• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods

Yuvaraj, D 07 1900 (has links)
In recent years, there has been growing interests on II-VI semiconductor nanostructures, which are suitable for applications in electronics and optoelectronic devices such as solar cells, UV lasers, sensors, light emitting diodes and field emission displays. II-VI semiconductor nanostructures with different morphologies such as wires, belts, rods, tubes, needles, springs, tetrapods, plates, hierarchical structures and so on, have been widely grown by vapor transport methods. However the process conditions used for the growth of nanostructures still remains incompatible for device fabrication. The realization of practical nanoscale devices using nanostructured film depends mainly on the availability of low cost and lower processing temperatures to manufacture high purity nanostructures on a variety of substrates including glass and polymer. In this thesis work, studies have been made on the growth and characterization of II-VI semiconductor nanostructures prepared at room temperature, under high vacuum, without employing catalysts or templates. (i) ZnO nanostructured films with different morphology such as flowers, needles and shrubs were deposited at room temperature on glass and polymer substrates by plasma assisted reactive process. (ii) Zn/ZnO core/shell nanowires were grown on Si substrates under optimized oxygen partial pressure. Annealing of this core shell nanowire in high vacuum resulted in the formation of ZnO nanocanals. (iii) ZnS and ZnSe nano and microstructures were grown on Si substrates under high vacuum by thermal evaporation. The morphology, structural, optical properties and composition of these nano and microstructures were investigated by XRD, SEM, TEM, Raman, PL and XPS. The growth mechanism behind the formation of the different nanostructures has been explained on the basis of vapour-solid (VS) mechanism.
32

Großflächige Abscheidung organischer Leuchtdioden und Nutzung optischer Verfahren zur in situ Prozesskontrolle

Eritt, Michael 28 January 2011 (has links) (PDF)
In der vorliegenden Arbeit wird die großflächige Abscheidung von organischen Leuchtdioden (OLED) für Beleuchtungsanwendungen in einer neuartigen Beschichtungsanlage vorgestellt. Ausgehend von den speziellen Anforderungen an gleichförmige Schichtdickenverteilung und hohe Abscheideraten für die organischen Schichten, sind die Verfahren der thermischen Vakuumverdampfung (VTE) und der organischen Dampfphasenabscheidung (OVPD) auf Substraten der Größe 370 x 470 mm² unter Fertigungsbedingungen kombiniert. Die Quellensysteme der Anlage wurden hinsichtlich der Verteilung des Materialauftrages und der Oberflächenrauigkeit qualifiziert. Die Kontrolle der Schichteigenschaften ist bei der organischen Dampfphasenabscheidung durch Variation der Parameter Substrattemperatur und Abscheiderate in einem weiten Bereich möglich. Die in situ Kontrolle der Schichtdicke mittels spektroskopischer Reflektometrie wird vorgestellt. Ein Messsystem ist in die Beschichtungsanlage integriert und abgeschiedene Schichten charakterisiert worden. Die Arbeit zeigt, dass die genaue Bestimmung der Dicke einzelner Schichten oder ganzer Schichtstapel mit diesem Verfahren möglich ist und zur ex situ Ellipsometrie vergleichbare Ergebnisse liefert. Um robuste OLED-Bauelemente herzustellen, wird eine organische Kurzschlussunterdrückungsschicht eingeführt, die konform mittels der OVPD-Technologie abgeschieden wird. Die strombegrenzenden Eigenschaften dieser Schicht wirken Defektströmen innerhalb der OLED entgegen. Die reproduzierbare Herstellung von 100 x 100 mm² großen, weißes Licht emittierenden OLED-Modulen mit mittleren Leistungseffizienzen von über 13 lm/W zeigt das Potential dieser Technologie. / The thesis deals with the large area deposition of organic light-emitting diodes (OLED) for lighting applications with a novel deposition tool. The special needs of film thicknesses homogeneity and high deposition rates for organic layers request the combination of thermal vacuum deposition (VTE) and organic vapour phase deposition (OVPD) processes to fabricate OLEDs on 370 x 470 mm² substrates. The deposition sources are qualified regarding layer homogeneity and morphology of the deposition processes. The layer properties are controlled in a wide range by the variation of the organic vapour phase deposition parameters: substrate temperature and deposition rate. The in situ determination of the substrate thickness is shown by the application of spectroscopic reflectometry. The thesis demonstrates the thickness analysis of single and multi-layer stacks by reflectometry. The data fit well to ex situ ellipsometry. Robust OLED devices with an additional short-circuit protection layer deposited by OVPD technology are introduced. The current limiting properties of this layer reduce the leakage currents in the OLED device. The fabrication of 100 x 100 mm² white emitting OLED modules with power efficiencies about 13 lm/W shows the great potential of the manufacturing technology.
