• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 12
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen PEG-basierter thermo-responsiver Polymeroberflächen zur Steuerung der Zelladhäsion / Analysis of PEG-based thermo-responsive polymer surfaces to control cell adhesion

Uhlig, Katja January 2010 (has links)
Moderne Methoden für die Einzelzellanalyse werden dank der fortschreitenden Weiterentwicklung immer sensitiver. Dabei steigen jedoch auch die Anforderungen an das Probenmaterial. Viele Aufbereitungsprotokolle adhärenter Zellen beinhalten eine enzymatische Spaltung der Oberflächenproteine, um die Ablösung vom Zellkultursubstrat zu ermöglichen. Verschiedene Methoden, wie die Patch-Clamp-Technik oder eine auf der Markierung extrazellulärer Domänen von Membranproteinen basierende Durchflusszytometrie können dann nur noch eingeschränkt eingesetzt werden. Daher ist die Etablierung neuer Zellablösemethoden dringend notwendig. In der vorliegenden Arbeit werden erstmals PEG-basierte thermo-responsive Oberflächen erfolgreich für die Zellkultur eingesetzt. Dabei wird das zerstörungsfreie Ablösen verschiedener Zelllinien von den Oberflächen durch Temperatursenkung realisiert. Die Funktionalität der Oberflächen wird durch Variation der Polymerstruktur, sowie der Konzentration der Beschichtungslösung, durch Beschichtung der Oberflächen mit einem zelladhäsionsfördernden Protein (Fibronektin) und durch Adsorption zelladhäsionsvermittelnder Peptide (RGD) optimiert. Um den Zellablösungsprozess detaillierter zu untersuchen, wird hier zum ersten Mal der direkte Zellkontakt mit thermo-responsiven Oberflächen mittels oberflächensensitiver Mikroskopie (TIRAF) sichtbar gemacht. Mit dieser Technik sind die exakte Quantifizierung und die Analyse der Reduktion der Zelladhäsionsfläche während des Abkühlens möglich. Hierbei werden in Abhängigkeit von der Zelllinie Unterschiede im Zellverhalten während des Ablösens festgestellt: Zellen, wie eine Brustkrebszelllinie und eine Ovarzelllinie, die bekanntermaßen stärker mit ihrer Umgebung in Kontakt treten, vergrößern im Verlauf des Beobachtungszeitraumes den Abstand zwischen Zellmembran und Oberfläche, reduzieren jedoch ihre Zell-Substratkontaktfläche kaum. Mausfibroblasten hingegen verkleinern drastisch die Zelladhäsionsfläche. Der Ablösungsprozess wird vermutlich aktiv von den Zellen gesteuert. Diese Annahme wird durch zwei Beobachtungen gestützt: Erstens verläuft die Reduktion der Zelladhäsionsfläche bei Einschränkung des Zellmetabolismus durch eine Temperatursenkung auf 4 °C verzögert. Zweitens hinterlassen die Zellen Spuren, die nach dem Ablösen der Zellen auf den Oberflächen zurückbleiben. Mittels Kombination von TIRAF- und TIRF-Mikroskopie werden die Zelladhäsionsfläche und die Aktinstruktur gleichzeitig beobachtet. Die Verknüpfung beider Methoden stellt eine neue Möglichkeit dar, intrazelluläre Prozesse mit der Zellablösung von thermo-responsiven Oberflächen zu korrelieren. / Modern methods for single-cell analysis are becoming increasingly sensitive. At the same time, requirements for the sample material are on the rise. Today, sample preparation of adherent cells usually includes steps of enzymatic treatment to digest surface proteins thus, inducing cell detachment from culture substrates. This strongly limits the application of different techniques like patch clamp or labelling of extracellular domains of membrane proteins for flow cytometry. Therefore, a new cell detachment method is urgently required. In the present work, new PEG-based thermo-responsive polymers are used for cell culture for the first time. Here, non-destructive detachment of different cell lines from polymer-coated surfaces is realised by controlled temperature reduction. The surface functionality is systematically optimised by varying the concentration of the coating solutions, by artificial surface coating of a cell adhesion-mediating protein (fibronectin) and by co-adsorption of a cell adhesion-mediating peptide (RGD). For detailed analysis of the cell detachment process, TIRF microscopy is used to directly visualise the cell contacts on the thermo-responsive surfaces. Using this technique allows both the quantification and analysis of the reduction of the cell adhesion area during sample cooling. Furthermore, for several cell lines, different behaviours in cell detachment are observed. Cells that have close contact to their substrate like MCF-7 breast cancer cell line and CHO-K1 ovary cells increase the distance between cell membrane and surface, but there is only little decrease of cell-substrate adhesion area. In contrast, L929 fibroblasts reduce the cell adhesion area drastically. Furthermore, the hypothesis that the cell detachment is an active process is shown by lowering the cell metabolism by temperature reduction to 4 °C and by the cell traces that are left behind after rinsing the surfaces. A combination of TIRAF and TIRF enables visualising the cell adhesion area and actin structures. Measuring both parameters simultaneously opens up new possibilities to correlate intracellular and cell detachment processes on thermo-responsive surfaces.
2

