• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Age-related changes in temporal resolution revisited: findings from cochlear implant users

Mussoi, Bruna Silveira Sobiesiak 01 May 2016 (has links)
A decline in temporal resolution, or the ability of the auditory system to track fast changes in incoming sounds, is one factor thought to contribute to difficulties in speech perception that accompany the aging process. Aging effects on gap detection abilities, using behavioral or isolated electrophysiologic measures, have been studied previously. However, peripheral and central electrophysiological, and behavioral measures of temporal resolution have not been examined in the same subjects. Also, the relationship between age-related changes in temporal resolution and speech perception is still unclear, as is their interaction with cognition. By revisiting this question in CI users, it was possible to study aging effects on temporal resolution without the potential confound of age-related hearing loss. In addition, the device allows for manipulations of the temporal properties of a signal without concomitant changes in its spectrum, and for auditory-nerve recordings. This study had two main goals: (1) to determine how aging affects temporal resolution at the auditory periphery, the cortex and perceptually; and (2) to explore the relationship between age-related changes in temporal resolution, general cognitive functioning and speech perception. Results showed that when the auditory system is stimulated with a cochlear implant, few effects of advancing age on temporal resolution are evident. It is possible that, by stimulating the auditory nerve with precise timing, cochlear implants can help users overcome temporal resolution deficits. Alternatively, and perhaps more likely, it is possible that previous studies that reported age effects on temporal resolution were largely influenced by differences in peripheral processing, which were minimized in this study by the use of a cochlear implant. Across the age groups, digit span was the only variable significantly correlated with speech perception in noise and perception of time-compressed speech. A longer memory span for digits was associated with better outcomes in both tests of speech perception. This finding is consistent with previous research, and underscores the notion that cognitive factors, not age, may be more important for speech perception.
12

The Effects of Aging on Temporal Masking

Fulton, Susan E 30 June 2010 (has links)
The ability to resolve rapid intensity and frequency fluctuations in sound is important for understanding speech, especially in real-world environments that include background noise and reverberation. Older listeners often complain of difficulties understanding speech in such real-world environments. One factor thought to influence speech understanding in noisy and reverberant environments is temporal resolution, the ability to follow rapid acoustic changes over time. Temporal resolution is thought to help listeners resolve rapid acoustic changes in speech as well as use small glimpses of speech available in the dips or gaps in the background sounds. Temporal resolution is an ability that is known to deteriorate with age and hearing loss, negatively affecting the ability to understand speech in noisy real-world environments. Measures of temporal resolution, including temporal masking, gap detection, and speech in interrupted noise, use a silent gap as the cue of interest. Temporal masking and speech in interrupted noise tasks measure how well a listener resolves a stimulus before, after, or between sounds (i.e., within a silent gap), while gap detection tasks measure how well the listener resolves the timing of a silent gap itself. A listener needs to resolve information within the gap and the timing of the gap when listening to speech in background sounds. This study examined the role of aging and hearing loss on three measures of temporal resolution: temporal masking, gap detection, and speech understanding in interrupted noise. For all three measures, participants were young listeners with normal hearing (n = 8, mean age = 25.4 years) and older listeners with hearing loss (n = 9, mean age = 72.1 years). Results showed significant differences between listener groups for all three temporal measures. Specifically, older listeners with hearing loss had higher temporal masked thresholds, larger gap detection thresholds, and required a higher signal-to-noise ratio for speech understanding in interrupted noise. Relations between temporal tasks were observed. Temporal masked thresholds and gap detection thresholds accounted for a significant amount of the variance in speech-in-noise scores. Findings suggest that deficits in temporal resolution abilities may contribute to the speech-in-noise difficulties reported by older listeners.
13

The whole tooth and nothing but the tooth: or why temporal resolution of bone collagen may be unreliable

Beaumont, Julia 10 February 2020 (has links)
Yes / The carbon (δ13C) and nitrogen (δ15N) isotope ratios of human bone collagen have been used extensively over the last 40 years to investigate the diet of past populations. It has become apparent that bone collagen can give an unreliable temporal dietary signature especially in juveniles. With higher temporal resolution sampling of collagen from tooth dentine, it is possible to identify short‐term changes in diet previously invisible in bone. This paper discusses the inherent problems of using bone collagen for dietary studies and suggests better sample choices which can make our interpretations more robust, using breastfeeding and weaning as an example. / The modern data was collected and analysed using funding from the Rank Prize Funds New Investigator Award and sponsorship from DB Orthodontics, Bradford. The Tooth Fairy team acknowledges the support of the National Institute for Health Research Clinical Research Network (NIHR CRN). / Research Development Fund Publication Prize Award winner, February 2020.
14

