Spelling suggestions: "subject:"thalamic"" "subject:"hypothalamo""
1 |
Le récepteur nucléaire orphelin COUP-TFI contrôle l’identité sensorielle et l'activité neuronale dans les cellules post-mitotiques du néocortex chez la souris / The orphan nuclear receptor COUP-TFI controls sensory identity and neuronal activity in post-mitotic cells of the mouse neocortexMagrinelli, Elia 13 July 2016 (has links)
Le néocortex est une région du cerveau qui traite toutes les entrées sensorielles et créé des réponses comportementales. Il est subdivisé en zones fonctionnelles, chacune ayant une cytoarchitecture, un motif d’expression génique et un profil de connectivité spécifiques. L'organisation en zones est pré-modelée par des gènes organisateurs, et ensuite affinée par l’activité sensorielle. Dans cette étude, j'ai étudié d'abord si ce pré-modelage est établi dans les progéniteurs et/ou les cellules post-mitotiques, et si l'activité neuronale spontanée est nécessaire pour l’établissement de la connectivité correcte entre néocortex et thalamus, station relais principale des données sensorielles. Avec l'aide d'une série de souris transgéniques, j’ai montré que la fonction du gène organisateur COUP-TFI est suffisante et nécessaire pour organiser l'identité sensorielle dans les cellules post-mitotiques, et que COUP-TFI régule l'activité intrinsèque des neurones corticaux, influençant la bonne intégration des entrées thalamiques dans le cortex somatosensoriel. J’ai montré que COUP-TFI contrôle directement l'expression du gène Egr1, qui dépend fortement de l'activité neuronale. COUP-TFI et Egr1 agissent sur l'acquisition de la morphologie des cellules étoilées dans les neurones de la couche 4, cibles principales des axones thalamiques et trait typique des zones somatosensoriels primaires. En conclusion, ce travail montre que le pré-modelage cortical dépend primordialement d’un programme génétique établi dans les cellules post-mitotiques et que l'activité intrinsèque et les propriétés génétiques agissent ensemble pour façonner l'organisation des premiers circuits dans le néocortex. / The neocortex is a region of the brain that processes all sensory inputs creating appropriate behavioral responses. It is subdivided into functional areas, each with a specific cytoarchitecture, gene expression pattern and connectivity profile. The organization into areas is pre-patterned by the action of areal patterning genes, and subsequently refined by sensory evoked activity. In this study, I have first investigated whether early areal patterning is committed in progenitor and/or post-mitotic cells, and then assessed whether spontaneous neuronal activity is required in establishing correct connectivity between the neocortex and the thalamus, the principal relay station of peripheral sensory inputs. With the help of a series of transgenic mice, my work showed that the function of the areal patterning gene COUP-TFI is sufficient and necessary to organize sensory identity in post-mitotic cells, and that COUP-TFI regulates intrinsic activity properties of cortical neurons, and thus proper integration of thalamic inputs into the somatosensory cortex. In particular, I found that COUP-TFI directly controls the expression of the immediate early gene Egr1, which expression levels strongly depend on neuronal activity. Both COUP-TFI and Egr1 act on the acquisition of the stellate cell morphology of layer 4 neurons, the main targets of thalamic axons and a typical trait of primary somatosensory areas. In conclusion, this work demonstrates that cortical area patterning primordially depends on a genetic program established in post-mitotic cells and that intrinsic genetic and activity properties act together to shape the organization of early circuits in the neocortex.