33

Facile and Process Compatible Growth of High-k Gate Dielectric Materials (TiO2, ZrO2 and HfO2) on Si and the Investigation of these Oxides and their Interfaces by Deep Level Transient Spectroscopy

Kumar, Arvind January 2016 (has links) (PDF)
The continuous downscaling has enforced the device size and oxide thickness to few nanometers. After serving for several decades as an excellent gate oxide layer in complementary metal oxide semiconductor (CMOS) devices, the thickness of SiO2 layer has reached to its theoretical limits. Ultra-thin films of SiO2 can result in severe leakage currents due to direct tunneling as well as maintaining the homogeneity of the layers becomes an additional challenge. The use of a high- (HK) layer can solve these twin concerns of the semiconductor industry, which can also enhance the capacitance due to superior dielectric permittivity and reduce the leakage current by being thicker than the silicon dioxide. This thesis is concerned about the development of solution route fabricated high-k (TiO2, ZrO2 and HfO2) gate dielectrics and the investigation of high-/silicon interfaces by highly sensitive DLTS technique in MOS structures. The solution processing reduce the industrial fabrication cost and the DLTS method has the advantage to accurately measure the interface related defects parameters; such as interface trap density (Dit), capture cross-section (), activation energy (ET) and also distinguish between bulk and interface traps. In this thesis, HK films have been deposited by solution route, the material and electrical properties of the film and the HK/Si interface have been extensively evaluated. IN CHAPTER 1, we have summarized the history and evolution of transistor and it provides the background for the work presented in this thesis. IN CHAPTER 2, we have described the experimental method /technique used for the fabrication and characterization. The advantages and working principals of spin-coating and DLTS techniques are summarized. IN CHAPTER 3, we have presented the preparation and optimization of TiO2 based HK layer. Structural, surface morphology, optical electrical and dielectric properties are discussed in details. A high- 34 value is achieved for the 36 nm TiO2 films. IN CHAPTER 4, we presented the technologically relevant Si/TiO2 interface study by DLTS technique. The DLTS analysis reveals a small capture cross-section of the interface with acceptable interface state density. IN CHAPTER 5, we have focused on the fabrication of amorphous ZrO2 films on p-Si substrate. The advantage of amorphous dielectric layer is summarized as first dielectric reported SiO2 is used in its amorphous phase. The moderate-15 with low leakage current density is achieved. IN CHAPTER 6, the HfO2 films are prepared using hafnium isopropoxide and a high value of dielectric constant 23 is optimized with low leakage current density. The current conduction mechanisms are discussed in details. IN CHAPTER 7, we have probed the oxygen vacancy related sub-band-gap states in HfO2 by DLTS technique. IN CHAPTER 8, we have presented the summary of the dissertation and the prospect research directions are suggested. In summary, we have studied the group IVB transition metal elemental oxides (TMEO); TiO2, ZrO2 and HfO2 thin films in the MOS structure, as a possible replacement of SiO2 gate dielectric. For the TMEO films deposition a low-cost and simple method spin-coating was utilized. The film thicknesses are in the range of 35 – 39 nm, which was measured by ellipsometry and confirmed with the cross-sectional SEM. A rough surface of gate dielectric layer can trap the charge carrier and may cause the Fermi level pinning, which can cause the threshold voltage instabilities. Hence, surface roughness of oxide layer play an important role in CMOS device operation. We have achieved quite good flat surfaces (RMS surface roughness’s