The Visual Physiology of the Smooth Dogfish (Mustelus canis): Temporal Resolution, Irradiance and Spectral Sensitivities

Kalinoski, Mieka 01 April 2010 (has links)
Living elasmobranchs occupy every major aquatic ecosystem throughout the world (Compagno 2003; Compagno et al. 2005). Sensory ecology can be a good determinant in comprehending the processes occurring between an organism and its natural environment (Weissburg and Browman 2005). By utilizing ecophysiological tools, insight into the adaptive responses of the sensory systems to their ever-changing ecological niche can help explain behavioral and life history characteristics (Hueter 1991; Litherland 2009). Aquatic animals show structural and physiological adaptations in their visual sense specific to the ecological requirements of their habitat (Hart et al. 2004), implying that vision is an important modality. The visual system of the smooth dogfish (Mustelus canis, family Triakidae) was examined using corneal electrophysiological methods to determine the visual spectral range, irradiance sensitivity, and speed of vision (flicker fusion frequency, FFF). The smooth dogfish, a shallow water bottom feeder inhabiting inshore waters along the eastern United States, was found to be extremely sensitive to dim light (-3.1- 0.1 log light intensity), and have a slow FFF (13 Hz), thus being well adapted to the scotopic conditions of the turbid coastal inshore waters. This prompted a second set of experiments focusing on the chromatic adaptations of the photoreceptor cells and retina function following light adaptation. Light adaptation increased the photopic threshold by 2.0 log light units of intensity (LLI). However, the temporal resolution was not dramatically increased (to 17 Hz), indicating that the retinal integration time is very slow for this species under all circumstances. The spectral sensitivity peak for M. canis (470 nm) was found to be significantly blue-shifted in comparison to other members of the Triakidae family (Crescitelli et al. 1995; Sillman et al. 1996). Smooth dogfish appear to forgo high spatial and temporal resolution for the enhancement of photon capture. The sandbar shark inhabits the same inshore estuaries during the summer months but has a visual system with a higher temporal resolution (FFF, 54 Hz) and a brighter photopic threshold (1.2 LLI-50% max) (Litherland 2009). Furthermore, other elasmobranch or telelost species inhabiting similar photic environments also exhibit faster temporal resolution; little skate (FFF, 30 Hz), weakfish (FFF, 40 Hz), red drum (FFF, 50 Hz), spotted sea trout (FFF, 60 Hz), and Atlantic croaker (FFF, 58 Hz) (Horodysky et al. 2008; McComb et al. 2010). Coastal seas tend to contain more dissolved organics and particulates than the clear oceanic waters of the epipelagic and pelagic zones (McFarland 1986), therefore the retina of smooth dogfish has adapted to be extremely sensitive to dim light, has a long integration time, a low flicker fusion frequency and temporal resolution, and retinal cells that are able to adjust to changing light conditions. All of these factors contribute to the visual system to provide optimal visual ability to enable smooth dogfish to accurately exploit its surroundings.
15

