Spelling suggestions: "subject:"théorie quantique dess champs"" "subject:"théorie quantique deus champs""
11 |
Les vecteurs singuliers de l'algèbre superconforme dans le secteur de Ramond en termes de superpolynômes de JackAlarie-Vézina, Ludovic 20 April 2018 (has links)
Ce mémoire fait état des résultats obtenus concernant les vecteurs singuliers de l’algèbre superconforme dans le secteur de Ramond. Une formule explicite exprimant ces vecteurs singuliers a été obtenue en termes de superpolynômes de Jack via la représentation de l’algèbre superconforme en termes de superpolynômes symétriques. On présente d’abord les partitions d’entiers et les fonctions symétriques standards. Ceci permet d’introduire les fonctions propres du modèle Calogero-Sutherland (CS) en termes de polynômes de Jack qui se révèlent être une représentation efficace des vecteurs singuliers de l’algèbre conforme. Suivant cette piste, on procède à la supersymétrisation du modèle CS ce qui permet de générer les superpolynômes de Jack, polynômes symétriques dans le superespace. On présente finalement la formule explicite des vecteurs singuliers de l’algèbre superconforme en termes de superpolynômes de Jack. / This mémoire presents results concerning the Ramond singular vectors of the superconformal algebra. An explicit formula has been obtained for the Ramond singular vectors of the superconformal algebra via its superpolynomial representation and the formula is given here in terms of Jack superpolynomials. We first present some basic elements of the integer partition and symmetric functions theories. This leads us to consider the eigenfunctions of the Calogero-Sutherland (CS) model, the Jack polynomials. These happen to be the singular vectors of the conformal algebra when represented in terms of symmetric polynomials. Given those results, we extend the CS model to the supersymmetric case and interpret its eigenfunctions as the Jack superpolynomials which are symmetric functions in superspace. We then display the explicit formula of the Ramond singular vectors of the superconformal algebra which has been obtained in terms of Jack superpolynomials.
|
12 |
Études des fonctions de corrélation en théorie conforme des champs : transformation intégrale du développement en produit d'opérateursBélanger, Mathieu 05 April 2024 (has links)
Les fonctions de corrélation en théorie conforme des champs peuvent être décrites par un développement en produit d'opérateurs. Celui-ci contient l'entièreté des informations nécessaires pour caractériser ces théories. Ceci a donné naissance aux équations de type bootstrap. Quelques résultats numériques ont démontré l'ecacité de cette méthode, mais aucun résultat théorique n'est en mesure de valider ceux-ci. De récents résultats ont permis d'inverser les développements en produit d'opérateurs an d'obtenir une forme analytique des données conformes. Ces relations nécessitent toutefois la forme complète des fonctions de corrélation. Celles-ci ne sont généralement pas connues ce qui rend ces relations peu utiles. Nous proposons ici une transformation intégrale du développement en produit d'opérateurs utilisant les relations d'inversion. Cette relation permet d'obtenir une forme reliant les données conformes des différents canaux. Dans le cas de quatre champs scalaires identiques, cette relation peut être utilisée en récurrence en deux et quatre dimensions. Ceci pourrait permettre de valider les résultats connus en plus de prédire de nouveaux modèles. / Correlation functions in conformal eld theory can be expressed with the help of the operator product expansion. The latter contains all the necessary information to characterize those theories. This expansion has given rise to the bootstrap equations. The bootstrap program has led to interesting numerical results but analytic equivalents have yet to be found. Some recent results introduced the inversion formula to the operator product expansion which allows one to nd the conformal data for the correlation function. Those relations need the complete form of the correlation function which are not usually known. This renders those inversion formulas hard to use for the bootstrap program. Here, we propose an integral transformation of the operator product expansion that uses the inversion formula. This gives us a way to relate the conformal data of the different crossing symmetry channels. In the case of four identical scalar elds, this relation can be used as a recurrence relation in two and four dimensions. This might validate known results and also nd some new systems.