are 0.2 – 2.43 nm) for the films deposited in this work. The TiO2 based MOS gate stack shows an optimized high dielectric constant ( 34) with low leakage current density (3.710-7 A.cm-2 at 1 V). A moderate dielectric constant ( 15) with low leakage current density (4.710-9 A.cm-2 at 1 V) has been observed for the amorphous ZrO2 thin films. While, HfO2 based MOS gate stack shows reasonably high dielectric constant ( 23) with low leakage current density (1.410-8 A.cm-2 at 1 V). We have investigated the dominating current conduction mechanism and found that the current is mainly governed by space charge limited conduction (SCLC) mechanism for the high bias voltages, while low and intermediate bias voltages show the (Poole – Frenkel) PF and (Fowler – Nordheim) FN tunneling, respectively. For the HfO2 MOS device band alignment is drawn from the UPS and J-V measurements. The band gap and electron affinity of HfO2 films are estimated 5.9 eV and 3 eV, respectively, which gives a reasonable conduction band offset (1.05 eV) with respect to Si. A TMEO film suffers from a large number of intrinsic defects, which are mostly oxygen vacancies. These defects can create deep levels below the conduction band of high- dielectric material, which can act like a hole and electron traps. In addition to that, interface between Si and high- is an additional concern. These defect states in the band gap of high- or at the Si/ high- interface might lead to the threshold voltage shifts, lower carrier mobility in transistor channel, Fermi level pinning and various other reliability issues. Hence, we also studied bulk and interfacial defects present in the high- films on Si and their interface with Si by a very sensitive DLTS technique. The capture cross-sections are measured by insufficient filling DLTS (IF – DLTS). The defects present at the interface are Si dandling bond and defect in the bulk are mostly oxygen vacancies related defects present in various charge states. The interface states (Dit) are in the range of 2×1011 to 9×1011 eV-1cm-2, which are higher than the Al/SiO2/Si MOS devices (Dit in Al/SiO2/Si is the benchmark and in the order of 1010 eV-1cm-2). Still this is an acceptable value for Si/high-k (non-native oxide) MOS devices and consistent with other deposition methods. The capture cross-sections are found to be quite low in the order of 10-18 to 10-19 cm2, which indicate a minor impact on the device operation. The small value of capture cross-sections are attributed to the involvement of tunneling, to and from the bulk traps to the interface. In conclusion, the low cost solution processed high- thin films obtained are of high quality and find their importance as a potential dielectric layer. DLTS study will be helpful to reveal various interesting facts observed in high- such as resistive switching, magnetism and leakage current problems mediated by oxygen vacancy related defects
34

Großflächige Abscheidung organischer Leuchtdioden und Nutzung optischer Verfahren zur in situ Prozesskontrolle

Eritt, Michael 11 November 2010 (has links)
In der vorliegenden Arbeit wird die großflächige Abscheidung von organischen Leuchtdioden (OLED) für Beleuchtungsanwendungen in einer neuartigen Beschichtungsanlage vorgestellt. Ausgehend von den speziellen Anforderungen an gleichförmige Schichtdickenverteilung und hohe Abscheideraten für die organischen Schichten, sind die Verfahren der thermischen Vakuumverdampfung (VTE) und der organischen Dampfphasenabscheidung (OVPD) auf Substraten der Größe 370 x 470 mm² unter Fertigungsbedingungen kombiniert. Die Quellensysteme der Anlage wurden hinsichtlich der Verteilung des Materialauftrages und der Oberflächenrauigkeit qualifiziert. Die Kontrolle der Schichteigenschaften ist bei der organischen Dampfphasenabscheidung durch Variation der Parameter Substrattemperatur und Abscheiderate in einem weiten Bereich