Polymer-Gold Composite Particles: Synthesis, Characterization, Application, and Beyond

January 2015 (has links)
abstract: Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications in multiple areas. A novel Pickering emulsion polymerization route is found for synthesis of core-shell structured polymer-gold composite particles. It is found that the surface coverage of gold nanoparticles (AuNP) on a polystyrene core is influenced by gold nanoparticle concentration and hydrophobicity. More importantly, the absorption wavelength of polystyrene-gold composite particles is tunable by adjusting AuNP interparticle distance. Further, core-shell structured polystyrene-gold composite particles demonstrate excellent catalyst recyclability. Asymmetric polystyrene-gold composite particles are successfully synthesized via seeded emulsion polymerization, where AuNPs serve as seeds, allowing the growth of styrene monomers/oligomers on them. These particles also demonstrate excellent catalyst recyclability. Further, monomers of “smart” polymers, poly (N-isopropylacrylamide) (PNIPAm), are successfully copolymerized into asymmetric composite particles, enabling these particles’ thermo-responsiveness with significant size variation around lower critical solution temperature (LCST) of 31°C. The significant size variation gives rise to switchable scattering intensity property, demonstrating potential applications in intensity-based optical sensing. Multipetal and dumbbell structured gold-polystyrene composite particles are also successfully synthesized via seeded emulsion polymerization. It is intriguing to observe that by controlling reaction time and AuNP size, tetrapetal-structured, tripetal-structured and dumbbell-structured gold-polystyrene are obtained. Further, “smart” PNIPAm polymers are successfully copolymerized into dumbbell-shaped particles, showing significant size variation around LCST. Self-modulated catalytic activity around LCST is achieved for these particles. It is hypothesized that above LCST, the significant shrinkage of particles limits diffusion of reaction molecules to the surface of AuNPs, giving a reduced catalytic activity. Finally, carbon black (CB) particles are successfully employed for synthesis of core- shell PNIPAm/polystyrene-CB particles. The thermo-responsive absorption characteristics of PNIPAm/polystyrene-CB particles enable them potentially suitable to serve as “smart” nanofluids with self-controlled temperature. Compared to AuNPs, CB particles provide desirable performance here, because they show no plasmon resonance in visible wavelength range, whereas AuNPs’ absorption in the visible wavelength range is undesirable. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2015
3

Smart Packaging: A Novel Technique For Localized Drug Delivery For Ovarian Cancer

Williams, Eva Christabel 01 January 2012 (has links)
Localized drug delivery is emerging as an effective technique due to its ability to administer therapeutic concentrations and controlled release of drugs to cancer sites in the body. It also prevents the contact of harsh chemotherapy drugs to healthy regions in the body that otherwise would become exposed to current treatments. This study reports on a model chemotherapy drug delivery system comprising non-ionic surfactant vesicles (niosomes) packaged within a temperature-sensitive chitosan network. This smart packaging, or package-within-a package system, provides two distinct advantages. First, the gel prevents circulation of the niosomes and maintains delivery in the vicinity of a tumor. Secondly, the chitosan network protects the niosomes against fluctuations in tonicity, which affects delivery rates. Tonicity is the sum of the concentrations of the solutes which have the capacity to exert an osmotic force across the membrane. Release rates were monitored from both bare niosomes alone and niosome-embedded, chitosan networks. It was observed that chitosan networks prolonged delivery from 100 hours to 55 days in low ionic strength environment and pH conditions similar to a tumor site. The primary effect of chitosan is to add control on release time and dosage, and stabilize the niosomes through a high ionic strength surrounding that prevents uncontrolled bursting of the niosomes. Secondary factors include cross-link density of the chitosan network, molecular weight of the individual chitosan polymers, dye concentration within the niosomes, and the number density of niosomes packaged within the chitosan network. Each of these factors can be altered to fine-tune release rates. Release rate experiments were conducted with 5,6-carboxyfluorescein, a fluorescent dye and chemotherapeutics paclitaxel and carboplatin. In vitro studies showed a preferential affinity of the smart packaged system to ovarian carcinoma cell line OV2008 as compared to normal epithelial cell lines of Ilow and MCC3. Further, feasibility of the drug delivery system was evaluated in vivo. Toxicity studies revealed that the system was non-toxic and feasible in vivo. The final outcome of this study includes tuning of the variables mentioned above that will contribute to the development of low cost and improved methods for drug delivery with application to intracavitary ovarian cancer treatment and other types of cancer
4