|
2 |
REPRESENTATIONS DE SCENES TACTILES COMPLEXES DANS LA BOUCLE THALAMO-CORTICALE DU SYSTEME VIBRISSALLe Cam, Julie 23 September 2010 (has links) (PDF)
Lors de l'exploration tactile chez les rongeurs, les mouvements oscillatoires des vibrisses faciales permettent à l'animal d'explorer les objets afin de déterminer leur position, leur forme et leur texture. Dans ces situations naturelles, l'animal est donc confronté à des patterns spatio-temporels complexes des mouvements des vibrisses. Notre hypothèse est que la réponse neuronale corticale étant contextuelle, elle différera selon que les stimuli font partie d'une séquence complexe dans le temps et l'espace ou qu'ils soient présentés isolément. Mon travail de thèse, réalisé à l'UNIC (CNRS, Gif sur Yvette) sous la direction de Daniel Shulz, propose de caractériser les réponses neuronales du système vibrissal à différents niveau de la voie afférente, et leur modulation par le contexte spatio-temporel du stimulus. Afin de générer des stimuli complexes, nous avons développé un nouvel outil de stimulation tactile basé sur une technologie piezo-électrique permettant de générer des stimulations contrôlées et indépendantes de 24 macro-vibrisses sur la face du rat. Cet outil nous a permis d'étudier les propriétés fonctionnelles des champs récepteurs dans le cortex à tonneaux. En plus de la mise en évidence de champs récepteurs multi-vibrissaux dans les différentes couches corticales, une modulation de la structure spatiale du champ récepteur par la direction de déflexion des vibrisses a été observée. Par la suite, nous avons montré que les réponses corticales sont modulées par le contexte sensoriel. En effet, les neurones corticaux présentent une sélectivité à la direction pour un mouvement global impliquant l'ensemble des vibrisses qui est indépendante de la sélectivité locale. Cette sélectivité ne peut être expliquée par des interactions linéaires simples ou par des interactions suppressives non-linéaires d'ordre deux. Des interactions non-linéaires d'ordre supérieur impliquant une intégration de l'ensemble des inputs sous- et supraliminaires de la cellule sous-tendraient la sélectivité au mouvement global du stimulus. Le noyau Ventro-Postéro-Médian thalamique (VPM), principale source des afférences au cortex, intègre déjà une information multi-vibrissale. Nous avons donc émis l'hypothèse d'une contribution des mécanismes sous-corticaux dans l'intégration multi-vibrissale corticale. En effet, notre étude a révélé que les neurones du VPM sont sélectifs au mouvement global des vibrisses cependant en plus faible proportion que dans le cortex. Ce résultat suggère que la sélectivité puisse émerger au niveau de la boucle thalamo-corticale et soit amplifiée dans le cortex par des connexions intra-corticales. Afin de tester cette hypothèse, nous avons étudié l'impact de l'inactivation de la couche VI corticale, sources de la voie cortico-thalamique, sur la sélectivité globale du VPM. Dans ces conditions d'inactivation corticale, nous avons observé une diminution de la sélectivité thalamique. Malgré la description canonique de ce système, associant une vibrisse à un tonneau cortical, et une structure très discrétisée, nous avons montré des réponses du système à des propriétés émergeantes du stimulus nécessitant une intégration multi-vibrissale. Cette intégration est réalisée de manière dynamique par l'action conjointe de la boucle thalamocortico-thalamique et de la connectivité cortico-corticale.