möglich. Die in situ Kontrolle der Schichtdicke mittels spektroskopischer Reflektometrie wird vorgestellt. Ein Messsystem ist in die Beschichtungsanlage integriert und abgeschiedene Schichten charakterisiert worden. Die Arbeit zeigt, dass die genaue Bestimmung der Dicke einzelner Schichten oder ganzer Schichtstapel mit diesem Verfahren möglich ist und zur ex situ Ellipsometrie vergleichbare Ergebnisse liefert. Um robuste OLED-Bauelemente herzustellen, wird eine organische Kurzschlussunterdrückungsschicht eingeführt, die konform mittels der OVPD-Technologie abgeschieden wird. Die strombegrenzenden Eigenschaften dieser Schicht wirken Defektströmen innerhalb der OLED entgegen. Die reproduzierbare Herstellung von 100 x 100 mm² großen, weißes Licht emittierenden OLED-Modulen mit mittleren Leistungseffizienzen von über 13 lm/W zeigt das Potential dieser Technologie. / The thesis deals with the large area deposition of organic light-emitting diodes (OLED) for lighting applications with a novel deposition tool. The special needs of film thicknesses homogeneity and high deposition rates for organic layers request the combination of thermal vacuum deposition (VTE) and organic vapour phase deposition (OVPD) processes to fabricate OLEDs on 370 x 470 mm² substrates. The deposition sources are qualified regarding layer homogeneity and morphology of the deposition processes. The layer properties are controlled in a wide range by the variation of the organic vapour phase deposition parameters: substrate temperature and deposition rate. The in situ determination of the substrate thickness is shown by the application of spectroscopic reflectometry. The thesis demonstrates the thickness analysis of single and multi-layer stacks by reflectometry. The data fit well to ex situ ellipsometry. Robust OLED devices with an additional short-circuit protection layer deposited by OVPD technology are introduced. The current limiting properties of this layer reduce the leakage currents in the OLED device. The fabrication of 100 x 100 mm² white emitting OLED modules with power efficiencies about 13 lm/W shows the great potential of the manufacturing technology.
35

Efficiency Roll-Off in Organic Light-Emitting Diodes

Murawski, Caroline 28 August 2015 (has links)
The efficiency of organic light-emitting diodes (OLEDs) typically decreases with increasing current density. This so-called roll-off impedes the market entry of OLEDs in high-brightness applications such as general lighting. One of the most important processes causing roll-off is exciton annihilation, which evolves upon high exciton densities. This mechanism is especially pronounced in phosphorescent molecules due to their long triplet lifetime. In order to reduce the roll-off in phosphorescent OLEDs, this thesis focusses on decreasing the local exciton density by modifying the exciton lifetime, the spatial exciton distribution, and the tendency of emitters to form aggregates. The obtained results lead to a deeper understanding of efficiency roll-off and help sustaining the OLED efficiency at high brightness. The emitter lifetime can be influenced by the optical environment around the emitting dipoles through the Purcell effect. In order to study this effect, the distance between emitter and metal cathode is varied for two different OLED stacks. A strong influence of emitter position and orientation on roll-off is observed and explained by modelling the data with triplet-triplet annihilation theory. Furthermore, design principles for optimal high-brightness performance are established by simulating the roll-off as a function of emitter-cathode distance, emissive dipole orientation, and radiative efficiency. Next, a method is developed that allows extracting the spatial exciton distribution. Therefore, a thin sensing layer that locally quenches excitons is introduced into the emission layer at varying