• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 9
  • 5
  • 4
  • 2
  • Tagged with
  • 65
  • 58
  • 32
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Crack Spacing, Crack Width and Tension Stiffening Effect in Reinforced Concrete Beams and One-Way Slabs

Piyasena, Ratnamudigedara, n/a January 2003 (has links)
An analytical method for determining the crack spacing and crack width in reinforced concrete beams and one-way slabs is presented in this thesis. The locations and the distribution of cracks developed in a loaded member are predicted using the calculated concrete stress distributions near flexural cracks. To determine the stresses, a concrete block bounded by top and bottom faces and two transverse sections of the beam is isolated and analysed by the finite element method. Two types of blocks are analysed. They are: (i) block adjacent to the first flexural crack, and (ii) block in between successive cracks. The calculated concrete stress distribution adjacent to the first flexural crack is used to predict the locations of primary cracks (cracks formed at sections where the stresses have not been influenced by nearby cracks). The concrete stress distributions in between successive cracks, calculated for various crack spacings and load levels, are used to predict the formation of secondary cracks in between existing cracks. The maximum, minimum and the average crack spacing at a given load level are determined using the particular crack spacing that would produce a concrete tensile stress equal to the flexural strength of concrete. The resulting crack width at reinforcement level is determined as the relative difference in elastic extensions of steel and surrounding concrete. The accuracy of the present method is verified by comparing the predicted spacing and width of cracks with those measured by others. The analytical method presented in this thesis is subsequently used to investigate the effects of various variables on the spacing and width of cracks, and the results are presented. These results are used to select the set of parameters that has the most significant effect. A parametric study is then carried out by re-calculating the spacing and width of cracks for the selected parameters. Based on the results of this parametric study, new formulas are developed for the prediction of spacing and width of cracks. The accuracy of these formulas is ascertained by comparing the predicted values and those measured by other investigators on various types of beams under different load levels. The calculated stress distributions between successive cracks are also used to develop a new method of incorporating the tension stiffening effect in deflection calculation. First, curvature values at sections between adjacent cracks are determined under different load levels, using the concrete and steel stresses. These results are used to develop an empirical formula to determine the curvature at any section between adjacent cracks. To verify the accuracy of the new method, short-term deflections are calculated using the curvature values evaluated by the proposed formula for a number of beams, and the results are compared with those measured by others.
22

Innovative Pre-cast Cantilever Constructed Bridge Concept

Visscher, Brent Tyler 30 July 2008 (has links)
Minimum impact construction for bridge building is a growing demand in modern urban environments. Pre-cast segmental construction is one solution that offers low-impact, economical, and aesthetically pleasing bridges. The standardization of pre-cast concrete sections and segments has facilitated an improved level of economy in pre-cast construction. Through the development of high performance materials such as high strength fibre-reinforced concrete (FRC), further economy in pre-cast segmental construction may be realized. The design of pre-cast bridges using high-strength FRC and external unbonded tendons for cantilever construction may provide an economical, low-impact alternative to overpass bridge design. This thesis investigates the feasibility and possible savings that can be realized for a single cell box girder bridge with thin concrete sections post-tensioned exclusively with external unbonded tendons in the longitudinal direction. A cantilever-constructed single cell box girder with a curtailed arrangement of external unbonded tendons is examined.
23

Innovative Pre-cast Cantilever Constructed Bridge Concept

Visscher, Brent Tyler 30 July 2008 (has links)
Minimum impact construction for bridge building is a growing demand in modern urban environments. Pre-cast segmental construction is one solution that offers low-impact, economical, and aesthetically pleasing bridges. The standardization of pre-cast concrete sections and segments has facilitated an improved level of economy in pre-cast construction. Through the development of high performance materials such as high strength fibre-reinforced concrete (FRC), further economy in pre-cast segmental construction may be realized. The design of pre-cast bridges using high-strength FRC and external unbonded tendons for cantilever construction may provide an economical, low-impact alternative to overpass bridge design. This thesis investigates the feasibility and possible savings that can be realized for a single cell box girder bridge with thin concrete sections post-tensioned exclusively with external unbonded tendons in the longitudinal direction. A cantilever-constructed single cell box girder with a curtailed arrangement of external unbonded tendons is examined.
24