|
3 |
Nouveaux mécanismes d'action du récepteur mGlu7a dans le thalamus : de la synapse au comportement / New action mechanisms of the mGlu7a receptor in the thalamus : from synapse to behaviourTassin, Valériane 31 October 2014 (has links)
Le fonctionnement cérébral est régit par deux grandes forces : un système excitateur, principalement supporté par la transmission gluue,tamatergiq qui s'oppose à un système inhibiteur, principalement supporté par la transmission GABAergique. L'influence mutuelle et équilibrée de ces deux forces est déterminante pour établir et maintenir une activité neuronale physiologique au sein des réseaux neuronaux. Le récepteur métabotropique du glutamate de type 7, mGlu7, est capable de moduler à la fois la transmission glutamatergique et GABAergique, mais sa localisation et son rôle synaptique précis restent largement méconnus à l'heure actuelle. Il semble important pour contrôler le fonctionnement d'une circuiterie particulière supportant notamment la perception sensorielle lors de l'éveil ou la perte de conscience lors de l'endormissement, mais aussi les crises épileptiques d'absence lors d'un dysfonctionnement : le circuit thalamo-cortical. Cette thèse porte sur l'étude des fonctions physiologiques médiées par le récepteur mGlu7a au sein du réseau thalamo-cortical chez la souris. Pour cela, j'ai décortiqué la localisation et les processus électrophysiologiques engendrés par le récepteur dans les synapses thalamiques constituant la circuiterie thalamo-corticale. Le récepteur mGlu7a s'estavéré essentiel dans le contrôle des rythmes oscillatoires au sein du thalamus, associés à la fois au sommeil (les fuseaux de sommeil) et aux épilepsies de type absence.Ce récepteur était présumé ne fonctionner que lors d'activités neuronales intenses. Cette étude complète ce tableau. Elle met en évidence une activité constitutive du récepteur mGlu7a au sein des synapses excitatrices et inhibitrices. Il exerce donc un frein permanent sur l’entrée de Ca2+ dans les présynapses, un acteur crucial pour le développement du système nerveux, la transmission synaptique, l'excitabilité et la plasticité neuronales. Je montre que cette activitémodule la libération de glutamate et de GABA, mais aussi la plasticité à court terme dans certaines synapses du circuit. De plus, le récepteur mGlu7a limite le tonus inhibiteur au sein du thalamus et ainsi l'excitabilité globale thalamique.De façon surprenante pour un récepteur du glutamate, l'ensemble de ces résultats suggère une action physiologique du récepteur mGlu7a particulièrement impliquée dans le contrôle de l'état d'excitabilité des neurones GABAergiques thalamiques et corticaux. En limitant l'apparition d'activités synchrones au sein de la circuiterie, son action abouti in fine au maintien d'un état conscient de l'individu, nécessaire aux traitements des informations sensorielles, mais aussi à l'apprentissage et la mémoire. / Brain functionning is gouverned by two master forces : excitation, mainly supported by glutamatergic transmission, and inhibition, mainly supported by GABAergic transmission. The mutual and balanced influence of these two forces is instrumental to establish and maintain a physiological neuronal activity, particulary in neuronal networks involving several interconnected brain area and neuron types. The metabotropic glutamate receptor type 7, mGlu7, modulates both glutamatergic and GABAergic transmission, but its precise localization andsynaptic role are still widly unknown. Recently, a genetic mouse model has highlighted mGlu7a receptor's involvement into the functionning of a particular network supporting somatosensory perception during arousal and loss of consciousness during sleep, as well as absence epileptic seizures : the thalamo-cortical network. This thesis aims at understanding physiological functions mediated by the mGlu7a receptor in the thalamo-cortical circuit. I have dissected localization and electrophysiologicalprocesses triggered by the receptor in thalamic synapses. The mGlu7a receptor was proved as essential to control oscillatory rythmes in the thalamus, associated with both sleep-related waves (spindles) and absence epileptic seizures.This receptor was supposed to function only during high neuronal activities. In addition, our study highlights a constitutive activity of mGlu7a receptor in excitatory and inhibitory synapses. It thus exerts a permanent brake on Ca2+ presynaptic entry, which is crucial for neuronal developpement, synaptic transmission, excitability and plasticity. I found that this mechanism modulates glutamate and GABA release, but also short term plasticity in thestudied network. Moreover, mGlu7a receptor slows down the inhibitory tonus in the thalamus and thalamic excitability.Surprisingly for a glutamate receptor, these data suggest that the physiological action of mGlu7a receptor is highly involved in the control of the excitability of inhibitory thalamic and cortical neurons. By decreasing synchronous activities of the network, its action leads in fine to the maintenance of a conscious, awake state of a subject, that is necessary for sensorial informations processing, learning and memory.
