• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amplitude equations and nonlinear dynamics of surface-tension and buoyancy-driven convective instabilities

Colinet, Pierre 17 October 1997 (has links)
<p align="justify">This work is a theoretical contribution to the study of thermo-hydrodynamic instabilities in fluids submitted to surface-tension (Marangoni) and buoyancy (Rayleigh) effects in layered (Benard) configurations. The driving constraint consists in a thermal (or a concentrational) gradient orthogonal to the plane of the layer(s).</p> <p align="justify">Linear, weakly nonlinear as well as strongly nonlinear analyses are carried out, with emphasis on high Prandtl (or Schmidt) number fluids, although some results are also given for low-Prandtl number liquid metals. Attention is mostly devoted to the mechanisms responsible for the onset of complex spatio-temporal behaviours in these systems, as well as to the theoretical explanation of some existing experimental results. </p> <p align="justify">As far as linear stability analyses (of the diffusive reference state) are concerned, a number of different effects are studied, such as Benard convection in two layers coupled at an interface (for which a general classification of instability modes is proposed), surface deformation effects and phase-change effects (non-equilibrium evaporation). Moreover, a number of different monotonous and oscillatory instability modes (leading respectively to patterns and waves in the nonlinear regime) are identified. In the case of oscillatory modes in a liquid layer with deformable interface heated from above, our analysis generalises and clarifies earlier works on the subject. A new Rayleigh-Marangoni oscillatory mode is also described for a liquid layer with an undeformable interface heated from above (coupling between internal and surface waves).</p> <p align="justify">Weakly nonlinear analyses are then presented, first for monotonous modes in a 3D system. Emphasis is placed on the derivation of amplitude (Ginzburg-Landau) equations, with universal structure determined by the general symmetry properties of the physical system considered. These equations are thus valid outside the context of hydrodynamic instabilities, although they generally depend on a certain number of numerical coefficients which are calculated for the specific convective systems studied. The nonlinear competitions of patterns such as convective rolls, hexagons and squares is studied, showing the preference for hexagons with upflow at the centre in the surface-tension-driven case (and moderate Prandtl number), and of rolls in the buoyancy-induced case.</p> <p align="justify">A transition to square patterns recently observed in experiments is also explained by amplitude equation analysis. The role of several fluid properties and of heat transfer conditions at the free interface is examined, for one-layer and two-layer systems. We also analyse modulation effects (spatial variation of the envelope of the patterns) in hexagonal patterns, leading to the description of secondary instabilities of supercritical hexagons (Busse balloon) in terms of phase diffusion equations, and of pentagon-heptagon defects in the hexagonal structures. In the frame of a general non-variational system of amplitude equations, we show that the pentagon-heptagon defects are generally not motionless, and may even lead to complex spatio-temporal dynamics (via a process of multiplication of defects in hexagonal structures).</p> <p align="justify">The onset of waves is also studied in weakly nonlinear 2D situations. The competition between travelling and standing waves is first analysed in a two-layer Rayleigh-Benard system (competition between thermal and mechanical coupling of the layers), in the vicinity of special values of the parameters for which a multiple (Takens-Bogdanov) bifurcation occurs. The behaviours in the vicinity of this point are numerically explored. Then, the interaction between waves and steady patterns with different wavenumbers is analysed. Spatially quasiperiodic (mixed) states are found to be stable in some range when the interaction between waves and patterns is non-resonant, while several transitions to chaotic dynamics (among which an infinite sequence of homoclinic bifurcations) occur when it is resonant. Some of these results have quite general validity, because they are shown to be entirely determined by quadratic interactions in amplitude equations.</p> <p align="justify">Finally, models of strongly nonlinear surface-tension-driven convection are derived and analysed, which are thought to be representative of the transitions to thermal turbulence occurring at very high driving gradient. The role of the fastest growing modes (intrinsic length scale) is discussed, as well as scalings of steady regimes and their secondary instabilities (due to instability of the thermal boundary layer), leading to chaotic spatio-temporal dynamics whose preliminary analysis (energy spectrum) reveals features characteristic of hydrodynamic turbulence. Some of the (2D and 3D) results presented are in qualitative agreement with experiments (interfacial turbulence).</p>
2

Contribution à la caractérisation thermophysique de matériaux bio-isolants : valorisation des déchets de bois de palmier / Thermo-physical caracterisation of bio-insulated materials : application to wood palm