|
13 |
Contributions à l’étude de l’effet Hawking pour des modèles en interaction / Contribution to the studies of the Hawking Effect for interacting modelsBouvier, Patrick 19 December 2013 (has links)
L'effet Hawking prédit, dans un espace-temps décrivant l'effondrement d'une étoile à symétrie sphérique vers un trou noir de Schwarzschild, qu'un observateur statique, situé à l'infini, observera un flux thermal de particules quantiques à la température de Hawking. La première démonstration mathématique de l'effet Hawking pour des champs quantiques libres est due à Bachelot, dont le travail sur les champs de Klein-Gordon a été ensuite étendu aux champs de Dirac, d'abord par Bachelot lui-même, puis par Melnyk. Ces travaux, placés dans le cadre d'une symétrie sphérique, ont été complétés par Häfner, qui donna une démonstration rigoureuse de l'effet Hawking pour des champs de Dirac, autour d'une étoile s'effondrant vers un trou noir de Kerr. Le but de cette thèse est d'étudier l'effet Hawking non plus dans un modèle de champs quantiques libres, où les problèmes posés se ramènent à l'étude d'équations aux dérivées partielles linéaires, mais dans un modèle de champs de Dirac en interaction. L'interaction est supposée à support compact, statique, et localisée à l'extérieur de l'étoile. Nous choisissons de traiter le cas d'un modèle jouet, dans un espace-temps de dimension 1+1, situation à laquelle on peut se ramener, au moins dans le cas libre, en utilisant la symétrie sphérique du problème. Nous étudions le comportement de champs de fermions de Dirac dans différentes situations : d'abord, pour une observable suivant l'effondrement de l'étoile ; puis pour une observable stationnaire ; enfin, pour une interaction dépendante du temps, localisée près de la surface de l'étoile. Dans chacun de ces cas, nous montrons l'existence de l'effet Hawking et donnons l'état limite correspondant. / The Hawking effect predicts that, in a space- time describing the collapse of a spherically symmetric star to a Schwarzschild black hole, a static observer at infinity sees the Unruh state as a thermal state at Hawking temperature. The first mathematical proof of the Hawking effect, in the original setting of Hawking, is due to Bachelot. His work on Klein-Gordon fields has been extended to Dirac fields, in the first place by Bachelot himself, and by Melnyk after that. Those works, placed in the setup of a spherically symmetric star, have been completed by Häfner, who gave a rigorous proof of the Hawking effect for Dirac fields, outside a star collapsing to a Kerr black hole. The aim of this thesis is to study the Hawking effect not for a model of free quantum fields, in which case the problems can be reduced to studies on linear partial differential equations, but for a model of interacting Dirac fields. The interaction will be considered as a static, compactly-supported interaction, living outside the star. We choose to study a toy model in a 1+1 dimensional space-time. Using the fact that the problem is spherically symetric, one can, at least in the free case, reduce the real problem to this toy model. We study the behavior of Dirac fermions fields in various situations : first, for an observable following the star's collapse ; then, for a static observable ; finally, for a time-dependent interaction, fixed close to the star's boundary. In each of those cases, we show the existence of the Hawking Effect and give the corresponding limit state.
|
14 |
Phénomènes hors équilibres de l'Univers inflationnaire en théorie quantique des champsGiraud, Alexandre 16 March 2010 (has links) (PDF)
Dans cette thèse j'étudie le reheating de l'Univers inflationnaire. Cette ère fait le lien entre l'inflation de l'Univers et le modèle du Big- Bang chaud. Pendant celle-ci, l'Inflaton se désintègre en matière qui, via ses propres intéractions, thermalise et donne une description statistique au contenu de l'Univers. Ce travail est réalisé dans le cadre d'une théorie quantique des champs utilisant des méthodes hors équilibre telle que l'action effective 2-Particule-Irreductible permettant de faire face aux difficultés de la théorie quantique des champs hors équilibre traditionelle. J'étudie premièrement le cas où la matière produite peut être décrite par des champs scalaires puis par des degrés de liberté fermioniques, où l'approximation classique n'existe pas. Je développe l'action effective à l'ordre sous dominant d'un développement non perturbatif en inverse du nombre de champs de matière ce qui permet d'explorer des théories où la matière est fortement couplée à elle-même. Dans une deuxième partie j'étudie la décohérencedes fluctuations primordiales de densité. L'inflaton peut être vu comme un condensat quantiquement cohérent et sa désintégration comme une décohérence de celui-ci. Cette décohérence et perte de pureté est fortement liée à la perte d'information qu'un observateur a sur le système si il se restreint au sousespace Gaussien des fonctions de corrélations. Cette étude montre que, même dans le cadre peu habituel où le système n'est pas en intéraction avec un environnement extérieur incohérent et/ou thermique, celui-ci perd sa pureté et sa cohérence initiale au profit d'une production du nombre de degré de liberté ou d'entropie.