Shape-Programmed Folding of Stimuli-Responsive Polymer Bilayers

Stoychev, Georgi 05 December 2013 (has links) (PDF)
Self-folding polymer films were only recently proposed as an alternative method for the design of three-dimensional constructs. Due to the relative novelty of the approach, insufficient amount of data on the behavior of such systems is available in the literature. This study is bound to fill the gaps and give a deeper insight into the understanding of how and why different types of folding occur. In this study, four different types of folding of polymer bilayers are presented. Rectangles are one of the simplest geometrical forms and were therefore adopted as a convenient initial system for the investigation of the folding behavior of polymer bilayers. We chose PNIPAM for the active polymer, as it is a well-studied polymer with sharp Lower Critical Transition Temperature at around 33 C. For the passive layer, poly(methyl methacrylate) and poly(caprolactone) were chosen. The influence of different parameters of the system, such as polymer thickness and temperature was thoroughly investigated in order to be accounted for in later experiments. It was demonstrated that bilayers placed on a substrate start to roll from the corners due to quicker diffusion of water. Rolling from the long-side starts later but dominates at high aspect ratio. We showed that the main reasons causing a variety of rolling scenarios are (i) non-homogenous swelling due to slow diffusion of water in hydrogels and (ii) adhesion of polymer to a substrate until a certain threshold. Moreover, non-homogenous swelling determines folding in the first moments, while adhesion plays a decisive role at later stages of folding. After having understood the abovementioned basics, we decided to explore how those applied to more complex shapes. For the purpose, four- and six-arm stars were chosen, the main idea behind this being the creation of self-folding polymer capsules capable of encapsulation of microparticles and cells. Adjusting the polymer thickness and thus the radius of folding allowed creating structures, capable of reversible self-folding and unfolding. The possibility to reversibly encapsulate and release objects in the micro-range was demonstrated on the example of yeast cells. Noteworthy, the capsules were produced by means of the same process we used for the design of tubes – when compared to the folding of rectangles, it was the shape of the initial pattern and the folding radius that were changed; the mechanism was the same – simple one-step folding towards the center of the bilayer. Clearly the number of structures that can be generated by this method is fairly limited. The search for means to overcome this constraint led to the idea of hierarchical multi-step folding. Due to the edge-activation of the bilayers, the observed deformed shapes differ from the classical ones obtained by homogeneous activation. It was found that films could demonstrate several kinds of actuation behavior such as wrinkling, bending and folding that result in a variety of shapes. It was demonstrated that one can introduce hinges into the folded structure by proper design of the bilayer's external shape through diffusion without having to use site selective deposition of active polymers. Experimental observations led us to derive four empirical rules: 1) “Bilayer polymer films placed on a substrate start to fold from their periphery and the number of formed wrinkles/tubes decreases until the angle between adjacent wrinkles/tubes approaches 130°”; 2) “After the wrinkles along the perimeter of the film form tubes, further folding proceeds along the lines connecting the vertexes of the folded film”; 3) “The folding goes along the lines which are closer to the periphery of the films”; 4) „Folding of the rays may result in blocking of the neighboring rays if the angle between the base of the folded ray and the shoulders of the neighboring rays is close to 180°”. These rules were then applied to direct the folding of edge-activated polymer bilayers through a concrete example - the design of a 3D pyramid. One consequence of the second and third rules is that generally triangles are formed during the multi-step folding process. In order to create a cube, or any other 3D structure with non-triangular sides, an effective way to stop the folding along the lines, connecting neighboring vertexes had to be thought of. A possible solution would be the insertion of a rigid element inside the bilayer, perpendicular to the direction of folding. The solution of this problem was to design structures with pores. A pore would normally decrease the rigidity of a structure but in our case, a pore basically comprised an edge inside the structure and could thus form tubes which, as was already shown, exhibit much higher rigidity than a film. On the other hand, a pore, or many pores, would expose different parts of the active layer to the solvent and would strongly influence its swelling and, as a consequence, folding behavior. Hence, the influence of a pore on the swelling and the folding behavior of polymer bilayers had to be investigated. It was shown that pores of the right form and dimensions did indeed hinder the folding as intended. Instead, the polymer films took other ways to fold. As a result, despite the correctness of our reasoning, we failed to produce a cube by hierarchical folding of polymer bilayers. However, other sophisticated 3D objects were obtained, further increasing the arsenal of available structures, as well as giving an in-depth insight on the folding process.
5