Tlijani, Mohamed 06 December 2016 (has links)
Ce travail s’inscrit dans un contexte favorable au développement de nouveaux bétons dans le domaine du génie civil. Il consiste en la mise au point et la caractérisation d un béton renforcé de fibres obtenues à partir des déchets de bois de palmiers dattiers. Une première partie est consacrée à l’étude expérimentale des propriétés thermophysiques des fibres naturelles du palmier dattier. On montre que les facteurs essentiels affectant la conductivité thermique sont la variété du palmier dattier et l’orientation des fibres et que le bois de pétiole de palme est la partie la plus intéressante en tant qu’isolant thermique. les fibres végétales du bois de pétiole constituent, donc une alternative intéressante aux fibres inorganiques et synthétiques .Afin de remédier aux problèmes de stabilité dimensionnelle et de dégradation, on optimise la concentration du prétraitement alcalin nécessaire pour nettoyer et modifier la surface des fibres. Les effets du traitement sont étudiés au moyen d’un microscope électronique à balayage. Les conséquences sur les propriétés mécaniques du traitement alcalin sont également mises en évidence. L’analyse des résultats conduit à choisir une concentration optimale de 0,75 % pour l’hydroxyde de sodium.On s’intéresse ensuite au comportement du matériau composite obtenu à partir de chaux et de fibres de bois de palmier. On propose une démarche expérimentale et théorique originale sur la conductivité thermique, basée sur l’homogénéisation, de différentes formulations du béton de bois de pétiole de palmier ainsi que sur l’influence de la porosité. Finalement ce béton présente d’excellentes performances de point de vue isolation thermique.Finalement, on a procédé à une simulation numérique des phénomènes de transfert de chaleur au sein du béton de pétiole afin de valider le modèle de prédiction théorique choisi. nous avons, en effet refléchi à un modèle numérique inspiré de la modélisation théorique auto-cohérente (HAC) pour prédire la conductivité thermique numérique, basé sur des sphères concentriques d’air et de bois de pétiole occupant le centre de la matrice chaux, afin de balayer numériquement toutes les possibilites de dispositions de charges dans le composite. La dernière partie propose une validation des résultats expérimentaux obtenus à partir du développement d’un modèle tridimensionnel / The growing interest in new concrete and their use in many fields of civil engineering was that we wanted to bring a new approach to the design of a new product consisting of a reinforced concrete with basel end frond palm fibers. This led us to conduct the experimental study of thermal properties of natural fibers of date palm (Phoenix dactylifera L.). The analysis of experimental results showed that the essential factors affecting the thermal conductivity are the variety of date palm and the fiber orientation and that the basel end of the frond palm is the most interesting part as thermal insulation. However, the main problem encountered when using plant fibers as reinforcement is cohesion, bonding with the matrix and dimensional instability so the composite loses its mechanical properties. In this context, an alkaline pretreatment of palm fibers was envisaged to clean and modify the fiber surface to address the problems of dimensional stability of the fibers and degradation before their use as reinforcement in the cement matrix. We also studied the influence of chemical treatment with sodium hydroxide on the mechanical properties of processed samples, they were subjected to the tensile test to estimate the fracture strength for each treatment concentration, the Young's modulus and elongation at break corresponding. Subsequently, we conducted experimental and theoretical research on the thermal conductivity of different formulations of basel end palm wood concrete composite. The study of the theoretical apparent thermal conductivity was based on an approach that relies on a process whereas the material consists of a solid matrix combined with a fluid phase (air). Finally, we performed a numerical simulation of heat transfer phenomena to assess the thermal conductivity of basel end frond palm concrete composite and validate subsequently the theoretical prediction model selected. The results showed that the numerical approach based on the isotropic orientation of the particles in the composite coincides and approaches the physical reality
3

Propriétés magnétiques et photomagnétiques d'un complexe macrocyclique à transition de spin

Sanchez Costa, José 24 June 2005 (has links) (PDF)
Le phenomène de transition de spin correspond au changement d'état de spin d'un ion de transition sous l'action d'une perturbation extérieur (T, P, B, hv). Cette commutation ouvre de réelles perspectives dans le domaine de l'affichage et du stockage d'information. Ce travail présente, tout d'abord, l'étude d'un complexe macrocyclique heptacoordiné à transition de spin, noté {Fe(L222(N3O2)(CN)2}.H2O avec une sphère de coordination FeN3O2C2. L'examen attentif des propriétés magnétiques et structurales a permis de proposer un diagramme de phase ewpliquant la nature multi-métastable de ce système. Nous analysons et discutons l'influence de la température, des aspects cinétiques et de la photo-excitation sur les phases mises en jeu. Nous avons ensuite synthétisé divers analogues en tentant d'influer sur la géométrie du macrocycle (forme ouverte, accroissement de la rigidité), sur la nature de la sphère de coordiantion (substitution des atomes d'oxygène par des atomes de soufre et azote). Deux résultats majeurs ont été obtenus : une température limite record d'effet de trempe T(TIESST) de 171 K et une stabilité d'un étét photo-induit avec un T(LIESST) de 110 K pour un composé totalement bas spin jusqu'à 440 K.
4