|
15 |
Sur quelques problèmes de quantification : en espace-temps de de Sitter et par états cohérentsQueva, Julien 05 June 2009 (has links) (PDF)
Ce manuscrit de thèse rassemble quelques résultats concernant des problèmes de quantification. Il est divisé en deux parties : la quantification de champs invariants conforme sur l'espace-temps de de Sitter et deux quantifications par états cohérents. • La première partie s'inscrit dans un programme de quantification systématique et rigoureux, proche de l'axiomatique de Wightman, des champs sur l'espace-temps de de Sitter. Plus particulièrement, nous avons étudié les champs admettant une extension (naturelle) au groupe conforme. Après avoir clarifié les notions d'invariance sous les transformations de Weyl et sous le groupe conforme SO0(2, d) nous avons établi un point de vue géométrique reliant/déformant les champs sur l'espace-temps de (anti-)de Sitter à ceux sur l'espace-temps de Minkowski, tout en gardant transparente l'action du groupe conforme. Cette méthode nous a permis d'obtenir le propagateur du champ vectoriel invariant conforme, qui adopte alors une forme particulièrement simple et compacte. Enfin, notre approche se généralise aux champs tensoriels de rang plus élevé invariants conformes sur l'espace-temps de de Sitter. • La seconde partie de ce travail concerne l'utilisation des états cohérents dans les problèmes de quantification. Suivant la géométrie ou la topologie de l'espace des phases, nombres d'observables ne peuvent être quantifiées en suivant les règles de quantification canonique. En un certain sens la quantification par états cohérents, et leurs généralisations, permet de contourner ces difficultés, ou, du moins, fournit des idées quant à la façon de les contourner. Par exemple, la particule dans un puits infini de potentiel est un modèle pour la quantification par états cohérents comme l'opérateur impulsion, en dépit d'être symétrique, n'est pas auto-adjoint et, ainsi, ne peut vérifier les relations de commutation canonique (théorème de Pauli). Grâce à une nouvelle famille d'états cohérents vectoriels nous avons pu quantifier, de manière cohérente, la particule dans le puits infini de potentiel. Enfin, nous avons abordé la fuzzyfication de l'hyperboloïde, c'est-à-dire la quantification de l'espace-temps de de Sitter lui-même, grâce à une nouvelle base d'états cohérents vectoriels.
|
16 |
Contributions à l'étude de l'effet Hawking pour des modèles en interactionBouvier, Patrick 19 December 2013 (has links) (PDF)
L'effet Hawking prédit, dans un espace-temps décrivant l'effondrement d'une étoile à symétrie sphérique vers un trou noir de Schwarzschild, qu'un observateur statique, situé à l'infini, observera un flux thermal de particules quantiques à la température de Hawking. La première démonstration mathématique de l'effet Hawking pour des champs quantiques libres est due à Bachelot, dont le travail sur les champs de Klein-Gordon a été ensuite étendu aux champs de Dirac, d'abord par Bachelot lui-même, puis par Melnyk. Ces travaux, placés dans le cadre d'une symétrie sphérique, ont été complétés par Häfner, qui donna une démonstration rigoureuse de l'effet Hawking pour des champs de Dirac, autour d'une étoile s'effondrant vers un trou noir de Kerr. Le but de cette thèse est d'étudier l'effet Hawking non plus dans un modèle de champs quantiques libres, où les problèmes posés se ramènent à l'étude d'équations aux dérivées partielles linéaires, mais dans un modèle de champs de Dirac en interaction. L'interaction est supposée à support compact, statique, et localisée à l'extérieur de l'étoile. Nous choisissons de traiter le cas d'un modèle jouet, dans un espace-temps de dimension 1+1, situation à laquelle on peut se ramener, au moins dans le cas libre, en utilisant la symétrie sphérique du problème. Nous étudions le comportement de champs de fermions de Dirac dans différentes situations : d'abord, pour une observable suivant l'effondrement de l'étoile ; puis pour une observable stationnaire ; enfin, pour une interaction dépendante du temps, localisée près de la surface de l'étoile. Dans chacun de ces cas, nous montrons l'existence de l'effet Hawking et donnons l'état limite correspondant.
