• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 34
  • 10
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 173
  • 48
  • 18
  • 16
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Rôle d'un circuit hippocampo-cortico-thalamique dans les processus de mémoire spatiale chez le rat / Role of a hippocampal-cortical-thalamic circuit in spatial memory processes in the rat

Cholvin, Thibault 22 September 2014 (has links)
Cette thèse avait pour objectif d’étudier le rôle du circuit composé de l’hippocampe (Hip), du cortex préfrontal médian (mPFC) et des noyaux reuniens et rhomboïde (ReRh) du thalamus dans les processus cognitifs qui sous-tendent la mémoire spatiale chez le Rat. Nous avons montré que les noyaux ReRh pourraient être impliqués dans la consolidation systémique, mécanisme nécessaire à la persistance des souvenirs et nécessitant un dialogue hippocampo-cortical. Nous avons mis en évidence que l’activité neuronale du mPFC durant le rappel d’une mémoire ancienne dépend des noyaux ReRh, ainsi que l’implication de ces noyaux dans une tâche de mémoire spatiale (dépendante de l’Hip) nécessitant une flexibilité comportementale (impliquant le mPFC). Enfin, nous avons montré un rôle du mPFC dans le rappel d’une mémoire spatiale récente. Ces résultats mettent en évidence l’importance de ce circuit hippocampo-cortico-thalamique dans le traitement et la persistance des informations spatiales chez le Rat. / This thesis aimed to investigate the role of a circuit encompassing the hippocampus (Hip), the medial prefrontal cortex (mPFC) and the reuniens and rhomboid nuclei (ReRh) of the thalamus in cognitive processes underlying spatial memory in rats. We first showed that ReRh nuclei may be involved in systemic consolidation, a mechanism necessary for memory persistence and requiring hippocampal-cortical interactions. We confirmed these findings in a second study showing that mPFC neuronal activity during recall of a remote spatial memory depends on ReRh thalamic nuclei. We also showed the involvement of the ReRh nuclei in a mnemonic task requiring the use of both spatial information (dependent on the Hip) and behavioral flexibility (involving the mPFC). Finally, we found a role of the mPFC in the recall of recent spatial memory. Taken together, these results highlight the importance of a hippocampo-cortico-thalamic circuit in the processing and persistence of spatial information in the Rat.
92

Rôle des voies thalamo-corticales dans le trouble obsessionnel-compulsif : approches méta-analytique et physiopathologique chez l'homme et l'animal / Role of the thalamocortical networks in obsessive-compulsive disorder

