises not to be exceeded during GIS operating. It is important to know and control the electromagnetic and thermal phenomenons which generate temperature rises. The switchgear design could then be faster and more precise, leading to only one successful temperature rise test. Solutions to reduce temperatures could also be found. The temperature rise reduction is crucial as it allow a higher current flowing through the GIS and an increase of its efficiency. The word achieved during this thesis presents an analysis of electro-thermal phenomenons in GIS and, more precisely, in busbars. It leads to the determination of the parameters influencing temperature rises and of the heat transfers proportion which is assessed and discussed. A numerical modelization is carried out to examine the temperature rises induced by the current flow in busbars.
20

Tribological investigation of electrical contacts

Bansal, Dinesh Gur Parshad 19 October 2009 (has links)
The temperature rise at the interface of two sliding bodies has significant bearing on the friction and wear characteristics of the bodies. The friction heat generated at the interface can be viewed as "loss of exergy" of the system, which also leads to accelerated wear in the form of oxidation, corrosion, and scuffing. This has a direct impact on the performance of the components or the machinery. If the sliding interface is also conducting electric current then the physics at the interface becomes complicated. The presence of electrical current leads to Joule heat generation at the interface along with other effects like electromotive, electroplasticity, stress relaxation and creep. The interface of an electrical contact, either stationary or dynamic, is a complex environment as several different physical phenomena can occur simultaneously at different scales of observations. The main motivation for this work stems from the need to provide means for accurate determination or prediction of the critical contact parameters viz., temperature and contact resistance. Understanding the behavior of electrical contacts both static and dynamic under various operating conditions can provide new insights into the behavior of the interface. This dissertation covers three major topics: (1) temperature rise at the interface of sliding bodies, (2) study on static electrical contacts, and (3) study of factors influencing behavior of sliding electrical contacts under high current densities. A model for determining the steady-state temperature distribution at the interface of two sliding bodies, with arbitrary initial temperatures and subjected to Coulomb and/or Joule heating, is developed. The model applies the technique of least squares regression to apply the condition of temperature continuity at every point in the domain. The results of the analysis are presented as a function of non-dimensional parameters of Peclet number, thermal conductivity ratio and ellipticity ratio. This model is first of its kind and enables the prediction of full temperature field. The analysis can be applied to a macro-scale contact, ignoring surface roughness, between two bodies and also to contact between two asperities. This analysis also yields an analytical expression for determining the heat partition between two bodies, if the Jaeger's hypothesis of equating average temperatures of both the bodies is being implemented. In general for design purposes one is interested in either the maximum or the average temperature rise at the interface of two sliding bodies. Jaeger had presented simple equations, based on matching the average temperatures of both bodies, for square and band shaped contact geometries. Engineers since then have been using those equations for determining the interface temperature for circular and elliptical shaped contact geometries. Curve fit equations for determining the maximum and the average interface temperature for circular and elliptical contact with semi-ellipsoidal form of heat distribution are presented. These curve fit equations are also applicable for the case when both the bodies have dissimilar initial bulk temperatures. The equations are presented in terms of non-dimensional parameters and hence can easily be applied to any practical scenario. The knowledge of electrical contact resistance between two bodies is important in ascertaining the Joule heat generation at the interface. The prediction of the contact resistance thus becomes important in predicting the performance of the contact or the machinery where the contact exists. The existing models for predicting ECR suffer from the drawback of ambiguity of the definition of input parameters as they depend on the sampling resolution of the measuring device. A multi-scale ECR model which decomposes the surface into its component frequencies, thus capturing the multi scale nature of rough surfaces, is developed to predict the electrical contact resistance. This model, based on the JS multi-scale contact model, overcomes the sensitivity to sampling resolution inherent in many asperity based models in the literature. The multi-scale ECR model also offers orders of magnitude of savings in computation time when compared to deterministic contact models. The model predictions are compared with the experimental observations over a wide range of loads and surface roughness of the specimens, and it is observed that the model predictions are within 50% of the experimental observations. The effect of current cycling through static electrical contact is presented. It is observed that, the voltage drop across the contact initially increases with current until a certain critical voltage is increased. Beyond this critical point any increase in the current causes essentially no increase in steady-state contact voltage. This critical voltage is referred to as "saturation voltage." The saturation voltage for Al 6061 interface is found to be in the range of 160 - 190 mV and that for Cu 110 interface is in the range of 100 - 130 mV. The effect of load and surface roughness on voltage saturation is also demonstrated experimentally. An explanation based on the softening of the interface, due to temperature rise, is proposed rather than more widely referred hypothesis of recrystallization. The phenomenon of voltage saturation is also demonstrated in sliding electrical contacts. The behavior of sliding interfaces of aluminum-copper (Al-Cu) and aluminum-aluminum (Al-Al) are analyzed under high current densities. Experimental results are presented that demonstrate the influence of load, speed, current and surface roughness on coefficient of friction, contact voltage, contact resistance, interface temperature and wear rate. The experimental results reveal that thermal softening of the interface is the primary reason for accelerated wear under the test conditions. The results from the experiments presents an opportunity to form constitutive equations which could be used to predict the performance of the contact based on input parameters. The fusion of the findings of this dissertation provide methodologies along with experimental tools and findings to model, study and interpret the behavior of electrical contacts.

Page generated in 0.2234 seconds