Synthèse et caractérisation de systèmes micellaires stimuli-sensibles à partir d’huile de lin / Synthesis and characterisation of stimuli-responsives micellar systems from linseed oil

El Asmar, Arlette 03 November 2017 (has links)
L'intérêt des copolymères amphiphiles se retrouve dans de multiples applications telles que le: supports catalytique, la bio-séparation ou encore la vectorisation de principe actif. L'étude de leu auto-association sous forme micellaire est très étendue notamment via l'utilisation de polymère: intelligents. Cette classe de polymères présente un changement de comportement lors d'un modification de son environnement. Ainsi des polymères pH et thermo-sensibles ont été sélectionnés dans le but d'étudier des systèmes micellaires composés d'un cœur hydrophobe issus de l'huile de lin et d'une couronne hydrophile stimuli-sensible. Cependant, pour chaque application visée, la synthèse de macromolécules de composition et/ou d'architecture complexe possédant de nouvelles propriétés est nécessaire. Afin de contourner les limitations de cette approche, uni alternative reposant sur le mélange physique de copolymères a été étudiée dans le but de moduler les propriétés et combiner deux sensibilités. / Amphiphilic copolymers have attracted a large interest as they find numerous applications in catalyst support, bio-separation devices and drug delivery systems. Their auto-association in aqueous media forming micelles are well-studied, particularly by the use of smart polymers which display a significant physicochemical change in response to modification of their environment. In this work, pH and temperature responsive polymers have been studied for the elaboration of micellar systems composed of a hydrophobic core from linseed oil and hydrophilic stimuli-sensitive coronna. However the common approach is to design one specific macromolecule for one given application, with sometimes complex composition and/or architecture. We aim to investigate a straight-forward pathway towards micellar systems with finely tuned sensitivities by the cooperative self-assembly of two different copolymers to manipulate the physico-chemical behavior of the final mixed system.
6