|
4 |
Modélisation mathématique et simulation numérique de populations neuronales thalamo-corticales dans le contexte de l'anesthésie générale / Analytical and numerical studies of thalamo-cortical neural population models during general anesthesiaHashemi, Meysam 14 January 2016 (has links)
Bien que l’anesthésie générale soit un outil indispensable dans la chirurgie médicale d’aujourd’hui, ses mécanismes sous-jacents précis sont encore inconnus. Au cours de la sédation induite par le propofol les actions anesthésiques à l’échelle microscopique du neurone isolé conduisent à des changements spécifiques à l’échelle macroscopique qui sont observables comme les signaux électroencéphalogrammes (EEG). Pour une concentration faible en propofol, ces changements caractéristiques comprennent une augmentation de l’activité dans les bandes de fréquence delta (0.5-4 Hz) et alpha (8 13 Hz) dans la région frontal, une l’activité augmentée de delta et une l’activité diminuée de alpha dans la région occipitale. Dans cette thèse, nous utilisons des modèles de populations neuronales thalamo-corticales basés sur des données expérimentales. Les effets de propofol sur les synapses et sur les récepteurs extra-synaptiques GABAergiques situés dans le cortex et le thalamus sont modélisés afin de comprendre les mécanismes sous-jacents aux changements observés dans certaines puissances de l’EEG spectrale. Il est démontré que les modèles reproduisent bien les spectrales caractéristiques observées expérimentalement. Une des conclusions principales de ce travail est que l’origine des delta rythmes est fondamentalement différente de celle des alpha rythmes. Nos résultats indiquent qu’en fonction des valeurs moyennes des potentiels de l’état du système au repos, une augmentation ou une diminution des fonctions de gain thalamo-corticale résulte respectivement en une augmentation ou une diminution de alpha puissance. En revanche, l’évolution de la delta puissance est plutôt indépendant de l’état du système au repos; l'amélioration de la puissance spectrale de delta bande résulte de l’inhibition GABAergique synaptique ou extra-synaptique pour les fonctions de gain non linéaire à la fois croissante et décroissante. De plus, nous cherchons à identifier les paramètres d’un modèle de thalamo-corticale en ajustant le spectre de puissance de modèle pour les enregistrements EEG. Pour ce faire, nous considérons la tâche de l’estimation des paramètres dans les modèles qui sont décrits par un ensemble d’équations différentielles ordinaires ou bien stochastiques avec retard. Deux études de cas portant sur des données pseudo-expérimentales bruyantes sont d’abord effectuées pour comparer les performances des différentes méthodes d’optimisation. Les résultats de cette élaboration montrent que la méthode utilisée dans cette étude est capable d’estimer avec précision les paramètres indépendants du modèle et cela nous permet d’éviter les coûts de calcul des intégrations numériques. En considérant l’ensemble, les conclusions de cette thèse apportent de nouveaux éclairages sur les mécanismes responsables des changements spécifiques qui sont observées pendant la sédation propofol-induite dans les modèles de EEG. / Although general anaesthesia is an indispensable tool in today’s medical surgery, its precise underlying mechanisms are still unknown. During the propofol-induced sedation, the anaesthetic actions on the microscopic single neuron scale lead to specific changes in macroscopic-scale observables such as electroencephalogram (EEG) signals. For low concentration of propofol these characteristic changes comprised increased activity in the delta (0.5-4 Hz) and alpha (8-13 Hz) frequency bands over the frontal head region, but increased delta and decreased alpha power activity over the occipital region. In this thesis, we employ thalamo-cortical neural population models, and based on the experimental data, the propofol effects on the synaptic and extrasynaptic GABAergic receptors located in the cortex and thalamus are modelized to understand the mechanisms underlying the observed certain changes in EEG-spectral power. It is shown that the models reproduce well the characteristic spectral features observed experimentally. A key finding of this work is that the origin of delta rhythm is fundamentally different from the alpha rhythm. Our results indicate that dependent on the mean potential values of the system resting states, an increase or decrease in the thalamo-cortical gain functions results in an increase or decrease in the alpha power, respectively. In contrast, the evolution of the delta power is rather independent of the system resting states; the enhancement of spectral power in the delta band results from the increased synaptic or extra-synaptic GABAergic inhibition for both increasing and decreasing nonlinear gain functions. Furthermore, we aim to identify the parameters of a thalamo-cortical model by fitting the model power spectrum to the EEG recordings. To this end, we address the task of parameter estimation in the models that are described by a set of stochastic ordinary or delay differential equations. Two case studies dealing with noisy pseudo-experimental data are first carried out to compare the performance of different optimization methods. The results of this elaboration show that the method used in this study is able to accurately estimate the independent model parameters while it allows us to avoid the computational costs of the numerical integrations. Taken together, the findings of this thesis provide new insights into the mechanisms responsible for the specific changes in EEG patterns that are observed during propofol-induced sedation.