The auditory transduction chain

Gollisch, Tim 07 July 2004 (has links)
Auditorische Transduktion beschreibt die Umwandlung von Schall in elektrische Signale in Rezeptorzellen. Dies geschieht durch eine Kette biophysikalischer Prozesse: mechanische Ankopplung der Schallwelle, Öffnung von mechanosensitiven Ionenkanälen in den Rezeptorzellen, Ansammlung des Membranpotentials und Auslösung von Aktionspotentialen. In dieser Arbeit wird die damit verbundene Signalverarbeitung am Beispiel der Rezeptorzellen im Ohr von Heuschrecken untersucht. Die Transduktion wird dazu als Kaskade einzelner funktioneller Module beschrieben. Es wird gezeigt, wie derartige Module aus der Beobachtung der System-Antwort, hier der Aktionspotentiale im auditorischen Nerv, mit Hilfe der Iso-Antwort-Methode charakterisiert werden können. Dabei werden im Experiment unterschiedliche akustische Reize ermittelt, die die gleiche System-Antwort liefern. In drei aufeinander aufbauenden experimentellen Untersuchungen führt dies zu folgenden Ergebnissen: 1) Für stationäre Signale wird die Feuerrate der Rezeptorzellen durch die Energie der Trommelfell-Schwingung reguliert. 2) Die auditorische Transduktion lässt sich durch eine Kaskade aus zwei linearen Filtern und zwei nicht-linearen Transformationen (LNLN-Kaskade) beschreiben. Die involvierten Prozesse agieren im sub-Millisekunden-Bereich und können mit der beschriebenen Methode - trotz der auf etwa eine Millisekunde beschränkten Präzision der Aktionspotentiale - mit einer Genauigkeit von ca. 10 Mikrosekunden vermessen werden. 3) Die Adaptation der Feuerrate enthält neben einem dominierenden rückgekoppelten Prozess, der durch die Feuerrate selbst gesteuert wird, auch eine Komponente, die direkt durch das Eingangssignal, die Schallintensität, ausgelöst wird und mechanischer Natur ist. Die Ergebnisse spiegeln die hohen Anforderungen an das zeitliche Auflösungsvermögen im Ohr wider. Die verwendete Methodik ist jedoch auch auf viele andere systemtheoretische Untersuchungen biophysikalischen Kaskaden anwendbar. / Auditory transduction describes the conversion of sound into electrical signals in receptor cells. A sequence of biophysical processes is involved: the mechanical coupling of the sound-pressure wave, the opening of mechanosensory ion channels in the receptor cells, the accumulation of membrane potential and the generation of action potentials. In this work, the signal processing in receptor cells is investigated. The ears of grasshoppers serve as a model system, and transduction is described as a cascade of functional modules. It is shown how such modules can be characterized by the iso-response method from observations of the system''s response. To this end, different acoustic stimuli are determined experimentally that trigger the same response. In three consecutive experimental investigations, this approach leads to the following results: 1) For stationary signals, the firing rate of the receptor neurons is governed by the energy of the ear-drum vibrations. 2) Auditory transduction can be described by a cascade that consists of two linear filters and two nonlinear transformations (LNLN cascade). The processes involved act on sub-millisecond time scales and can be analyzed by the described method with a resolution of around 10 microseconds - despite the limited precision of the action potentials near one millisecond. 3) Spike-frequency adaptation is governed by a feedback process, which is governed by the firing rate, but also contains a feedforward component triggered by the system''s input, the sound intensity. This component is of mechanical origin. The results reflect the high demands for temporal resolution in the ear. The applied method, however, can also be used for a large range of further system-theoretical investigations of biophyical cascades.
16

Auditory Temporal Resolution in Normal-Hearing Preschool Children Revealed by Word Recognition in Continuous and Interrupted Noise

Stuart, Andrew, Givens, Gregg D., Walker, Letitia J., Elangovan, Saravanan 28 March 2006 (has links)
The purpose of this study was to examine temporal resolution in normal-hearing preschool children. Word recognition was evaluated in quiet and in spectrally identical continuous and interrupted noise at signal-to-noise ratios (S/Ns) of 10, 0, and −10dB−10dB−10dB. Sixteen children 4to5years4to5years4to5yearsof age and eight adults participated. Performance decreased with decreasing S/N. At poorer S/Ns, participants demonstrated superior performance or a release from masking in the interrupted noise. Adults performed better than children, yet the release from masking was equivalent. Collectively these findings are consistent with the notion that preschool children suffer from poorer processing efficiency rather than temporal resolution per se.
17

Reduced-data magnetic resonance imaging reconstruction methods: constraints and solutions.

Hamilton, Lei Hou 11 August 2011 (has links)
Imaging speed is very important in magnetic resonance imaging (MRI), especially in dynamic cardiac applications, which involve respiratory motion and heart motion. With the introduction of reduced-data MR imaging methods, increasing acquisition speed has become possible without requiring a higher gradient system. But these reduced-data imaging methods carry a price for higher imaging speed. This may be a signal-to-noise ratio (SNR) penalty, reduced resolution, or a combination of both. Many methods sacrifice edge information in favor of SNR gain, which is not preferable for applications which require accurate detection of myocardial boundaries. The central goal of this thesis is to develop novel reduced-data imaging methods to improve reconstructed image performance. This thesis presents a novel reduced-data imaging method, PINOT (Parallel Imaging and NOquist in Tandem), to accelerate MR imaging. As illustrated by a variety of computer simulated and real cardiac MRI data experiments, PINOT preserves the edge details, with flexibility of improving SNR by regularization. Another contribution is to exploit the data redundancy from parallel imaging, rFOV and partial Fourier methods. A Gerchberg Reduced Iterative System (GRIS), implemented with the Gerchberg-Papoulis (GP) iterative algorithm is introduced. Under the GRIS, which utilizes a temporal band-limitation constraint in the image reconstruction, a variant of Noquist called iterative implementation iNoquist (iterative Noquist) is proposed. Utilizing a different source of prior information, first combining iNoquist and Partial Fourier technique (phase-constrained iNoquist) and further integrating with parallel imaging methods (PINOT-GRIS) are presented to achieve additional acceleration gains.
18