Shape-Programmed Folding of Stimuli-Responsive Polymer Bilayers

Stoychev, Georgi 22 November 2013 (has links)
Self-folding polymer films were only recently proposed as an alternative method for the design of three-dimensional constructs. Due to the relative novelty of the approach, insufficient amount of data on the behavior of such systems is available in the literature. This study is bound to fill the gaps and give a deeper insight into the understanding of how and why different types of folding occur. In this study, four different types of folding of polymer bilayers are presented. Rectangles are one of the simplest geometrical forms and were therefore adopted as a convenient initial system for the investigation of the folding behavior of polymer bilayers. We chose PNIPAM for the active polymer, as it is a well-studied polymer with sharp Lower Critical Transition Temperature at around 33 C. For the passive layer, poly(methyl methacrylate) and poly(caprolactone) were chosen. The influence of different parameters of the system, such as polymer thickness and temperature was thoroughly investigated in order to be accounted for in later experiments. It was demonstrated that bilayers placed on a substrate start to roll from the corners due to quicker diffusion of water. Rolling from the long-side starts later but dominates at high aspect ratio. We showed that the main reasons causing a variety of rolling scenarios are (i) non-homogenous swelling due to slow diffusion of water in hydrogels and (ii) adhesion of polymer to a substrate until a certain threshold. Moreover, non-homogenous swelling determines folding in the first moments, while adhesion plays a decisive role at later stages of folding. After having understood the abovementioned basics, we decided to explore how those applied to more complex shapes. For the purpose, four- and six-arm stars were chosen, the main idea behind this being the creation of self-folding polymer capsules capable of encapsulation of microparticles and cells. Adjusting the polymer thickness and thus the radius of folding allowed creating structures, capable of reversible self-folding and unfolding. The possibility to reversibly encapsulate and release objects in the micro-range was demonstrated on the example of yeast cells. Noteworthy, the capsules were produced by means of the same process we used for the design of tubes – when compared to the folding of rectangles, it was the shape of the initial pattern and the folding radius that were changed; the mechanism was the same – simple one-step folding towards the center of the bilayer. Clearly the number of structures that can be generated by this method is fairly limited. The search for means to overcome this constraint led to the idea of hierarchical multi-step folding. Due to the edge-activation of the bilayers, the observed deformed shapes differ from the classical ones obtained by homogeneous activation. It was found that films could demonstrate several kinds of actuation behavior such as wrinkling, bending and folding that result in a variety of shapes. It was demonstrated that one can introduce hinges into the folded structure by proper design of the bilayer's external shape through diffusion without having to use site selective deposition of active polymers. Experimental observations led us to derive four empirical rules: 1) “Bilayer polymer films placed on a substrate start to fold from their periphery and the number of formed wrinkles/tubes decreases until the angle between adjacent wrinkles/tubes approaches 130°”; 2) “After the wrinkles along the perimeter of the film form tubes, further folding proceeds along the lines connecting the vertexes of the folded film”; 3) “The folding goes along the lines which are closer to the periphery of the films”; 4) „Folding of the rays may result in blocking of the neighboring rays if the angle between the base of the folded ray and the shoulders of the neighboring rays is close to 180°”. These rules were then applied to direct the folding of edge-activated polymer bilayers through a concrete example - the design of a 3D pyramid. One consequence of the second and third rules is that generally triangles are formed during the multi-step folding process. In order to create a cube, or any other 3D structure with non-triangular sides, an effective way to stop the folding along the lines, connecting neighboring vertexes had to be thought of. A possible solution would be the insertion of a rigid element inside the bilayer, perpendicular to the direction of folding. The solution of this problem was to design structures with pores. A pore would normally decrease the rigidity of a structure but in our case, a pore basically comprised an edge inside the structure and could thus form tubes which, as was already shown, exhibit much higher rigidity than a film. On the other hand, a pore, or many pores, would expose different parts of the active layer to the solvent and would strongly influence its swelling and, as a consequence, folding behavior. Hence, the influence of a pore on the swelling and the folding behavior of polymer bilayers had to be investigated. It was shown that pores of the right form and dimensions did indeed hinder the folding as intended. Instead, the polymer films took other ways to fold. As a result, despite the correctness of our reasoning, we failed to produce a cube by hierarchical folding of polymer bilayers. However, other sophisticated 3D objects were obtained, further increasing the arsenal of available structures, as well as giving an in-depth insight on the folding process.
7

Immobilization of Poly(N-Isopropylacrylamide) on Hydroxylated Surfaces Using Cross-linked Organosilane Networks