|
17 |
Infrared correlation functions in Quantum Chromodynamics / Fonctions de corrélation infrarouges de la Chromodynamique QuantiquePeláez Arzúa, Monica Marcela 30 July 2015 (has links)
Le but de cette thèse est l'étude des fonctions de corrélation des théries Yang-Mills dans le régime infrarouge. Il est connu que, à cause de l'invariance jauge, il est nécessaire de fixer la jauge pour calculer des valeurs moyennes analytiquement. La procedure de fixation gauge standard est la procedure de Faddeev-Popov (FP). Le Lagrangien de FP permet de faire des calculs perturbatifs pour la Chromodynamique Quantique dans le régime de hautes énergies dont les résultats sont comparés avec succès avec des expériences. Cependant, dans le régime de basses énergies, il se trouve que la constante de couplage, calculée avec la procedure antérieure, diverge. En conséquence, la théorie des perturbations standard n'est plus valide. D'autre part, les simulations du réseau trouvent que la constante de couplage est finie avec une valeur modérée même dans le régime infrarouge. Ceci suggère qu'il devrait exister une manière de faire des calculs perturbatifs également dans le régime infrarouge. Cette différence dans la constante de couplage peut être due au fait que la procedure de FP n'est pas bien justifiée dans ce régime. Nous proposons de modifier le Lagrangien de FP avec un terme massif pour les gluons. Cette modification est également justifiée par le fait que le réseau trouve un propagateur du gluon qui paraît massive aux basses énergies. Nous utilisons cette version massive pour calculer à une boucle les fonctions de corrélations à deux et trois points pour une configuration cinématique générale et en dimension quelconque dans la jauge de Landau. On trouve que les comparaisons de notre calcul à une boucle avec les résultat du réseau donnent, en géneral, un très bon accord. / The aim of this thesis is to investigate the infrared behaviour of Yang-Mills correlation functions. It is known that the gauge invariance of the theory brings as a consequence the necessity of a gauge fixing procedure in order to compute expectation values analytically. The standard procedure for fixing the gauge is the Faddeev-Popov (FP) procedure which allows one to do perturbation theory in the ultraviolet regime. Perturbative calculations using the FP gauge fixed action successfully reproduce Quantum Chromodynamics observables measured by experiments in the ultraviolet regime. In the infrared regime the coupling constant of the theory computed with the above procedure diverges, and standard perturbation theory does not seem to be valid. However, lattice simulations show that the coupling constant takes finite and not very large value. This suggests that some kind of perturbative calculations should be valid even in the infrared regime. The theoretical justification for the FP procedure depends on the absence of Gribov copies and hence is not valid in the infrared regime (where such copies exist). To correct this we propose to add a mass term for the gluons in the gauge-fixed Lagrangian. The gluon mass term is also motivated by lattice simulations which observe that the gluon propagator behaves as it was massive in the infrared regime. We use this massive extension of the FP gauge fixed action to compute the one loop correction of the two- and three-point correlation functions in the Landau gauge for arbitrary kinematics and dimension. Our one-loop calculations are enough, in general, to reproduce with good accuracy the lattice data available in the literature.
|
18 |
Effets non-linéaires et effets quantiques en gravité analogue / Nonlinear and quantum effects in analogue gravityMichel, Florent 23 June 2017 (has links)
Cette thèse concerne l'étude des propriétés de champs scalaires classiques et quantiques en présence d'un environnement inhomogène et/ou dépendant du temps. Nous nous concentrerons sur des modèles pouvant être décrits, fondamentalement ou de manière effective, par un espace-temps courbe contenant un horizon des événements. Nous verrons en particulier comment une correspondance mathématique, provenant d'une symétrie de Lorentz effective à basse énergie, permet de relier les comportements des ondes dans un cadre non relativiste à la physique des trous noirs, quelles en sont les limites et dans quelle mesure les résultats ainsi obtenus sont og analogues fg à leurs pendants gravitationnels. Après un premier chapitre d'introduction rappelant quelques bases de relativité générale puis une dérivation de la radiation de Hawking et de la correspondance avec des systèmes non relativistes, je présenterai le détail de quatre travaux effectués durant ma thèse. Les autres articles écrits dans ce cadre sont résumés dans le dernier chapitre, précédant une conclusion générale. Mes collaborateurs et moi nous sommes concentrés sur trois aspects du comportement des champs près de l'analogue d'un horizon des événements dans des modèles avec une symétrie de Lorentz effective à basse énergie. Le premier concerne les effets non linéaires, cruciaux pour comprendre l'évolution de la radiation de Hawking ainsi que pour les réalisations expérimentales mais auparavant peu étudiés. Nous montrerons comment ceux-ci déterminent les possibles comportements aux temps longs pour des systèmes stables ou instables. Le second aspect a trait aux effets linéaires et quantiques, en particulier la radiation de Hawking elle-même, son devenir lorsque l'horizon est continûment effacé, ainsi que les diverses instabilités à même de survenir dans différents modèles. Enfin, nous avons participé à l'élaboration, à