In Plane Seismic Strengthening Of Brick Masonry Walls Using Rebars

Erdogdu, Murat 01 October 2008 (has links) (PDF)
About half of the total building stock in Turkey is masonry type building. Masonry buildings in Turkey, especially in rural areas, are constructed without any engineering knowledge mostly by their own residents. They generally have heavy roofs. Masonry type buildings also have thick and heavy wall materials. Heavy roof and wall material generate large inertial forces in the case of an earthquake. Brittle failure of walls leads to total failure of whole system followed by sudden collapse of heavy roof. The aim of this thesis is to understand failure mechanisms of brick masonry walls, prevent their brittle failure and allow the walls to dissipate energy during an earthquake. Furthermore, ultimate capacity increase was also targeted by using low cost and easy to obtain material. In order to find an economical and effective way in strengthening of brick masonry walls in their in-plane direction, steel rebars were used as post-tensioning materials in brick masonry walls and house tests. Springy connections were utilized in the reinforcing and post-tensioning bars in order to prevent early loss of post-tension due to wall cracking or rebar yielding. Separate tests were conducted with and without rebars and springs in order to compare their results. v The test results indicated that the ultimate lateral load capacity of 6m long brick masonry house increased up to about 6 times with respect to its nominal value. Energy dissipation also increased up to about 10 times of the original house. Lateral load capacity increase in 2m long rebar post-tensioned brick masonry walls were measured as about 17 times when compared with the original wall. The energy dissipation capacity was also increased about 30 times the nominal value. A general procedure was developed to assess the vulnerability of single storey masonry houses, which calculates the earthquake demand acting on each wall segment. Comparison of capacity versus demand enables evaluation of wall segments and leads strengthening calculations if necessary. Derived formulas were used to calculate post-tensioning force and design vertical and diagonal rebars. The procedure was demonstrated using properties of an existing house and strengthening cost was found to be about 10% of the building cost. The results of the conducted tests have shown that rebar post-tensioning of brick masonry walls is an effective and cost-efficient way of strengthening the walls in their in-plane direction and can be used as an economical and simple technique for seismically vulnerable masonry houses. Spring based connection detail has improved the post cracking performance of the walls at large deformations by keeping the wall reaction higher after ultimate strength has reached as well as increased the energy dissipation capacity of the walls.
25

Behavior of the cast-in-place splice regions of spliced I-girder bridges

Williams, Christopher Scott 17 September 2015 (has links)
Spliced girder technology continues to attract attention due to its versatility over traditional prestressed concrete highway bridge construction. Relatively limited data is available in the literature, however, for large-scale tests of post-tensioned I-girders, and few studies have examined the behavior of the cast-in-place (CIP) splice regions of post-tensioned spliced girder bridges. In addition to limited knowledge on CIP splice region behavior, a wide variety of splice region details (e.g., splice region length, mild reinforcement details, cross-sectional geometry, etc.) continue to be used in the field. In response to these issues, the research program described in this dissertation was developed to (i) study the strength and serviceability behavior of the CIP splice regions of spliced I-girders, (ii) identify design and detailing practices that have been successfully implemented in CIP splice regions, and (iii) develop design recommendations based on the structural performance of spliced I-girder test specimens. To accomplish these tasks, an industry survey was first conducted to identify the best practices that have been implemented for the splice regions of existing bridges. Splice region details were then selected to be included in large-scale post-tensioned spliced I-girder test specimens. Two tests were conducted to study splice region behavior and evaluate the performance of the chosen details. The failure mechanisms of both test girders were characterized by a shear-compression failure of the web concrete with primary crushing occurring in the vicinity of the top post-tensioning duct. Most significantly, the girders acted essentially as monolithic members in shear at failure. Web crushing extended across much of the test span and was not localized within the splice regions. To supplement the spliced girder tests, a shear-friction experimental program was also conducted to gain a better understanding of the interface shear behavior between precast and CIP concrete surfaces at splice regions. The findings of the shear-friction study are summarized within this dissertation. Based on the results of the splice region research program, design recommendations were developed, including recommended CIP splice region details.
26