Alghunaim, Abdullah 06 October 2016 (has links)
No description available.
8

Microgéis termo-responsivos preparados a partir dos polímeros do amido

Leite, Daiani Canabarro January 2017 (has links)
Esta tese apresenta os estudos realizados quanto à síntese e caracterização de microgéis termo-responsivos de N-isopropilacrilamida (NIPAM) e macromoléculas de origem amilácea em sua composição, sistemas ainda pouco explorados na literatura. Inicialmente, nanopartículas de amido (SNP) foram preparadas por nanoprecipitação para incorporação nos microgéis de interesse, através da dissolução dos grânulos do amido em DMSO/H2O, aplicação de ultrassom e precipitação em não-solvente. As SNPs preparadas foram utilizadas como copolímero para formação de microgéis híbridos do tipo SNP-co-p(NIPAM) através de polimerização em emulsão na presença e na ausência de surfactante. A influência das SNPs nas propriedades dos microgéis foi estudada por MEV, DLS, PZ e SAXS, onde foram observadas mudanças no comportamento físico-químico e estrutura supramolecular dos microgéis. No geral, observaram-se deslocamentos da temperatura de transição de fase para valores maiores (até 35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro), aumento da estabilidade coloidal e organização dos polímeros presentes no microgel em uma arquitetura caroço-casca. As propriedades de inchamento dos microgéis também foram estudadas através da teoria de Flory-Rehner, onde a temperatura theta e o grau de polimerização entre dois pontos de reticulação foram determinados através do ajuste apropriado do parâmetro de interação (χ). Paralelamente, visando um sistema diferente do descrito acima, foi estudado um novo agente de reticulação baseado nos polímeros do amido, a amilose e a amilopectina. Para isso, os polímeros do amido que compõem as nanopartículas foram modificados para a utilização como agente de reticulação na síntese de microgéis de p(NIPAM). Nesta etapa, uma reação de substituição dos grupos hidroxila dos polímeros do amido foi realizada com o cloreto de acriloíla de forma a inserir insaturações na estrutura dos polímeros, para que estes fossem aplicados como reticulante. O sucesso da reação de modificação foi verificado através de RMN 1H e FTIR, no qual um maior grau de substituição foi obtido quando um tempo maior de reação foi empregado. Microgéis de p(NIPAM) foram então preparados através de polimerização em emulsão utilizando os reticulantes sintetizados. Observou-se a influência do grau de substituição e da concentração do reticulante nos microgéis, analisados por MEV, DLS e UV-Vis com controle de temperatura. As principais mudanças foram relativas à temperatura de transição de fase e tamanho dos microgéis. Utilizando o agente de reticulação com maior grau de substituição, foi possível deslocar a temperatura de transição de fase dos microgéis preparados para valores maiores (35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro). Observou-se também uma resposta mecânica da rede do microgel, que refletiu no tamanho das partículas, influenciada pela concentração dos agentes de reticulação e do grau de substituição. Quanto maior a concentração e o grau de substituição do agente de reticulação, maior a resistência ao intumescimento observado no microgel. / This thesis presents the studies regarding the synthesis and characterization of thermoresponsive microgels of N-isopropylacrylamide (NIPAM) and amylaceous-based macromolecules, which are systems still little explored in the literature. At first, starch nanoparticles (SNP) were prepared by nanoprecipitation, through dissolution of starch granules in DMSO/H2O, ultrasound application and non-solvent precipitation. SNPs were then used as copolymer in SNP-co-p(NIPAM) hybrid microgels synthesized by emulsion polymerization in the presence and absence of surfactant. The influence of SNPs in microgel properties were studied by SEM, DLS, ZP, and SAXS, where changes in the physicalchemical behavior and supramolecular structure were observed. Summing up, shifts in the phase transition temperature up to 35 °C, increased colloidal stability, and microgel polymers organization into a core-shell structure were observed. Microgels swelling behaviour were also studied by the Flory-Rehner theory, where the theta-temperature and the degree of polymerization between two crosslinker points were determined through interaction parameter (χ) fitting. In parallel, a new starch-based crosslinker was studied. For this purpose, starch polymers (amylose and amylopectin within the SNPs) were modified in order to use them as crosslinker in p(NIPAM) microgel synthesis. In this step, a substitution reaction in hydroxyl groups of SNP was carried out with acryloyl chloride, where double bonds were attached in polymers structure, making it suitable as a crosslinker. Reaction performances were evaluated through 1H NMR and FTIR. Then, p(NIPAM) microgels were prepared by emulsion polymerization using the crosslinker synthesized. The degree of substitution and the crosslinker concentration influence were verified and analyzed by SEM, DLS and UV-Vis with temperature control. The main observed changes were related to the phase transition temperature e microgels size. Using the crosslinker with higher substitution degree, it was possible the shift of the phase transition temperature to higher values (~35 °C). A mechanical response, observed trough microgels size, was found, driven by the crosslinker concentration and substitution degree. As higher the concentration and substitution degree of the crosslinker, higher was the swelling resistance observed in microgel structure.
9