|
5 |
Multidisziplinäre Untersuchung dopaminerger Mechanismen der repetitiven Störungen anhand von zwei Rattenmodellen dopaminerger DysregulationReinel, Claudia 11 December 2015 (has links)
Repetitive Störungen manifestieren sich als Leitsymptom in der Zwangsstörung und dem Tourette-Syndrom. Die Symptome werden als enthemmte Stereotypien eines desinhibierten Basalganglien-thalamo-kortikalen (BGTC) Regelkreises verstanden. Überdies wird als neurochemisches Korrelat ein dysregulatives Dopamin (DA)-System innerhalb dieser Kerngebiete nahegelegt, welches über ein überaktives Dopamintransporter (DAT)-System erklärt werden könnte. In der Induktion repetitiver Erkrankungen ist die Interaktion des BGTC Regelkreises und des DA-Systems dennoch unklar. In der vorliegenden Arbeit wurden daher anhand von zwei Pathologiemodellen (Ratte) mit unterschiedlich induzierter Dysregulation des DA-Systems (transgen versus pharmakologisch) die dysfunktionalen Einheiten im BGTC Regelkreises vergleichend untersucht. Im transgenen Modell führte die zentralnervöse DAT-Überexpression: (1) zu einer verstärkten Genexpression des vesikulären Monoamintransporter 2 (VMAT2) sowie des DA-Rezeptors 1 und DA–Rezeptors 2 (DRD1, DRD2), (2) zu einem reduzierten DA-Spiegel mit erhöhter DA-Umsatzrate und veränderten serotonergen- und GABAergen-System, und (3) zu perserverativen Verhalten. Im Gegensatz dazu zeigte die chronische Applikation mit dem D2-Agonisten Quinpirol im pharmakologischen Modell: (1) eine Reduktion des DAT, VMAT2 und DRD2, (2) eine reduzierte DA-Umsatzrate und (3) zwanghaftes Kontrollverhalten. Die Ergebnisse legen nahe, dass die unterschiedlichen klinischen Subtypen der Zwangsstörung unterschiedlichen neurobiologischen Veränderungen zugrunde liegen könnten. Ferner bietet das hier vorgestellte transgene Modell erfolgsversprechende Ansatzpunkte um als neues valides Tiermodell der repetitiven Störungen etabliert zu werden. / Repetitive disorders manifest as the cardinal symptom in obsessive-compulsive disorder and Tourette syndrome. The symptoms are understood as disinhibited stereotypies of a basal ganglia-thalamo-cortical (BGTC) circuit. Furthermore, it is suggested that a dysregulated dopamine (DA) system within this circuit is the underlying neurochemical correlate which could be explained by an overactive dopamine transporter (DAT). At this point, it is still unclear how the BGTC circuit and the DA system interact in the induction of repetitive disorders. Therefore we investigated the dysfunctional unities within the BGTC circuit by comparing two pathological rat models (transgenic versus pharmacologic) with different induced dopaminergic dysregulation. The DAT overexpressing rat model showed: (1) increased gene expression of the vesicular monoamine transporter 2 (VMAT2), DA receptor D1 (DRD1) and DA receptor D2 (DRD2), (2) lower levels of DA with an increased DA metabolism and alterations in the serotonin- and GABA system, and (3) perseverative behavior. In contrast, the chronic application of the D2 receptor agonist quinpirole resulted in the pharmacologic model in: (1) lower gene expressions of the DAT, VMAT2 and DRD2, (2) reduced DA-turnover and (3) compulsive control behavior. These results suggest that different clinical subtypes of obsessive-compulsive disorder caused by different neurobiological alterations. In addition, the presented transgenic model provides the opportunity to be established as a new valid animal model of repetitive disorders.