Evaluation of corrosion resistance of new and upcoming post-tensioning materials after long-term exposure testing

McCool, Gregory Edward 14 February 2011 (has links)
This thesis focuses on the forensic analysis of ten full-scale post-tensioned beam specimens after four years of aggressive exposure testing. The research was funded by FHWA and TxDOT. Post-tensioned structures have been under scrutiny due to their vulnerability to corrosion damage. Recent corrosion failures have been traced to inadequate materials and construction procedures. The purpose of this research project is to evaluate the corrosion performance of new and upcoming post-tensioning materials and systems and to determine their suitability for preventing durability issues which were found in older structures. The following variables were tested in the full-scale beam specimens: strand type, duct type, duct coupler type, anchorage type, tendon encapsulation. Non-destructive and destructive testing methods for evaluating corrosion damage were examined. Cost analysis of each material was conducted using tendon quantities from a typical post-tensioned bridge for comparison. Galvanized steel ducts performed poorly, showing substantial pitting and area loss. Plastic ducts were intact, but elevated grout chloride levels indicate that moisture was able to enter the ducts at the locations of couplers and grout vents. Strand corrosion was minor and uniform for all the types which were examined, suggesting that chloride traveled the length of the tendons through strand interstices. Stainless steel strands were nearly corrosion-free. Pourback quality was found to protect anchorages more than galvanization of bearing plates. The electrically isolated tendon did not completely prevent strand corrosion, but the system resulted in much lower chloride concentrations along the tendon than the conventional systems. / text
27

Chloride Ingress into Submerged Concrete Under Sustained Load

Karam, Andrew 24 January 2014 (has links)
A harsh, cold, and icy environment is of no surprise to the conditions of a winter climate, where the wide use of de-icing salts on roads and highways allows for the initiation of chloride-induced corrosion of the reinforcement of concrete structures; a reduced service life, loss of structural integrity, visible damages, and ultimately structural failure are among the many unwanted effects of rebar corrosion. Chloride ingress into concrete has been extensively studied for the last four decades; however, most of the relevant research to date does not take into account the effects of sustained loading on chloride transport properties. Therefore, the objectives of this study were to investigate the influence of sustained compressive and tensile stresses on chloride ingress into concrete, and ultimately to understand what the effect of sustained stress is on chloride penetration depth, on chloride concentration by % weight of concrete, and on apparent diffusion coefficients by comparing results to those of unloaded control specimens. To achieve these objectives, six post-tensioned and four non-reinforced control concrete beams were constructed with different water-to-cement (w/c) ratios and completely submerged in a 4-5% de-icing salt (NaCl) solution for 12 weeks, allowing chloride transfer to be completely governed by continuous diffusion. The effects of supplementary cementing material on chloride ingress are also studied. Concrete beams were post-tensioned to induce variable sustained compressive and tensile stresses along the beam. After 12 weeks of exposure, beams were fractured at specific locations and sprayed with a 0.1N silver nitrate (AgNO3) solution to determine average penetration depths; chloride concentration profiles were obtained from potentiometric titration of grinded powder samples. Apparent chloride diffusion coefficients were then obtained from the results of spraying AgNO3 and titration, the latter by non-linear regression curve-fitting to Fick’s second law of diffusion. A good agreement between results from both methods reveals that the use of AgNO3 in field is acceptable in predicting the rate of chloride ingress in concrete sustaining stress. The chloride diffusivity for each profile, relative to that of the unstressed section, was related to the compressive and tensile stresses in the concrete section. The experimental results indicate the dependence of chloride ingress and concentration on the type and level of sustained stress. An analysis of the results to study the effects of the w/c ratio using colourimetric (silver nitrate spray) and potentiometric titration methods was also completed.
28