positions. The resulting quenching profile is then fitted using a comprehensive theory based on the diffusion equation, which renders the exciton distribution and diffusion length with nanometer resolution. This method is applied to an emission layer comprising an ambipolar host material. Contrary to expectations which suggest that ambipolar materials exhibit broad exciton formation, a narrow emission zone close to the electron transport layer is found. Additional explorations of structures that might broaden the emission zone point to a narrow emission zone in double emission layers and broader exciton formation in mixed emission layers. Previous investigations revealed a strong correlation between emitter aggregation and molecular dipole moment of the emitter. Within this thesis, the range of studied emitters is significantly extended. It is shown that homoleptic emitters show a stronger tendency to form aggregates than heteroleptic compounds. This is probably not only related to their higher dipole-dipole potential, but also to the molecular structure. Systematic analysis of the deposition parameters shows that aggregate formation depends on the underlying material and increases with increasing substrate temperature and decreasing evaporation rate. The two green emitters Ir(ppy)3 and Ir(ppy)2(acac) are additionally studied by means of X-ray diffraction. Both emitters form crystallite grains and exhibit a preferred orientation. Doping the emitters into an amorphous host, both orientation and crystallite formation retain at the investigated doping concentrations above 20 wt%. This result is a first step toward further understanding of the mechanism of transition dipole orientation.:List of Publications 1 Introduction 2 Principles of Organic Semiconductors 2.1 Molecular Orbitals 2.2 Optical Properties 2.3 Intermolecular Energy Transfer 2.4 Charge Transport 2.5 Organic Light-Emitting Diodes 2.5.1 Structure and Working Principle 2.5.2 Characterization 3 Theory of Efficiency Roll-Off 3.1 Current Status 3.2 Processes Leading to Roll-Off 3.2.1 Triplet-Triplet Annihilation 3.2.2 Triplet-Polaron Interaction 3.2.3 Further Processes Influencing Roll-Off 3.3 Interplay of the Various Processes 3.4 Scope of this Work 4 Experimental Methods 4.1 Sample Preparation 4.2 Measurement 4.2.1 Thin-Film Characterization 4.2.2 OLED Characterization 4.3 Materials 4.3.1 Electrodes, Transport Materials, and Blockers 4.3.2 Materials of the Emission Layer 5 Influence of the Optical Environment 5.1 Introduction 5.2 Influence of Emitter-Cathode Distance 5.3 Emitter Lifetime and Orientation 5.4 Correlation of Roll-Off and Orientation 5.5 Simulation of Roll-Off 5.5.1 Influence of the Electroluminescence Spectrum 5.5.2 Influence of Orientation and Radiative Efficiency 5.6 Conclusion 6 Influence of the Emission Profile 6.1 Preliminary Considerations 6.1.1 Exciton Generation and Diffusion 6.1.2 Width of the Emission Zone 6.1.3 Dependence on the Structure of the Emission Layer 6.2 Measurement of the Emission Profile 6.2.1 Method 6.2.2 Mathematical Description 6.2.3 Experimental Realization and Evaluation 6.3 Ambipolar Matrix Materials 6.3.1 Device Performance 6.3.2 Influence of the Sensing Layer 6.3.3 Emission Profile 6.4 Double- and Mixed Emission Layers 6.4.1 Emission Profile 6.4.2 Influence of the Matrix Ratio 6.5 Summary and Outlook 7 Influence of Molecular Aggregation 7.1 Introduction 7.2 Aggregation of Homoleptic and Heteroleptic Emitters 7.2.1 Photoluminescence Measurements 7.2.2 Time-Resolved Spectroscopy 7.2.3 X-Ray Diffraction 7.2.4 Conclusions on Emitter Orientation 7.2.5 Comparison of the Different Methods—Emitter Aggregation 7.3 Influence of the Matrix Material 7.3.1 Photoluminescence Measurements 7.3.2 Time-Resolved Spectroscopy 7.4 Influence of Processing Parameters 7.4.1 Substrate Heating 7.4.2 Underlying Layer 7.4.3 Evaporation Rate 7.5 Summary and