Microgéis termo-responsivos preparados a partir dos polímeros do amido

Leite, Daiani Canabarro January 2017 (has links)
Esta tese apresenta os estudos realizados quanto à síntese e caracterização de microgéis termo-responsivos de N-isopropilacrilamida (NIPAM) e macromoléculas de origem amilácea em sua composição, sistemas ainda pouco explorados na literatura. Inicialmente, nanopartículas de amido (SNP) foram preparadas por nanoprecipitação para incorporação nos microgéis de interesse, através da dissolução dos grânulos do amido em DMSO/H2O, aplicação de ultrassom e precipitação em não-solvente. As SNPs preparadas foram utilizadas como copolímero para formação de microgéis híbridos do tipo SNP-co-p(NIPAM) através de polimerização em emulsão na presença e na ausência de surfactante. A influência das SNPs nas propriedades dos microgéis foi estudada por MEV, DLS, PZ e SAXS, onde foram observadas mudanças no comportamento físico-químico e estrutura supramolecular dos microgéis. No geral, observaram-se deslocamentos da temperatura de transição de fase para valores maiores (até 35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro), aumento da estabilidade coloidal e organização dos polímeros presentes no microgel em uma arquitetura caroço-casca. As propriedades de inchamento dos microgéis também foram estudadas através da teoria de Flory-Rehner, onde a temperatura theta e o grau de polimerização entre dois pontos de reticulação foram determinados através do ajuste apropriado do parâmetro de interação (χ). Paralelamente, visando um sistema diferente do descrito acima, foi estudado um novo agente de reticulação baseado nos polímeros do amido, a amilose e a amilopectina. Para isso, os polímeros do amido que compõem as nanopartículas foram modificados para a utilização como agente de reticulação na síntese de microgéis de p(NIPAM). Nesta etapa, uma reação de substituição dos grupos hidroxila dos polímeros do amido foi realizada com o cloreto de acriloíla de forma a inserir insaturações na estrutura dos polímeros, para que estes fossem aplicados como reticulante. O sucesso da reação de modificação foi verificado através de RMN 1H e FTIR, no qual um maior grau de substituição foi obtido quando um tempo maior de reação foi empregado. Microgéis de p(NIPAM) foram então preparados através de polimerização em emulsão utilizando os reticulantes sintetizados. Observou-se a influência do grau de substituição e da concentração do reticulante nos microgéis, analisados por MEV, DLS e UV-Vis com controle de temperatura. As principais mudanças foram relativas à temperatura de transição de fase e tamanho dos microgéis. Utilizando o agente de reticulação com maior grau de substituição, foi possível deslocar a temperatura de transição de fase dos microgéis preparados para valores maiores (35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro). Observou-se também uma resposta mecânica da rede do microgel, que refletiu no tamanho das partículas, influenciada pela concentração dos agentes de reticulação e do grau de substituição. Quanto maior a concentração e o grau de substituição do agente de reticulação, maior a resistência ao intumescimento observado no microgel. / This thesis presents the studies regarding the synthesis and characterization of thermoresponsive microgels of N-isopropylacrylamide (NIPAM) and amylaceous-based macromolecules, which are systems still little explored in the literature. At first, starch nanoparticles (SNP) were prepared by nanoprecipitation, through dissolution of starch granules in DMSO/H2O, ultrasound application and non-solvent precipitation. SNPs were then used as copolymer in SNP-co-p(NIPAM) hybrid microgels synthesized by emulsion polymerization in the presence and absence of surfactant. The influence of SNPs in microgel properties were studied by SEM, DLS, ZP, and SAXS, where changes in the physicalchemical behavior and supramolecular structure were observed. Summing up, shifts in the phase transition temperature up to 35 °C, increased colloidal stability, and microgel polymers organization into a core-shell structure were observed. Microgels swelling behaviour were also studied by the Flory-Rehner theory, where the theta-temperature and the degree of polymerization between two crosslinker points were determined through interaction parameter (χ) fitting. In parallel, a new starch-based crosslinker was studied. For this purpose, starch polymers (amylose and amylopectin within the SNPs) were modified in order to use them as crosslinker in p(NIPAM) microgel synthesis. In this step, a substitution reaction in hydroxyl groups of SNP was carried out with acryloyl chloride, where double bonds were attached in polymers structure, making it suitable as a crosslinker. Reaction performances were evaluated through 1H NMR and FTIR. Then, p(NIPAM) microgels were prepared by emulsion polymerization using the crosslinker synthesized. The degree of substitution and the crosslinker concentration influence were verified and analyzed by SEM, DLS and UV-Vis with temperature control. The main observed changes were related to the phase transition temperature e microgels size. Using the crosslinker with higher substitution degree, it was possible the shift of the phase transition temperature to higher values (~35 °C). A mechanical response, observed trough microgels size, was found, driven by the crosslinker concentration and substitution degree. As higher the concentration and substitution degree of the crosslinker, higher was the swelling resistance observed in microgel structure.
10