Análise comparativa dos fatores influentes na tensão última de protensão em cabos aderentes e não aderentes / Comparative analysis on the influent factors in the ultimate stress in bonded and unbonded tendons

Monteiro, Tiago Carvalho Leite January 2008 (has links)
A protensão não-aderente caracteriza-se pela liberdade de deslocamento relativo entre o cabo de protensão e a fibra de concreto adjacente. A tensão na armadura de protensão no estado limite último é de difícil obtenção, não sendo dependente apenas das deformações em uma determinada seção transversal, mas sendo função de todas as deformações que ocorrem no concreto adjacente ao perfil de protensão. Para que seja obtida a tensão última, é necessária a integração das curvaturas ao longo de todo o elemento a fim de se obter o alongamento no cabo de protensão, o que se consegue com precisão apenas recorrendo-se a ferramentas numéricas, devido às não-linearidades físicas envolvidas no problema. O método construtivo com protensão não aderente vem sendo cada vez mais utilizado na execução de edifícios no Brasil. O principal sistema de protensão não aderente é o que utiliza a mono-cordoalha engraxada e plastificada, que alia os benefícios da protensão e a simplicidade necessária às obras moldadas no local. Apesar disso, não há no Brasil um volume de pesquisa sobre o comportamento dos elementos com protensão não aderente, compatível com a demanda da indústria da construção civil. Visando contribuir para o desenvolvimento das formulações nacionais de projeto dos elementos com protensão não aderente, o presente trabalho é a continuação de uma pesquisa que vem sendo realizada no Programa de Pós-Graduação em Engenharia Civil – PPGEC/UFRGS, a qual foi iniciada com a implementação de um modelo numérico capaz de analisar elementos com protensão não aderente e seguida de uma análise paramétrica sobre as principais variáveis que influenciam na tensão última na armadura de protensão. O trabalho que ora se apresenta traçou uma correlação entre os resultados não-aderentes obtidos da análise paramétrica com resultados aderentes, os quais são de mais fácil obtenção, pois se baseiam na compatibilidade de deformações na seção transversal. Foram feitas análises numéricas e analíticas com aderência dos mesmos protótipos estudados anteriormente sem aderência. Os resultados obtidos mostraram incrementos de tensão maiores no caso aderente, bem como maiores capacidades portantes. Estudou-se também uma metodologia capaz de computar a tensão última na armadura não aderente com análises do tipo compatibilidade de deformações, com a utilização de um coeficiente Lo/L redutor de aderência. Os resultados iniciais mostraram-se bons para carregamento nos terços, mas insatisfatórios para carregamentos distribuído e concentrado. Através de um ajuste no coeficiente Lo/L baseando-se nos dados da pesquisa precedente, bons resultados foram obtidos para todos os tipos de carregamento. A metodologia apresentada foi validada pela comparação com diferentes protótipos analisados numericamente, bem como protótipos ensaiados experimentalmente por diversos autores. / Unbonded post-tensioning is characterized for allowing relative displacement between the tendon and the concrete adjacent fiber. The ultimate stress in the unbonded tendon is difficult to be obtained, because it is not only dependent on the deformed shape of a cross section, but on the whole deformations occurring in the tendon profile adjacent concrete. To evaluate this ultimate stress, it is necessary to integrate all curvatures along the whole element, in order to obtain the total tendon elongation. This can only be precisely obtained using numerical tools, due to the non-linear factors involved in the problem. Unbonded post-tensioning is becoming ever more used in Brazilian building construction. The main unbonded post-tensioning system uses the unbonded mono-strand, that joins the benefits of prestressing with the necessary building simplicity. Nevertheless, there is no research effort in Brazil compatible with the construction industry demand. This study seeks to contribute to the development of the national formulations design of unbonded posttensioning elements. This work is a continuation of a research being undertaken at PPGEC/UFRGS. A numerical model able to determine the behavior of unbonded posttensioned elements was first developed, followed by a parametric study about the main parameters influencing the ultimate stress in unbonded tendons. The present work traced a correlation between the results for unbonded elements, obtained from the parametric analysis, with results for bonded elements. The latter are easily obtained, because they are based on the compatibility of strains in the cross section. Numerical and analytical calculations were performed for the same prototypes studied in the previous research, but now considering the existence of bond in the tendons. The results showed greater increments in stress for the bonded cases and also greater ultimate resistance. It was also devised a calculation method able to determine the ultimate stress in the unbonded tendon using an analysis similar to strain compatibility, but with a reduction bond coefficient Lo/L. The initial results obtained for a third-point loading showed a good agreement, but that not happened for the results of distributed and concentrated loads. However, by an adjustment of the Lo/L coefficient, based on the data of the previous research, good agreement was observed for all loading types. The presented methodology was validated by comparing results with other prototypes analyzed by the numerical model, and also results of experimental studies carried out by several authors.
29