Implications of Aggregation on Efficiency Roll-Off 8 Summary and Outlook 8.1 Summary of Roll-Off Investigations 8.2 Improving the High-Brightness Performance Further 8.3 Concluding Words on Emitter Orientation A Appendix to Theory of Efficiency Roll-Off B Appendix to Emission and Sensing Profiles B.1 Emission Profiles B.2 Emission Profiles Including a Sensing Layer B.3 Sensing Profiles C Appendix to Double- and Mixed Emission Layers C.1 Sample Uniformity C.2 Influence of the Sensor on Current Density C.3 Further D-EML and M-EML structures D Appendix to Molecular Aggregation List of Chemical Compounds List of Abbreviations List of Important Symbols Bibliography Acknowledgement / Die Effizienz organischer Leuchtdioden (OLEDs) nimmt üblicherweise mit ansteigender Stromdichte ab. Dieser so genannte Roll-Off erschwert den Markteintritt von OLEDs in Bereichen, die hohe Helligkeiten erfordern, wie beispielsweise in der Beleuchtung. Einer der wichtigsten Prozesse, die zu Roll-Off führen, ist die Annihilation von Exzitonen. Diese nimmt mit steigender Exzitonendichte zu und ist vor allem in phosphoreszenten OLEDs aufgrund der dort vorhandenen langen Triplettlebensdauer ein großer Verlustfaktor. Im Rahmen dieser Dissertation werden Methoden vorgestellt, die mittels Reduzierung der Exzitonendichte den Roll-Off in phosphoreszenten OLEDs verringern können. Dazu gehören die Veränderung der Exzitonenlebensdauer, die Untersuchung der räumlichen Verteilung der Exzitonen und die Erforschung der Bildung von Emitteraggregaten. Die gewonnenen Ergebnisse führen zu einem besseren Verständnis des Effizienz Roll-Offs und helfen, die Effizienz von OLEDs bei hohen Helligkeiten zu verbessern. Die Emitterlebensdauer kann über den Purcell-Effekt durch Veränderung des die emittierenden Dipole umgebenden elektromagnetischen Felds beeinflusst werden. Dieser Effekt wird genutzt, indem der Abstand zwischen Emitter und Metallelektrode für zwei verschiedene OLED-Aufbauten variiert wird. Der Roll-Off ist stark abhängig von der Position und Orientierung des Emitters und kann durch Modellierung der Daten auf Basis von Triplett-Triplett-Annihilation erklärt werden. Durch Simulation des Roll-Offs in Abhängigkeit des Emitter-Kathode-Abstands, der Orientierung und der strahlenden Effizienz der emittierenden Dipole werden Prinzipien zur optimalen Leistung von OLEDs bei hohen Helligkeiten entwickelt. Als nächstes wird eine Methode eingeführt mittels derer die räumliche Exzitonenverteilung extrahiert werden kann. Dafür wird eine dünne Sensorschicht in die Emissionsschicht eingebracht, die lokal Exzitonen auslöscht. Unter Variation der Position des Sensors wird ein Profil der Auslöschungsintensität bestimmt. Die gemessene Intensität wird mittels einer umfassenden Theorie auf Grundlage der Diffusionsgleichung angepasst, wodurch sich die räumliche Verteilung der Exzitonen und die Diffusionslänge mit einer Auflösung von 1nm ergibt. Die Methode wird auf eine Emissionsschicht angewandt, die das ambipolare Matrixmaterial CBP enthält. Entgegen der Erwartung, dass die Exzitonenbildung in ambipolaren Materialien weiter ausgedehnt ist, ist die gemessene Emissionszone sehr schmal und befindet sich an der Grenze zur Elektronentransportschicht. Um eine Verbreiterung des Emissionsprofils zu ermöglichen, werden weitere Strukturen untersucht. Dabei wird eine schmale Emissionszone in Doppelemissionsschichten beobachtet, wohingegen gemischte Emissionsschichten zu einer Verbreiterung der Exzitonenbildung führen können. Vorangegangene Untersuchungen deckten einen Zusammenhang zwischen der Aggregation von Emittermolekülen und dem Dipolmoment des Emitters auf. In dieser Arbeit werden weitere Emittermoleküle untersucht, wobei eine stärkere Aggregation von homoleptischen Emittern im Vergleich zu heteroleptischen festgestellt wird. Dies ist einerseits im höheren Dipol-Dipol-Potential der homoleptischen