Microgéis termo-responsivos preparados a partir dos polímeros do amido

Leite, Daiani Canabarro January 2017 (has links)
Esta tese apresenta os estudos realizados quanto à síntese e caracterização de microgéis termo-responsivos de N-isopropilacrilamida (NIPAM) e macromoléculas de origem amilácea em sua composição, sistemas ainda pouco explorados na literatura. Inicialmente, nanopartículas de amido (SNP) foram preparadas por nanoprecipitação para incorporação nos microgéis de interesse, através da dissolução dos grânulos do amido em DMSO/H2O, aplicação de ultrassom e precipitação em não-solvente. As SNPs preparadas foram utilizadas como copolímero para formação de microgéis híbridos do tipo SNP-co-p(NIPAM) através de polimerização em emulsão na presença e na ausência de surfactante. A influência das SNPs nas propriedades dos microgéis foi estudada por MEV, DLS, PZ e SAXS, onde foram observadas mudanças no comportamento físico-químico e estrutura supramolecular dos microgéis. No geral, observaram-se deslocamentos da temperatura de transição de fase para valores maiores (até 35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro), aumento da estabilidade coloidal e organização dos polímeros presentes no microgel em uma arquitetura caroço-casca. As propriedades de inchamento dos microgéis também foram estudadas através da teoria de Flory-Rehner, onde a temperatura theta e o grau de polimerização entre dois pontos de reticulação foram determinados através do ajuste apropriado do parâmetro de interação (χ). Paralelamente, visando um sistema diferente do descrito acima, foi estudado um novo agente de reticulação baseado nos polímeros do amido, a amilose e a amilopectina. Para isso, os polímeros do amido que compõem as nanopartículas foram modificados para a utilização como agente de reticulação na síntese de microgéis de p(NIPAM). Nesta etapa, uma reação de substituição dos grupos hidroxila dos polímeros do amido foi realizada com o cloreto de acriloíla de forma a inserir insaturações na estrutura dos polímeros, para que estes fossem aplicados como reticulante. O sucesso da reação de modificação foi verificado através de RMN 1H e FTIR, no qual um maior grau de substituição foi obtido quando um tempo maior de reação foi empregado. Microgéis de p(NIPAM) foram então preparados através de polimerização em emulsão utilizando os reticulantes sintetizados. Observou-se a influência do grau de substituição e da concentração do reticulante nos microgéis, analisados por MEV, DLS e UV-Vis com controle de temperatura. As principais mudanças foram relativas à temperatura de transição de fase e tamanho dos microgéis. Utilizando o agente de reticulação com maior grau de substituição, foi possível deslocar a temperatura de transição de fase dos microgéis preparados para valores maiores (35 °C, cerca de 3 °C acima do valor determinado para sistemas contendo p(NIPAM) puro). Observou-se também uma resposta mecânica da rede do microgel, que refletiu no tamanho das partículas, influenciada pela concentração dos agentes de reticulação e do grau de substituição. Quanto maior a concentração e o grau de substituição do agente de reticulação, maior a resistência ao intumescimento observado no microgel. / This thesis presents the studies regarding the synthesis and characterization of thermoresponsive microgels of N-isopropylacrylamide (NIPAM) and amylaceous-based macromolecules, which are systems still little explored in the literature. At first, starch nanoparticles (SNP) were prepared by nanoprecipitation, through dissolution of starch granules in DMSO/H2O, ultrasound application and non-solvent precipitation. SNPs were then used as copolymer in SNP-co-p(NIPAM) hybrid microgels synthesized by emulsion polymerization in the presence and absence of surfactant. The influence of SNPs in microgel properties were studied by SEM, DLS, ZP, and SAXS, where changes in the physicalchemical behavior and supramolecular structure were observed. Summing up, shifts in the phase transition temperature up to 35 °C, increased colloidal stability, and microgel polymers organization into a core-shell structure were observed. Microgels swelling behaviour were also studied by the Flory-Rehner theory, where the theta-temperature and the degree of polymerization between two crosslinker points were determined through interaction parameter (χ) fitting. In parallel, a new starch-based crosslinker was studied. For this purpose, starch polymers (amylose and amylopectin within the SNPs) were modified in order to use them as crosslinker in p(NIPAM) microgel synthesis. In this step, a substitution reaction in hydroxyl groups of SNP was carried out with acryloyl chloride, where double bonds were attached in polymers structure, making it suitable as a crosslinker. Reaction performances were evaluated through 1H NMR and FTIR. Then, p(NIPAM) microgels were prepared by emulsion polymerization using the crosslinker synthesized. The degree of substitution and the crosslinker concentration influence were verified and analyzed by SEM, DLS and UV-Vis with temperature control. The main observed changes were related to the phase transition temperature e microgels size. Using the crosslinker with higher substitution degree, it was possible the shift of the phase transition temperature to higher values (~35 °C). A mechanical response, observed trough microgels size, was found, driven by the crosslinker concentration and substitution degree. As higher the concentration and substitution degree of the crosslinker, higher was the swelling resistance observed in microgel structure.

Page generated in 0.0759 seconds