|
6 |
Investigação da circuitaria cortical envolvida no processamento do medo contextual à ameça predatória. / Study of the cortical circuitry underlying contextual fear processing to predatory threat.Lima, Miguel Antonio Xavier de 16 October 2015 (has links)
Lesões na parte ventral do núcleo anteromedial do tálamo (AMv) interferem no processamento da memória aversiva predatória sem no entanto influenciar as respostas de defesa inatas do animal frente a um predador. O escopo deste trabalho foi entender melhor o papel do AMv e investigar se seus alvos de projeção corticais também interferem no processamento da memória aversiva. No primeiro experimento detectamos que o AMv participa da aquisição da memória aversiva. As áreas corticais pré-límbica, cingulada anterior, visual anteromedial e retroesplenial ventral, recebem e integram entre si projeções oriundas do AMv, além de enviar projeções para a amígdala e hipocampo. Estas áreas corticais estão seletivamente recrutadas durante a exposição ao predador, e observamos que lesões neuroquímicas afetaram severamente a formação da memória aversiva. Nossos dados sugerem que há um circuito de áreas corticais que está criticamente envolvido no processo mnemônico aqui abordado, e fornece as primeiras evidências para a hipótese de módulos corticais a partir do conectoma do rato. / Neurochemical lesions placed into ventral part of anteromedial thalamic nucleus (AMv) disrupt contextual, but not innate, fear responses to predatory threats. In the present investigation, we determined whether the AMv is involved in the acquisition and/or retrieval of the conditioned responses, and if its cortical targets are involved in the fear memory processing. In the first assay, we found that AMv has a critical role in the acquisition of conditioned responses. The cortical areas prelimbic (PL), anterior cingulate area (ACA), anteromedial visual area (VISam) and the ventral part of retrosplenial area (RSPv), receive projections from AMv and are recruited during predator exposure. The integrity of these cortical areas is required for the processing of the mnemonic processes here addressed. Our data corroborate current ideas on functional cortical modules, and help to elucidate how they are involved in the acquisition of fear memories related to life threatening situations.
|
7 |
Investigação da circuitaria cortical envolvida no processamento do medo contextual à ameça predatória. / Study of the cortical circuitry underlying contextual fear processing to predatory threat.Miguel Antonio Xavier de Lima 16 October 2015 (has links)
Lesões na parte ventral do núcleo anteromedial do tálamo (AMv) interferem no processamento da memória aversiva predatória sem no entanto influenciar as respostas de defesa inatas do animal frente a um predador. O escopo deste trabalho foi entender melhor o papel do AMv e investigar se seus alvos de projeção corticais também interferem no processamento da memória aversiva. No primeiro experimento detectamos que o AMv participa da aquisição da memória aversiva. As áreas corticais pré-límbica, cingulada anterior, visual anteromedial e retroesplenial ventral, recebem e integram entre si projeções oriundas do AMv, além de enviar projeções para a amígdala e hipocampo. Estas áreas corticais estão seletivamente recrutadas durante a exposição ao predador, e observamos que lesões neuroquímicas afetaram severamente a formação da memória aversiva. Nossos dados sugerem que há um circuito de áreas corticais que está criticamente envolvido no processo mnemônico aqui abordado, e fornece as primeiras evidências para a hipótese de módulos corticais a partir do conectoma do rato. / Neurochemical lesions placed into ventral part of anteromedial thalamic nucleus (AMv) disrupt contextual, but not innate, fear responses to predatory threats. In the present investigation, we determined whether the AMv is involved in the acquisition and/or retrieval of the conditioned responses, and if its cortical targets are involved in the fear memory processing. In the first assay, we found that AMv has a critical role in the acquisition of conditioned responses. The cortical areas prelimbic (PL), anterior cingulate area (ACA), anteromedial visual area (VISam) and the ventral part of retrosplenial area (RSPv), receive projections from AMv and are recruited during predator exposure. The integrity of these cortical areas is required for the processing of the mnemonic processes here addressed. Our data corroborate current ideas on functional cortical modules, and help to elucidate how they are involved in the acquisition of fear memories related to life threatening situations.