Rotgé, Jean-Yves 17 December 2010 (has links)
Le trouble obsessionnel-compulsif (TOC) est un trouble anxieux fréquent et invalidant. Pour un grand nombre de patients, il existe une résistance aux thérapeutiques actuellement disponibles, soulignant toute l'importance de mieux préciser la physiopathologie du TOC. Le principal objectif de cette thèse est d’étudier les altérations anatomiques et fonctionnelles des voies thalamo-corticales intéressant le cortex orbitofrontal (COF) et le cortex cingulaire antérieur (CCA) dans le TOC. Pour cela, nous avons utilisé plusieurs outils complémentaires permettant d’appréhender cette problématique sous différents angles méthodologiques.Concernant les altérations anatomiques associées au TOC, nous avons rapporté les données de méta-analyses des études de neuro-imagerie volumétrique et morphométrique ainsi que les résultats d'une étude originale d'imagerie volumétrique. Une diminution du volume orbitofrontal, une augmentation du volume thalamique et une relation entre ces modifications de volumes ont été observées chez les patients avec TOC comparativement aux témoins. Les modifications de densité de matière grise concernaient le COF et le putamen dans le sens d'une augmentation et les cortex pariétal et préfrontal dorsolatéral dans le sens d'une diminution dans le TOC.Concernant les altérations fonctionnelles associées au TOC, nous avons détaillé un travail de méta-analyse des études d'imagerie fonctionnelle, un travail expérimental chez le primate basé sur des manipulations pharmacologiques intra-cérébrales, puis un travail expérimental chez l'homme reposant sur le développement d'une tâche comportementale originale couplée à l'imagerie fonctionnelle. Dans notre méta-analyse, nous avons décrit la participation fonctionnelle de régions comme le COF, le thalamus et le striatum lorsque des symptômes obsessionnels et compulsifs étaient provoqués chez des patients. Chez le primate subhumain, nous avons montré qu'une hyperactivation du noyau ventral-antérieur, par levée de l'inhibition GABAergique, entraînait l'apparition de comportements pseudo-compulsifs. Ensuite, à l'aide d'une tâche originale qui mettait les sujets en situation de vérifier, nous avons mis en évidence que les dysfonctions orbitofrontales associées au doute lors de la prise de décision n'étaient pas modulées ni par les informations contextuelles (signaux d'erreur), ni par la réponse comportementale chez les patients avec TOC comparativement à des sujets témoins.Enfin, la superposition des cartes morphométriques et fonctionnelles a trouvé une relation entre les altérations anatomiques et fonctionnelles au sein du COF. Nos résultats soulignent toute l'importance des voies thalamo-orbitofrontales dans la physiopathologie du TOC. / Obsessive-compulsive disorder (OCD) is a frequent and disabling anxiety disorder. Available treatments are effective for most patients but impairing residual symptoms and treatment resistance are common in OCD patients. Therefore, a better understanding of OCD pathophysiology is essential for further improvement of therapeutic strategies. The main goal of my thesis was to assess the anatomical and funtional thalamocortical alterations associated with OCD. Concerning the anatomical thalamocortical alterations associated with OCD, we conducted two meta-analyses of anatomical neuroimaging studies and an original volumetric neuroimaging study. We reported a smaller thalamic volume and a greater orbitofrontal volume, but also an inverse relationship between the volume changes in OCD patients compared with healthy subjects. Furthermore, we showed that gray matter density within the orbitofrontal cortex and the putamen were enhanced in OCD. Concerning the functional thalamocortical alterations associated with OCD, we reported data coming from a meta-analysis of functional neuroimaging studies, an experimental study in subhuman primates using local brain pharmacological manipulations and an event-related neuroimaging study in OCD patients. In our meta-analysis, we showed that the orbitofrontal cortex, the thalamus and the striatum were involved in the mediation of OCD symptoms. In subhuman primates, the pharmacologically induced overactivity within the ventralanterior thalamic nucleus leaded to the emergence of compulsive-like behaviors. Then, in our neuroimaging study, we found that doubt-related orbitofrontal dysfunctions were not modulated by neither error signals nor compulsive-like behaviors in OCD patients, compared with healthy subjects. Finally, we described by using meta-analytic data that anatomical and functional brain alterations overlap with the lateral orbitofrontal cortex in OCD. In conclusion, our results suggest that the thalamo-orbitofrontal network may play a primary role in the genesis and mediation of OCD symptoms.
93

The scanner as a stressor: Evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session

Mühlhan, Markus, Lüken, Ulrike, Wittchen, Hans-Ulrich, Kirschbaum, Clemens 13 August 2013 (has links) (PDF)
Subjects participating in magnetic resonance imaging (MRI) examinations regularly report anxiety and stress related reactions. This may result in impaired data quality and premature termination of scans. Moreover, cognitive functions and neural substrates can be altered by stress. While prior studies investigated pre–post scan differences in stress reactions only, the present study provides an in-depth analysis of mood changes and hormonal fluctuations during the time course of a typical fMRI session. Thirty-nine subjects participated in the study. Subjective mood, salivary alpha-amylase (sAA) and cortisol were assessed at six time points during the lab visit. Associations between hormonal data and neural correlates of a visual detection task were observed using a region of interest approach applied to the thalamic region. Mood and hormonal levels changed significantly during the experiment. Subjects were most nervous immediately after entering the scanner. SAA was significantly elevated after MRI preparation. A subgroup of n = 5 (12.8%) subjects showed pronounced cortisol responses exceeding 2.5 nmol/l. Preliminary fMRI data revealed an association between sAA levels and left thalamic activity during the first half of the experiment that disappeared during the second half. No significant correlation between cortisol and thalamic activity was observed. Results indicate that an fMRI experiment may elicit subjective and neuroendocrine stress reactions that can influence functional activation patterns.
94

Dynamique intracérébrale de l'apprentissage par renforcement chez l'humain / Intracerebral dynamics of human reinforcement learning