Desenvolvimento de uma técnica computacional de processamento espaço-temporal aplicada em séries de precipitação

Guarienti, Gracyeli Santos Souza 27 May 2015 (has links)
Submitted by Jordan (jordanbiblio@gmail.com) on 2017-05-04T13:38:27Z No. of bitstreams: 1 DISS_2015_Gracyeli Santos Souza Guarienti.pdf: 4160382 bytes, checksum: 066e507b4df1c012a091983043416a9b (MD5) / Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2017-05-04T15:41:01Z (GMT) No. of bitstreams: 1 DISS_2015_Gracyeli Santos Souza Guarienti.pdf: 4160382 bytes, checksum: 066e507b4df1c012a091983043416a9b (MD5) / Made available in DSpace on 2017-05-04T15:41:01Z (GMT). No. of bitstreams: 1 DISS_2015_Gracyeli Santos Souza Guarienti.pdf: 4160382 bytes, checksum: 066e507b4df1c012a091983043416a9b (MD5) Previous issue date: 2015-05-27 / CAPES / Variáveis climatológicas podem ser estudadas a partir de seu comportamento temporal. Nesse sentido, este trabalho desenvolveu uma técnica computacional de processamento espaço-temporal de variáveis climatológicas que utiliza busca por similaridade e a possibilidade de comparação em várias resoluções temporais. Para demonstração do uso da técnica e verificação dos resultados, sequências de processamento foram aplicadas em séries de precipitação de um período de quinze anos usando os algoritmos Dynamic Time Warping (DTW) e wavelet em quatro biomas: Amazônia, Cerrado, Pantanal e Mata Atlântica. A técnica foi aplicada nas séries originais e em suas wavelets, com resoluções temporais mensal, semestral, anual e quinze anos de forma a permitir que análises específicas em cada resolução possam ser aplicadas. A flexibilidade e a variedade de resoluções temporais permitidas pela técnica torna possível acrescentar aos processos de monitoramento ambiental novas perspectivas em tomadas de decisão. / Climatic variables can be studied from its temporal behavior. In this sense, this study developed a temporal analysis technique for climatological variables using similarity search and the possibility of comparison in various temporal resolution levels. For the income statement, several processing sequences were applied in series of precipitation a period of fifteen years using the Dynamic Time Warping algorithm (DTW) and wavelet on four biomes: Amazon, Cerrado, Pantanal and Atlantic Forest. The technique was applied to the original data and wavelets, in the temporal resolution of time monthly, semi-annual, annual and fifteen years enable visualization and comparison of data on these different scales. Application the technique developed in this study, provide new perspectives to decision-making in environmental monitoring processes.
19

Análise da variabilidade espaço-temporal da umidade do solo na bacia experimental do Riacho Guaraíra - Paraíba