Análise comparativa dos fatores influentes na tensão última de protensão em cabos aderentes e não aderentes / Comparative analysis on the influent factors in the ultimate stress in bonded and unbonded tendons

Monteiro, Tiago Carvalho Leite January 2008 (has links)
A protensão não-aderente caracteriza-se pela liberdade de deslocamento relativo entre o cabo de protensão e a fibra de concreto adjacente. A tensão na armadura de protensão no estado limite último é de difícil obtenção, não sendo dependente apenas das deformações em uma determinada seção transversal, mas sendo função de todas as deformações que ocorrem no concreto adjacente ao perfil de protensão. Para que seja obtida a tensão última, é necessária a integração das curvaturas ao longo de todo o elemento a fim de se obter o alongamento no cabo de protensão, o que se consegue com precisão apenas recorrendo-se a ferramentas numéricas, devido às não-linearidades físicas envolvidas no problema. O método construtivo com protensão não aderente vem sendo cada vez mais utilizado na execução de edifícios no Brasil. O principal sistema de protensão não aderente é o que utiliza a mono-cordoalha engraxada e plastificada, que alia os benefícios da protensão e a simplicidade necessária às obras moldadas no local. Apesar disso, não há no Brasil um volume de pesquisa sobre o comportamento dos elementos com protensão não aderente, compatível com a demanda da indústria da construção civil. Visando contribuir para o desenvolvimento das formulações nacionais de projeto dos elementos com protensão não aderente, o presente trabalho é a continuação de uma pesquisa que vem sendo realizada no Programa de Pós-Graduação em Engenharia Civil – PPGEC/UFRGS, a qual foi iniciada com a implementação de um modelo numérico capaz de analisar elementos com protensão não aderente e seguida de uma análise paramétrica sobre as principais variáveis que influenciam na tensão última na armadura de protensão. O trabalho que ora se apresenta traçou uma correlação entre os resultados não-aderentes obtidos da análise paramétrica com resultados aderentes, os quais são de mais fácil obtenção, pois se baseiam na compatibilidade de deformações na seção transversal. Foram feitas análises numéricas e analíticas com aderência dos mesmos protótipos estudados anteriormente sem aderência. Os resultados obtidos mostraram incrementos de tensão maiores no caso aderente, bem como maiores capacidades portantes. Estudou-se também uma metodologia capaz de computar a tensão última na armadura não aderente com análises do tipo compatibilidade de deformações, com a utilização de um coeficiente Lo/L redutor de aderência. Os resultados iniciais mostraram-se bons para carregamento nos terços, mas insatisfatórios para carregamentos distribuído e concentrado. Através de um ajuste no coeficiente Lo/L baseando-se nos dados da pesquisa precedente, bons resultados foram obtidos para todos os tipos de carregamento. A metodologia apresentada foi validada pela comparação com diferentes protótipos analisados numericamente, bem como protótipos ensaiados experimentalmente por diversos autores. / Unbonded post-tensioning is characterized for allowing relative displacement between the tendon and the concrete adjacent fiber. The ultimate stress in the unbonded tendon is difficult to be obtained, because it is not only dependent on the deformed shape of a cross section, but on the whole deformations occurring in the tendon profile adjacent concrete. To evaluate this ultimate stress, it is necessary to integrate all curvatures along the whole element, in order to obtain the total tendon elongation. This can only be precisely obtained using numerical tools, due to the non-linear factors involved in the problem. Unbonded post-tensioning is becoming ever more used in Brazilian building construction. The main unbonded post-tensioning system uses the unbonded mono-strand, that joins the benefits of prestressing with the necessary building simplicity. Nevertheless, there is no research effort in Brazil compatible with the construction industry demand. This study seeks to contribute to the development of the national formulations design of unbonded posttensioning elements. This work is a continuation of a research being undertaken at PPGEC/UFRGS. A numerical model able to determine the behavior of unbonded posttensioned elements was first developed, followed by a parametric study about the main parameters influencing the ultimate stress in unbonded tendons. The present work traced a correlation between the results for unbonded elements, obtained from the parametric analysis, with results for bonded elements. The latter are easily obtained, because they are based on the compatibility of strains in the cross section. Numerical and analytical calculations were performed for the same prototypes studied in the previous research, but now considering the existence of bond in the tendons. The results showed greater increments in stress for the bonded cases and also greater ultimate resistance. It was also devised a calculation method able to determine the ultimate stress in the unbonded tendon using an analysis similar to strain compatibility, but with a reduction bond coefficient Lo/L. The initial results obtained for a third-point loading showed a good agreement, but that not happened for the results of distributed and concentrated loads. However, by an adjustment of the Lo/L coefficient, based on the data of the previous research, good agreement was observed for all loading types. The presented methodology was validated by comparing results with other prototypes analyzed by the numerical model, and also results of experimental studies carried out by several authors.
30