Gueguen, Maëlle 01 December 2017 (has links)
Chaque jour, nous prenons des décisions impliquant de choisir les options qui nous semblent les plus avantageuses, en nous basant sur nos expériences passées. Toutefois, les mécanismes et les bases neurales de l’apprentissage par renforcement restent débattus. D’une part, certains travaux suggèrent l’existence de deux systèmes opposés impliquant des aires cérébrales corticales et sous-corticales distinctes lorsque l’on apprend par la carotte ou par le bâton. D’autres part, des études ont montré une ségrégation au sein même de ces régions cérébrales ou entre des neurones traitant l’apprentissage par récompenses et celui par évitement des punitions. Le but de cette thèse était d’étudier la dynamique cérébrale de l’apprentissage par renforcement chez l’homme. Pour ce faire, nous avons utilisé des enregistrements intracérébraux réalisés chez des patients épileptiques pharmaco-résistants pendant qu’ils réalisaient une tâche d’apprentissage probabiliste. Dans les deux premières études, nous avons d’investigué la dynamique de l’encodage des signaux de renforcement, et en particulier à celui des erreurs de prédiction des récompenses et des punitions. L’enregistrement de potentiels de champs locaux dans le cortex a mis en évidence le rôle central de l’activité à haute-fréquence gamma (50-150Hz). Les résultats suggèrent que le cortex préfrontal ventro-médian est impliqué dans l’encodage des erreurs de prédiction des récompenses alors que pour l’insula antérieure, le cortex préfrontal dorsolatéral sont impliqués dans l’encodage des erreurs de prédiction des punitions. De plus, l’activité neurale de l’insula antérieure permet de prédire la performance des patients lors de l’apprentissage. Ces résultats sont cohérents avec l’existence d’une dissociation au niveau cortical pour le traitement des renforcements appétitifs et aversifs lors de la prise de décision. La seconde étude a permis d’étudier l’implication de deux noyaux limbiques du thalamus au cours du même protocole cognitif. L’enregistrement de potentiels de champs locaux a mis en évidence le rôle des activités basse fréquence thêta dans la détection des renforcements, en particulier dans leur dimension aversive. Dans une troisième étude, nous avons testé l’influence du risque sur l’apprentissage par renforcement. Nous rapportons une aversion spécifique au risque lors de l’apprentissage par évitement des punitions ainsi qu’une diminution du temps de réaction lors de choix risqués permettant l’obtention de récompenses. Cela laisse supposer un comportement global tendant vers une aversion au risque lors de l’apprentissage par évitement des punitions et au contraire une attirance pour le risque lors de l’apprentissage par récompenses, suggérant que les mécanismes d’encodage du risque et de la valence pourraient être indépendants. L’amélioration de la compréhension des mécanismes cérébraux sous-tendant la prise de décision est importante, à la fois pour mieux comprendre les déficits motivationnels caractérisant plusieurs pathologies neuropsychiatriques, mais aussi pour mieux comprendre les biais décisionnels que nous pouvons exhiber. / We make decisions every waking day of our life. Facing our options, we tend to pick the most likely to get our expected outcome. Taking into account our past experiences and their outcome is mandatory to identify the best option. This cognitive process is called reinforcement learning. To date, the underlying neural mechanisms are debated. Despite a consensus on the role of dopaminergic neurons in reward processing, several hypotheses on the neural bases of reinforcement learning coexist: either two distinct opposite systems covering cortical and subcortical areas, or a segregation of neurons within brain regions to process reward-based and punishment-avoidance learning.This PhD work aimed to identify the brain dynamics of human reinforcement learning. To unravel the neural mechanisms involved, we used intracerebral recordings in refractory epileptic patients during a probabilistic learning task. In the first study, we used a computational model to tackle the brain dynamics of reinforcement signal encoding, especially the encoding of reward and punishment prediction errors. Local field potentials exhibited the central role of high frequency gamma activity (50-150Hz) in these encodings. We report a role of the ventromedial prefrontal cortex in reward prediction error encoding while the anterior insula and the dorsolateral prefrontal cortex encoded punishment prediction errors. In addition, the magnitude of the neural response in the insula predicted behavioral learning and trial-to-trial behavioral adaptations. These results are consistent with the existence of two distinct opposite cortical systems processing reward and punishments during reinforcement learning. In a second study, we recorded the neural activity of the anterior and dorsomedial nuclei of the thalamus during the same cognitive task. Local field potentials recordings highlighted the role of low frequency theta activity in punishment processing, supporting an implication of these nuclei during punishment-avoidance learning. In a third behavioral study, we investigated the influence of risk on reinforcement learning. We observed a risk-aversion during punishment-avoidance, affecting the performance, as well as a risk-seeking behavior during reward-seeking, revealed by an increased reaction time towards appetitive risky choices. Taken together, these results suggest we are risk-seeking when we have something to gain and risk-averse when we have something to lose, in contrast to the prediction of the prospect theory.Improving our common knowledge of the brain dynamics of human reinforcement learning could improve the understanding of cognitive deficits of neurological patients, but also the decision bias all human beings can exhibit.
95