Lira, Nicholas Borges de 31 March 2016 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-07-27T12:49:58Z No. of bitstreams: 1 arquivototal.pdf: 7019018 bytes, checksum: 871823e939a6e022aaadd5b6b55b3dab (MD5) / Made available in DSpace on 2017-07-27T12:49:58Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 7019018 bytes, checksum: 871823e939a6e022aaadd5b6b55b3dab (MD5) Previous issue date: 2016-03-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This Master thesis studies the spatio-temporal variability of soil moisture in the Guaraíra experimental watershed, located on the southern coast of Paraíba. As it is an experimental basin, it is of great importance to know how its variables work and interact together, in order to allow inferences in similar basins. In that case, the soil moisture play a role responsible for several factors in the watershed, like flow generation, drought development and groundwater recharge, for example. Initially, being a small watershed, (5,84 km²) it was believed that its results related to soil moisture should be very homogeneus, however, a hypothesis was made about how the different soil and vegetation cover between each station could make an influence in the results. The research had as its main objective to study the spatio-temporal variability on the soil moisture on the said study area, in order to use these information as subsidy to similar basins, even bigger ones. For this it was used data from the TDR (Time Domain Reflectometry) soil moisture probes installed at five stations and pluviographs in the study area combined with manual collection for calibration and validation of the probe’s results since april 2013 until September 2014. This way, it was possible to apply the methods used by Vachaud et al. (1985( and Mittelbach & Seneviratne (2012), with the disconnection of the resilts of soil moisture into its variable and invariable parts on time, which consist in the spatio-temporal variability of soil moisture analysis. As the TDR probes used to measure soil moisture give a temporal resolution of one hour, an analysis of temporal resolution was proceeded, allowing to use diary data in order to represent the soil moisture, without significant variation of results. The results confirmed the homogeneity of spatio-temporal variability of the soil moisture in the basin, except for the station with less vegetation cover, where the spatio-temporal variability of soil moisture differed significantly from the rest of the basin. Thus, it was perceived the similiraty between the results of soil moisture in the terms of temporal mean and anomalies, for the stations with similar vegetation cover. This way, it was concluded that the fact that the results of the station with less vegetation cover had been so different is due to its lack of vegetation cover, being very different from the rest of the basin, thus enhancing the importance of vegetacion cover as a natural controller of soil moisture. As to the temporal variability, that is more susceptible to climatic effect, like precipitation for example, while the spatial-variability is more related to the invariable terms on time. Yet, the calibration of the probes was successfully executed and they do represent well the soil moisture for that study area, allowing continuous monitoring on that experimental basin. / Este trabalho tem como objeto de estudo a variabilidade espaço-temporal da umidade do solo na bacia hidrográfica experimental do riacho Guaraíra, localizada na região litorânea sul do Estado da Paraíba. Tratando-se de uma bacia experimental, é de suma importância conhecer como funcionam e interagem entre si seus variados elementos, afim de possibilitar inferências em bacias semelhantes. Nisto, a umidade do solo é responsável por vários outros fatores na bacia hidrográfica, tais quais geração de vazão, desenvolvimento de secas e recarga de aquíferos, por exemplo. Inicialmente, por ser uma área pequena (5,84 km²), acreditava-se que os seus resultados relativos à umidade do solo seriam bastante homogêneos, entretanto, pensou-se na hipótese de os diferentes solos e vegetações de cada estação poderem influenciar no comportamento da umidade do solo. A pesquisa teve então como principal objetivo estudar a variabilidade espaço-temporal da umidade do solo na referida área de estudo, de forma a utilizar estas informações como subsídio para bacias semelhantes, podendo até serem de maior porte. Para isto, utilizaram-se dados das sondas de umidade do solo do tipo TDR (Time Domain Reflectometry) e pluviógrafos instalados em cinco locais da bacia experimental, aliados à coletas manuais para calibração e validação dos resultados destas sondas durante o período de abril de 2013 até setembro de 2014. Com isto, aplicaram-se os métodos propostos por Vachaud et al. (1985) e Mittelbach & Seneviratne (2012), que permitem a separação da umidade do solo em suas parcelas variáveis e invariáveis no tempo, que consistem na análise de variabilidade espaço-temporal da umidade do solo. Como as sondas TDR utilizadas para medição da umidade fornecem uma resolução temporal de uma hora, procedeu-se uma avaliação desta resolução temporal que permitiu utilizar dados diários para representar as umidades dos solos, sem variação significativa de resultados. Os resultados confirmaram a homogeneidade da variabilidade espaço-temporal da umidade do solo na bacia experimental, com a exceção da estação que possui menor cobertura vegetal, onde a variabilidade espaço-temporal da umidade do solo diferiu significativamente do resto da bacia. Ainda, percebeu-se a semelhança entre os resultados de umidade do solo das estações com cobertura vegetal semelhantes em termos tanto de média temporal quanto de anomalias. Desta forma, concluiu-se que, o fato de os resultados da estação com pouca cobertura vegetal terem sido tão diferentes na época chuvosa deve-se justamente à esta falta de cobertura vegetal, diferente das outras estações, reforçando a importância da cobertura vegetal como um controlador natural da umidade do solo. Quanto à variabilidade temporal, esta é mais sujeita aos efeitos climáticos, como por exemplo a precipitação, enquanto que a variabilidade espacial está mais atrelada aos termos invariáveis no tempo. Ainda, a calibração das sondas foi efetuada com sucesso e representam bem a umidade do solo para a área de estudo, tornando possível o contínuo monitoramento desta bacia experimental.
20