|
8 |
Homo- et hétérosynaptique spike-timing-dependent plasticity aux synapses cortico- et thalamo-striatales / Homo- and heterosynaptic plasticity at cortico- and thalamo-striatal synapsesMendes, Alexandre 28 September 2017 (has links)
D’après le postulat de Hebb, les circuits neuronaux ajustent et modifient durablement leurs poids synaptiques en fonction des patrons de décharges de part et d’autre de la synapse. La « spike-timing-dependent plasticity » (STDP) est une règle d’apprentissage synaptique hebbienne dépendante de la séquence temporelle précise (de l’ordre de la milliseconde) des activités appariées des neurones pré- et post-synaptiques. Le striatum, le principal noyau d’entrée des ganglions de la base, reçoit des afférences excitatrices provenant du cortex cérébral et du thalamus dont les activités peuvent être concomitantes ou décalées dans le temps. Ainsi, l’encodage temporal des informations corticales et thalamiques via la STDP pourrait être crucial pour l’implication du striatum dans l’apprentissage procédural. Nous avons exploré les plasticités synaptiques cortico- et thalamo-striatales puis leurs interactions à travers le paradigme de la STDP. Les principaux résultats sont :1. Les « spike-timing-dependent plasticity » opposées cortico-striatales et thalamo-striatales induisent des plasticités hétérosynaptiques. Si la très grande majorité des études sont consacrées à la plasticité synaptique cortico-striatale, peu ont exploré les règles de plasticité synaptique aux synapses thalamo-striatale et leurs interactions avec la plasticité cortico-striatale. Nous avons étudié la STDP thalamo-striatale et comment les plasticités synaptiques thalamo- et cortico-striatales interagissent… / According to Hebbian postulate, neural circuits tune their synaptic weights depending on patterned firing of action potential on either side of the synapse. Spike-timing-dependent plasticity (STDP) is an experimental implementation of Hebbian plasticity that relies on the precise order and the millisecond timing of the paired activities in pre- and postsynaptic neurons. The striatum, the primary entrance to basal ganglia, integrates excitatory inputs from both cerebral cortex and thalamus whose activities can be concomitant or delayed. Thus, temporal coding of cortical and thalamic information via STDP paradigm may be crucial for the role of the striatum in procedural learning. Here, we explored cortico-striatal and thalamo-striatal synaptic plasticity and their interplay through STDP paradigm. The main results described here are:1. Opposing spike-timing dependent plasticity at cortical and thalamic inputs drive heterosynaptic plasticity in striatumIf the vast majority of the studies focused on cortico-striatal synaptic plasticity, much less is known about thalamo-striatal plasticity rules and their interplay with cortico-striatal plasticity. Here, we explored thalamo-striatal STDP and how thalamo-striatal and cortico-striatal synaptic plasticity interplay. a) While bidirectional and anti-Hebbian STDP was observed at cortico-striatal synapses, thalamo-striatal exhibited bidirectional and hebbian STDP...
|
Page generated in 0.0491 seconds