Dynamiques corticales de l'éveil chez la souris : rôle des afférences thalamo-corticales / Cortical dynamics during wakefulness in the mouse : role of thalamocortical inputs

Fernandez, Laura 22 October 2012 (has links)
L’activité électrique du cerveau lors de l’éveil est traditionnellement décrite comme rapide, microvoltée, et « désynchronisée ». De récents travaux chez les rongeurs ont montré que l’activité de l’éveil est plus complexe et varie notamment avec les contraintes comportementales. Chez la souris, il est possible d’enregistrer localement dans le cortex somatosensoriel primaire (S1) deux types d’activités associées aux comportements d’éveil calme et d’éveil « actif », lors de l’exploration de l’environnement par les moustaches. La première étude de cette thèse a permis de montrer que les activités corticales dans S1 lors des éveils calme et actif sont sous le contrôle principal du thalamus et, dans une moindre mesure, du système cholinergique. Pour ce faire, nous avons utilisé différentes méthodes : des enregistrements électrophysiologiques du thalamus et du cortex, l’activation optogénétique ou l’inactivation pharmacologique du thalamus. Au cours de la seconde étude, nous avons voulu savoir si le changement d’état d’éveil dans S1 s’observait dans d’autres structures. En réalisant des enregistrements multisites, nous montrons qu’il est possible d’observer ce changement d’état cortical suivant l’activité motrice de la souris en particulier dans les cortex sensori-moteurs (S1, sensoriel secondaire S2, moteur primaire M1), et de manière moins présente dans d’autres modalités sensorielles (auditif primaire Au1, visuel primaire V1), le pariétal associatif (PtA) ou l’hippocampe (dCA1). L’étude d’enregistrements multisites montre une hétérogénéité des activités corticales de l’éveil liée d’une part au comportement de l’animal, et d’autre part aux régions corticales considérées / The activity in the brain during wakefulness has been typically described as rapid, low amplitude and desynchronized. However, recent data on rodents support evidence for a more complex panel of activities depending on the behaviour. For instance, it has been shown in mice a state change in primary somatosensory cortex (S1) from quiet to active wakefulness while the animal is scanning the environment with its whiskers. In the first study, we show that this state change in S1 is under thalamic control and to a smaller extent a regulation by the cholinergic system. In order to study the underlying mechanism of the state change, we have recorded in S1 and the thalamus, and we have activated (optogenetic tools) or inactivated (with pharmacology) the thalamus. In the second part of this thesis work, we asked if the state change related to the behaviour was restricted to S1, or if it was also observed in other areas. We have done multiple recordings in several areas, and we show that it is possible to observe a state change related to muscular activity in sensori-motor areas (in S1, but also secondary sensory S2, and primary motor M1 cortex), and in a much less prominent extent in other sensory modalities (primary auditive Au1 and primary visual V1 cortex), in parietal associative cortex (PtA) and in hippocampus (dCA1). Thus, the multiple recordings in the secondary study show heterogeneity of cortical activities during wakefulness according to the behaviour and the cortical area recorded
96

Selektive neuronale Vulnerabilität neurodegenerativer Erkrankungen am Beispiel des Thalamus / Selective neuronal vulnerability of neurodegenerative diseases using the example of the thalamus

Mathes, Joachim 05 March 2018 (has links)
No description available.
97

The scanner as a stressor: Evidence from subjective and neuroendocrine stress parameters in the time course of a functional magnetic resonance imaging session

Mühlhan, Markus, Lüken, Ulrike, Wittchen, Hans-Ulrich, Kirschbaum, Clemens January 2011 (has links)
Subjects participating in magnetic resonance imaging (MRI) examinations regularly report anxiety and stress related reactions. This may result in impaired data quality and premature termination of scans. Moreover, cognitive functions and neural substrates can be altered by stress. While prior studies investigated pre–post scan differences in stress reactions only, the present study provides an in-depth analysis of mood changes and hormonal fluctuations during the time course of a typical fMRI session. Thirty-nine subjects participated in the study. Subjective mood, salivary alpha-amylase (sAA) and cortisol were assessed at six time points during the lab visit. Associations between hormonal data and neural correlates of a visual detection task were observed using a region of interest approach applied to the thalamic region. Mood and hormonal levels changed significantly during the experiment. Subjects were most nervous immediately after entering the scanner. SAA was significantly elevated after MRI preparation. A subgroup of n = 5 (12.8%) subjects showed pronounced cortisol responses exceeding 2.5 nmol/l. Preliminary fMRI data revealed an association between sAA levels and left thalamic activity during the first half of the experiment that disappeared during the second half. No significant correlation between cortisol and thalamic activity was observed. Results indicate that an fMRI experiment may elicit subjective and neuroendocrine stress reactions that can influence functional activation patterns.
98