Improved Temporal Resolution Using Parallel Imaging in Radial-Cartesian 3D functional MRI

Ahlman, Gustav January 2011 (has links)
MRI (Magnetic Resonance Imaging) is a medical imaging method that uses magnetic fields in order to retrieve images of the human body. This thesis revolves around a novel acquisition method of 3D fMRI (functional Magnetic Resonance Imaging) called PRESTO-CAN that uses a radial pattern in order to sample the (kx,kz)-plane of k-space (the frequency domain), and a Cartesian sample pattern in the ky-direction. The radial sample pattern allows for a denser sampling of the central parts of k-space, which contain the most basic frequency information about the structure of the recorded object. This allows for higher temporal resolution to be achieved compared with other sampling methods since a fewer amount of total samples are needed in order to retrieve enough information about how the object has changed over time. Since fMRI is mainly used for monitoring blood flow in the brain, increased temporal resolution means that we can be able to track fast changes in brain activity more efficiently.The temporal resolution can be further improved by reducing the time needed for scanning, which in turn can be achieved by applying parallel imaging. One such parallel imaging method is SENSE (SENSitivity Encoding). The scan time is reduced by decreasing the sampling density, which causes aliasing in the recorded images. The aliasing is removed by the SENSE method by utilizing the extra information provided by the fact that multiple receiver coils with differing sensitivities are used during the acquisition. By measuring the sensitivities of the respective receiver coils and solving an equation system with the aliased images, it is possible to calculate how they would have looked like without aliasing.In this master thesis, SENSE has been successfully implemented in PRESTO-CAN. By using normalized convolution in order to refine the sensitivity maps of the receiver coils, images with satisfying quality was able to be reconstructed when reducing the k-space sample rate by a factor of 2, and images of relatively good quality also when the sample rate was reduced by a factor of 4. In this way, this thesis has been able to contribute to the improvement of the temporal resolution of the PRESTO-CAN method. / MRI (Magnetic Resonance Imaging) är en medicinsk avbildningsmetod som använder magnetfält för att framställa bilder av människokroppen. Detta examensarbete kretsar kring en ny inläsningsmetod för 3D-fMRI (functional Magnetic Resonance Imaging) vid namn PRESTO-CAN som använder ett radiellt mönster för att sampla (kx,kz)-planet av k-rummet (frekvensdomänen), och ett kartesiskt samplingsmönster i ky-riktningen. Det radiella samplingsmönstret möjliggör tätare sampling av k-rummets centrala delar, som innehåller den mest grundläggande frekvensinformationen om det inlästa objektets struktur. Detta leder till att en högre temporal upplösning kan uppnås jämfört med andra metoder eftersom det krävs ett mindre antal totala sampel för att få tillräcklig information om hur objektet har ändrats över tid. Eftersom fMRI framförallt används för att övervaka blodflödet i hjärnan innebär ökad temporal upplösning att vi kan följa snabba ändringar i hjärnaktivitet mer effektivt.Den temporala upplösningen kan förbättras ytterligare genom att minska scanningstiden, vilket i sin tur kan uppnås genom att tillämpa parallell avbildning. En metod för parallell avbildning är SENSE (SENSitivity Encoding). Scanningstiden minskas genom att minska samplingstätheten, vilket orsakar vikning i de inlästa bilderna. Vikningen tas bort med SENSE-metoden genom att utnyttja den extra information som tillhandahålls av det faktum att ett flertal olika mottagarspolar med sinsemellan olika känsligheter används vid inläsningen. Genom att mäta upp känsligheterna för de respektive mottagarspolarna och lösa ett ekvationssystem med de vikta bilderna är det möjligt att beräkna hur de skulle ha sett ut utan vikning.I detta examensarbete har SENSE framgångsrikt implementerats i PRESTO-CAN. Genom att använda normaliserad faltning för att förfina mottagarspolarnas känslighetskartor har bilder med tillfredsställande kvalitet varit möjliga att rekonstruera när samplingstätheten av k-rummet minskats med en faktor 2, och bilder med relativt bra kvalitet också när samplingstätheten minskats med en faktor 4. På detta sätt har detta examensarbete kunnat bidra till förbättrandet av PRESTO-CAN-metodens temporala upplösning.

Page generated in 0.0857 seconds