Projeto de superestruturas de pontes de concreto protendido aplicando a técnica de balanços progressivos

Lima, Vanessa dos Santos 16 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:09:13Z (GMT). No. of bitstreams: 1 3679.pdf: 4424621 bytes, checksum: e3651f7cb772881f9da924232371728b (MD5) Previous issue date: 2011-05-16 / This dissertation deals with main considerations on design of bridge superstructures, applying the cantilever balanced technique, bringing a procedure to be followed during pre-dimensioning this type of bridge. Presents the literature review used as the basis to dissertation, with the theories already studied on the subject. Based on these studies is drawn up the roadmap, involving the step of choosing the geometry, defining the structural scheme, the calculation of structural strain, calculating the losses of prestress, predimensioning of the prestressing steel considering the ultimate limit state and the service limit state, evaluation of the moment of closure and some important items for the detail section with steel. A numerical example is solved to illustrate the use of the concepts presented throughout the dissertation. Ends with considerations on the results obtained in the example and work and presents suggestions for future work. / Esta dissertação trata das principais considerações num projeto de superestruturas de pontes aplicando a técnica em balanços progressivos, fornecendo um procedimento para pré-dimensionamento deste tipo de ponte. Apresenta-se a revisão bibliográfica utilizada como base para dissertação, com as teorias já estudadas sobre o assunto. Com base nestas pesquisas elaborou-se um procedimento, envolvendo a etapa de escolha da geometria, definição do esquema estrutural, cálculo dos esforços solicitantes, cálculo das perdas de protensão, pré-dimensionamento da armadura de protensão levando em consideração o estado limite último e o estado limite de serviço, avaliação do momento de fechamento e alguns itens importantes para o detalhamento da seção com armadura. Um exemplo numérico é resolvido de forma a ilustrar a utilização dos conceitos apresentados ao longo da dissertação. Finaliza-se com as considerações sobre os resultados obtidos no exemplo e no trabalho e apresenta-se sugestões para trabalhos futuros..

Page generated in 0.0733 seconds