The Role of the Lateral Geniculate Nucleus in Developmental Dyslexia: Evidence From Multi-Modal Magnetic Resonance Imaging

Müller-Axt, Christa 24 October 2023 (has links)
The ability to read proficiently is key to social participation and an important premise for individual well-being and vocational success. Individuals with developmental dyslexia, a highly prevalent neurodevelopmental disorder affecting hundreds of millions of children and adults worldwide, face severe and persistent difficulties in attaining adequate reading levels. Despite years of extensive research efforts to elucidate the neurobiological origin of this disorder, its exact etiology remains unclear to date. In this context, most neuroimaging research on dyslexia in humans has focused on the cerebral cortex and has identified alterations in a distributed left-lateralized cortical language network. However, pioneering post-mortem human studies and animal models suggest that dyslexia might also be associated with alterations in subcortical sensory thalami and early sensory pathways. The largely cortico-centric view of dyslexia is due in part to considerable technical challenges in assessing the human sensory thalami non-invasively using conventional magnetic resonance imaging (MRI). As a result, the role that sensory thalami may play in dyslexia has been largely unaddressed. In this dissertation, I leveraged recent advances in high-field MRI to investigate the role of the human lateral geniculate nucleus (LGN) of the visual thalamus in adults with dyslexia in-vivo. In three multi-modal high-field MRI studies, I show that (i) dyslexia is associated with structural alterations in the direct V1-bypassing white matter pathway connecting the LGN with cortical motion-sensitive area V5/MT in the left hemisphere; (ii) the connectivity strength of which predicts a core symptom of the disorder, i.e., rapid naming ability. I further demonstrate that (iii) the two major functional subdivisions of the LGN can be distinguished non-invasively based on differences in tissue microstructure; and that (iv) adults with dyslexia show functional response alterations specifically in the magnocellular subdivision of the LGN. I also demonstrate that this subdivision deficit (v) is more pronounced in male than female dyslexics; and (vi) predicts rapid naming ability in male dyslexics only. The results of this doctoral thesis are the first to confirm previous post-mortem evidence of LGN alterations in dyslexia in-vivo and point to their relevance to key symptoms of the disorder. In synergy, our research findings offer new perspectives on explanatory models of dyslexia and bear potential implications also for prospective treatment strategies.:Contribution Statement i Acknowledgments iii Abstract v Table of Contents vii 1 General Introduction 1 1.1 Developmental Dyslexia 1 1.1.1 Diagnostic Criteria 1 1.1.2 Prevalence and Etiology 2 1.1.3 Cognitive and Behavioral Symptoms 3 1.1.4 Explanatory Models in Cognitive Neuroscience 4 1.2 Lateral Geniculate Nucleus 7 1.2.1 Anatomy and Function 7 1.2.2 Technical Challenges in Conventional MRI 8 1.2.3 High-Field MRI 9 1.3 Research Aim and Chapter Outline 10 2 Altered Structural Connectivity of the Left Visual Thalamus in Developmental Dyslexia 13 2.1 Summary 14 2.2 Results and Discussion 15 2.3 Conclusions 22 2.4 Materials and Methods 23 2.4.1 Subject Details 23 2.4.2 High-Resolution MRI Acquisition and Preprocessing 23 2.4.3 Lateral Geniculate Nucleus Definition 24 2.4.4 Cortical Region of Interest Definition 26 2.4.5 Probabilistic Tractography 27 2.4.6 Quantification and Statistical Analysis 29 2.5 Supplementary Information 30 3 Mapping the Human Lateral Geniculate Nucleus and its Cytoarchitectonic Subdivisions Using Quantitative MRI 33 3.1 Abstract 34 3.2 Introduction 35 3.3 Materials and Methods 37 3.3.1 In-Vivo MRI 37 3.3.2 Post-Mortem MRI and Histology 41 3.4 Results 44 3.4.1 Lateral Geniculate Nucleus Subdivisions in In-Vivo MRI 44 3.4.2 Lateral Geniculate Nucleus Subdivisions in Post-Mortem MRI 46 3.5 Discussion 50 3.6 Supplementary Information 54 3.6.1 In-Vivo MRI 54 3.6.2 Post-Mortem MRI and Histology 58 3.6.3 Data and Code Availability 60 4 Dysfunction of the Visual Sensory Thalamus in Developmental Dyslexia 61 4.1 Abstract 62 4.2 Introduction 63 4.3 Materials and Methods 66 4.3.1 Subject Details 66 4.3.2 High-Resolution MRI Experiments 66 4.3.3 High-Resolution MRI Acquisition and Preprocessing 67 4.3.4 Lateral Geniculate Nucleus Definition 68 4.3.5 Quantification and Statistical Analysis 69 4.4 Results 70 4.5 Discussion 75 4.6 Supplementary Information 77 4.6.1 Supporting Methods 77 4.6.2 Supporting Results 81 4.6.3 Data and Code Availability 82 5 General Conclusion 83 5.1 Summary of Research Findings 83 5.2 Implications for Dyslexia Models 84 5.2.1 Phonological Deficit Hypothesis 84 5.2.2 Magnocellular Theory 84 5.2.3 Model According to Ramus 85 5.2.4 Need for Revised Model 86 5.3 Implications for Remediation 87 5.4 Research Prospects 88 5.5 Brief Concluding Remarks 90 6 Bibliography 91 7 List of Tables 113 8 List of Figures 115 9 Selbstständigkeitserklärung 117
99