l'analyse et à l'étude d’expériences dites de og gravité analogue fg dans des condensats de Bose-Einstein et des systèmes hydrodynamiques ou acoustiques, dont je rapporte les principaux résultats. / The present thesis deals with some properties of classical and quantum scalar fields in an inhomogeneous and/or time-dependent background, focusing on models where the latter can be described as a curved space-time with an event horizon. While naturally formulated in a gravitational context, such models extend to many physical systems with an effective Lorentz invariance at low energy. We shall see how this effective symmetry allows one to relate the behavior of perturbations in these systems to black-hole physics, what are its limitations, and in which sense results thus obtained are “analogous” to their general relativistic counterparts. The first chapter serves as a general introduction. A few notions from Einstein's theory of gravity are introduced and a derivation of Hawking radiation is sketched. The correspondence with low-energy systems is then explained through three important examples. The next four chapters each details one of the works completed during this thesis, updated and slightly reorganized to account for new developments which occurred after their publication. The other articles I contributed to are summarized in the last chapter, before the general conclusion. My collaborators and I focused on three aspects of the behavior of fields close to the (analogue) event horizon in models with an effective low-energy Lorentz symmetry. The first one concerns nonlinear effects, which had been given little attention in view of their crucial importance for understanding the evolution in time of Hawking radiation as well as for experimental realizations. We showed in particular how they determine the late-time behavior in stable and unstable configurations. The second aspect concerns linear and quantum effects. We studied the Hawking radiation itself in several models and what replaces it when continuously erasing the horizon. We also characterized and classified the different types of linear instabilities which can occur. Finally, we contributed to the design and analysis of “analogue gravity” experiments in Bose-Einstein condensates, hydrodynamic flows, and acoustic setups, of which I report the main results.
|
19 |
Renormalization of SU(2) Yang-Mills theory with flow equations / Renormalisation de la théorie de Yang-Mills SU(2) avec les équations du flot du groupe de renormalisationEfremov, Alexander 27 September 2017 (has links)
L'objectif de ce travail est une construction perturbative rigoureuse de la théorie de la Yang-Mills SU(2) dans l'espace euclidien à quatre dimensions. La technique d'intégration fonctionnelle donne une basemathématique pour établir les équations de flot différentielles du groupe de renormalisation pour l'action efficace. Si l'introduction de régulateurs dans l'espace de moments permet de donner une définition mathématique des fonctions de Schwinger, la difficulté importante de l'approche est le fait que cesrégulateurs brisent l'invariance de jauge. Ainsi, le travail principal est alors de prouver à tous les ordres en perturbation l'existence de ces fonctions de correlation et la validité des identités de Slavnov-Taylor pour la théorie renormalisée. / The goal of this work is a rigorous perturbative construction of the SU(2) Yang-Mills theory in four dimensional Euclidean space. The functional integration technique gives a mathematical basis for establishing the differential Flow Equations of the renormalization group for the effective action. While the introduction of momentum space regulators permits to give a mathematical definition of the Schwinger functions, the important difficulty of the approach is the fact that these regulators break gauge invariance. Thus the main part of the work is to prove at all loop orders the existence of the vertex functions and the restoration of the Slavnov-Taylor identities in the renormalised theory.
|
20 |
Géométrie non-commutative, théorie de jauge et renormalisationDe Goursac, Axel 10 June 2009 (has links) (PDF)
De nos jours, la géométrie non-commutative est un domaine grandissant des mathématiques, qui peut apparaître comme un cadre prometteur pour la physique moderne. Les théories quantiques des champs sur des "espaces non-commutatifs" ont en effet été très étudiées, et sont sujettes à un nouveau type de divergence, le mélange ultraviolet-infrarouge. Cependant, une solution a récemment été apportée à ce problème par H. Grosse et R. Wulkenhaar en ajoutant à l'action d'un modèle scalaire sur l'espace non-commutatif de Moyal, un terme harmonique qui la rend renormalisable. Un des buts de cette thèse est l'extension de cette procédure aux théories de jauge sur l'espace de Moyal. En effet, nous avons introduit une nouvelle théorie de jauge non-commutative, fortement reliée au modèle de Grosse-Wulkenhaar, et candidate à la renormalisabilité. Nous avons ensuite étudié ses propriétés les plus importantes, notamment ses configurations du vide. Finalement, nous donnons une interprétation mathématique de cette nouvelle action en terme de calcul différentiel basé sur les dérivations, associé à une superalgèbre. Ce travail contient, outre les résultats mentionnés ci-dessus, une introduction à la géométrie non-commutative, une introduction aux algèbres epsilon-graduées, définies dans cette thèse, et une introduction à la renormalisation des théories quantiques de champs scalaires (point de vue wilsonien et BPHZ) et de jauge.
|
Page generated in 0.1461 seconds