Verbindungen und andererseits in der Molekülstruktur begründet. Eine systematische Analyse der Herstellungsparameter zeigt, dass die Aggregatbildung von dem darunter liegenden Material abhängt und mit steigender Substrattemperatur und sinkender Verdampfungsrate zunimmt. Die zwei Grünemitter Ir(ppy)3 und Ir(ppy)2(acac) werden zusätzlich mittels Röntgenspektroskopie untersucht. Beide Emitter bilden kristalline Körner und weisen eine bevorzugte Orientierung auf. Sowohl die Kristallbildung als auch die Orientierung bleiben erhalten, wenn die Emitter mit mehr als 20 Gewichtsprozent in das Matrixmaterial CBP dotiert werden. Dieses Ergebnis ist ein erster Schritt zum besseren Verständnis der in vielen Iridium-Emittern beobachteten Orientierung des Übergangsdipolmoments.:List of Publications 1 Introduction 2 Principles of Organic Semiconductors 2.1 Molecular Orbitals 2.2 Optical Properties 2.3 Intermolecular Energy Transfer 2.4 Charge Transport 2.5 Organic Light-Emitting Diodes 2.5.1 Structure and Working Principle 2.5.2 Characterization 3 Theory of Efficiency Roll-Off 3.1 Current Status 3.2 Processes Leading to Roll-Off 3.2.1 Triplet-Triplet Annihilation 3.2.2 Triplet-Polaron Interaction 3.2.3 Further Processes Influencing Roll-Off 3.3 Interplay of the Various Processes 3.4 Scope of this Work 4 Experimental Methods 4.1 Sample Preparation 4.2 Measurement 4.2.1 Thin-Film Characterization 4.2.2 OLED Characterization 4.3 Materials 4.3.1 Electrodes, Transport Materials, and Blockers 4.3.2 Materials of the Emission Layer 5 Influence of the Optical Environment 5.1 Introduction 5.2 Influence of Emitter-Cathode Distance 5.3 Emitter Lifetime and Orientation 5.4 Correlation of Roll-Off and Orientation 5.5 Simulation of Roll-Off 5.5.1 Influence of the Electroluminescence Spectrum 5.5.2 Influence of Orientation and Radiative Efficiency 5.6 Conclusion 6 Influence of the Emission Profile 6.1 Preliminary Considerations 6.1.1 Exciton Generation and Diffusion 6.1.2 Width of the Emission Zone 6.1.3 Dependence on the Structure of the Emission Layer 6.2 Measurement of the Emission Profile 6.2.1 Method 6.2.2 Mathematical Description 6.2.3 Experimental Realization and Evaluation 6.3 Ambipolar Matrix Materials 6.3.1 Device Performance 6.3.2 Influence of the Sensing Layer 6.3.3 Emission Profile 6.4 Double- and Mixed Emission Layers 6.4.1 Emission Profile 6.4.2 Influence of the Matrix Ratio 6.5 Summary and Outlook 7 Influence of Molecular Aggregation 7.1 Introduction 7.2 Aggregation of Homoleptic and Heteroleptic Emitters 7.2.1 Photoluminescence Measurements 7.2.2 Time-Resolved Spectroscopy 7.2.3 X-Ray Diffraction 7.2.4 Conclusions on Emitter Orientation 7.2.5 Comparison of the Different Methods—Emitter Aggregation 7.3 Influence of the Matrix Material 7.3.1 Photoluminescence Measurements 7.3.2 Time-Resolved Spectroscopy 7.4 Influence of Processing Parameters 7.4.1 Substrate Heating 7.4.2 Underlying Layer 7.4.3 Evaporation Rate 7.5 Summary and Implications of Aggregation on Efficiency Roll-Off 8 Summary and Outlook 8.1 Summary of Roll-Off Investigations 8.2 Improving the High-Brightness Performance Further 8.3 Concluding Words on Emitter Orientation A Appendix to Theory of Efficiency Roll-Off B Appendix to Emission and Sensing Profiles B.1 Emission Profiles B.2 Emission Profiles Including a Sensing Layer B.3 Sensing Profiles C Appendix to Double- and Mixed Emission Layers C.1 Sample Uniformity C.2 Influence of the Sensor on Current Density C.3 Further D-EML and M-EML structures D Appendix to Molecular Aggregation List of Chemical Compounds List of Abbreviations List of Important Symbols Bibliography Acknowledgement
36

Topographie, Struktur und Dynamik thermisch aufgedampfter Polymerfilme / Topography, structure and dynamics of thermally evaporated polymer films

Vree, Christian 06 July 2009 (has links)
No description available.

Page generated in 0.2013 seconds