Tractography indicates lateralized differences between trigeminal and olfactory pathways

Thaploo, Divesh, Joshi, Akshita, Georgiopoulos, Charalampos, Warr, Jonathan, Hummel, Thomas C. 18 April 2024 (has links)
Odorous sensations are based on trigeminal and olfactory perceptions. Both trigeminal and olfactory stimuli generate overlapping as well as distinctive activations in the olfactory cortex including the piriform cortex. Orbitofrontal cortex (OFC), an integrative center for all senses, is directly activated in the presence of olfactory stimulations. In contrast, the thalamus, a very important midbrain structure, is not directly activated in the presence of odors, but rather acts as a relay for portions of olfactory information between primary olfactory cortex and higher-order processing centers. The aims of the study were (1) to examine the number of streamlines between the piriform cortex and the OFC and also between the piriform cortex and the thalamus and (2) to explore potential correlations between these streamlines and trigeminal and olfactory chemosensory perceptions. Thirty-eight healthy subjects were recruited for the study and underwent diffusion MRI using a 3T MRI scanner with 67 diffusion directions. ROIs were adapted from two studies looking into olfaction in terms of functional and structural properties of the olfactory system. The “waytotal number” was used which corresponds to number of streamlines between two regions of interests. We found the number of streamlines between the piriform cortex and the thalamus to be higher in the left hemisphere, whereas the number of streamlines between the piriform cortex and the OFC were higher in the right hemisphere. We also found streamlines between the piriform cortex and the thalamus to be positively correlated with the intensity of irritating (trigeminal) odors. On the other hand, streamlines between the piriform cortex and the OFC were correlated with the threshold scores for these trigeminal odors. This is the first studying the correlations between streamlines and olfactory scores using tractography. Results suggest that different chemosensory stimuli are processed through different networks in the chemosensory system involving the thalamus.
100

Anterior and lateral thalamic lesions in object-odour paired associate learning

Bell, Rati January 2007 (has links)
Diencephalic amnesia is thought to be the result of damage to a single thalamic structure that is responsible for the memory impairment. However, an alternative view is that different thalamic structures contribute to the memory impairment in subtly different ways. Paired-associate learning is one important measure of learning and memory that is highly sensitive to disruption in people with amnesia or dementia. The current study will investigate the influence of lesions to two thalamic subregions, the anterior thalamic nuclei (AT) and the lateral thalamic nuclei (LT) in an object-odour paired associate learning task. Each of these subregions has been suggested by the literature as critical for amnesia after thalamus injury. The current study does not involve a place/ space component. Both AT and LT lesions caused impairments in the object-odour paired associate task, but not in the simple discrimination tasks. The results of this study provide new evidence to suggest that the anterior thalamic region may be responsible for more than spatial memory processing. This result is inconsistent with those of Aggleton & Brown (1999) that consider the AT to be part of an 'extended hippocampal system'. The deficits observed from LT lesions in this study provide new insight into the lateral thalamic region's role in pattern processing.

Page generated in 0.054 seconds