Absolute Instabilities in Heated Jets

Demange, Simon 30 June 2021 (has links) (PDF)
When entering a planet’s atmosphere, spacecraft induce a strong compression shock and must be protected from the resulting extreme heat flux by a thermal protection system made of either reusable or ablative materials. To characterise these materials, the harsh flow conditions of atmospheric entry are reproduced in plasma wind tunnels, where a jet of gas heated up to ionisation is directed at material samples for prolonged testing. Unfortunately, heated jets exhibit complex dynamic behaviours, resulting in oscillations that increase the uncertainties in the experiments.At sufficient Reynolds numbers, the dynamic behaviour of heated jets shifts from an amplifier to a self-sustained oscillator type via a Hopf bifurcation, if the centreline-to-ambient density ratio falls below a given threshold. This change is known in the literature to be related to the onset of absolute instabilities in the flow. However, this type of instability is usually studied for a simplified description of the gas, which is not suitable for the case of a plasma wind tunnel.This doctoral work investigates the nature of the instabilities responsible for the oscillations observed in a plasma jet, similar to the one in the VKI Plasmatron facility. The analysis is carried out by comparing results from different numerical methods, including linear stability analyses (both local and global) and direct numerical simulations. The thesis first describes the effect of high-temperature gas models on the stability of synthetic jets found in the literature, before analysing the case of Plasmatron.The analysis of synthetic jets with real-gas effects shows that the onset of the first dissociation reactions in the flow has a strong influence on the prevailing type of instability. Furthermore, if a sufficiently long region of absolute instability is present in the jet, the flow bifurcates to a periodic limit cycle, and steady state solutions become inadequate to describe the flow and its dynamic behaviour. In this case, a stability analysis of the time-averaged state can accurately reproduce the results of direct numerical simulations. In the case of Plasmatron, a large region of absolute instability is revealed in the plasma jet, suggesting that the observed oscillations are caused (in part) by a global non-linear mode and that the flow has entered a limit cycle. Trends of the absolute instability frequency with respect to the driving parameters of Plasmatron are in agreement with experimental observations.The present work confirms that global stability features of heated jet flows are very sensitive to subtle changes of the undisturbed or time-averaged state, which results from technological constraints in the case of Plasmatron. Furthermore, this thesis has shown the relevance of including high-temperature gas effects in the stability analysis of high-enthalpy jets. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
5

Caractérisation thermophysique multiéchelles par radiométrie photothermique basses et hautes fréquences / Multiscale thermophysical characterization using broad frequency range photothermal radiometry

Hamaoui, Georges 18 October 2018 (has links)
Les problèmes liés au réchauffement climatique, conséquences de la production d'énergie et de la pollution, rendent ce thème de recherche un des plus importants du moment. La course pour trouver de nouveaux matériaux pour mettre au point des applications innovantes est à son apogée, et de grands progrès voient le jour dans chaque domaine de recherche. Par exemple, les chercheurs en physique se concentrent sur la fabrication de matériaux ou de couples de matériaux avec des propriétés électriques/thermiques supérieures pour améliorer les systèmes électroniques aux échelles nano- et micro- métriques. Certains de ces éléments sont formés de couches simples, de multicouches ou de membranes. Ainsi, des techniques expérimentales appropriées sont essentielles pour mesurer les propriétés thermophysiques de ces nouveaux composants. Dans cette thèse, la caractérisation thermique de diverses sortes de matériaux est réalisée en utilisant une technique de radiométrie photothermique (PTR). PTR est une méthode sans contact dans laquelle la réponse thermique de matériaux induite par rayonnement est mesurée. Deux types de configurations ont été utilisées, la première avec une modulation dans le domaine fréquentiel jusqu'à 10 MHz et l’autre avec une modulation hybride fréquence/spatial jusqu'à 2 MHz avec ~ 30 µm de résolution. Avec ces méthodes, il est possible d'extraire indépendamment des paramètres thermophysiques comme la diffusivité thermique, l’effusivité thermique ou la résistance de Kapitza. Ces deux configurations sont utilisées pour caractériser thermiquement des combinaisons particulières de matériaux comme des nanocomposites, des couches minces organiques, des matériaux irradiés, des matériaux à changement de phase ou les résistances thermiques à l’interfaces métal/semiconducteur. Les résultats obtenus donnent de nouvelles pistes de recherche sur le transport thermique et la gestion de la chaleur à l’échelle nanométrique. / The recognition of problems connected to the global warming linked to energy production and pollution, makes it the most important research topic of the moment. The race of finding new materials for improved applications is at its peak, while big advancements in technologies within each field of research have seen the light. For example, researchers in physics are focusing on making superior materials or couple of materials with enhanced thermo-/electric- physical properties for nano- and micro- electronic devices. The constituents in question, embody simple or complicated multiscale layers or membranes. Thus, proper experimental techniques are essential to measure the thermophysical properties of these new components. In this thesis, thermal characterization of diverse kinds of materials is made using a photothermal radiometry (PTR) technique. PTR is a contactless method which measures the thermal response of materials induced by optical heating. Two types of PTR setups were utilized, one using frequency domain modulation up to 10 MHz and one based upon hybrid frequency/spatial domain modulation up to 2 MHz with ~30 µm resolution. With these methods, it is possible to extract independent thermophysical parameters like the thermal diffusivity, thermal effusivity or Kapitza resistance. These two setups are used jointly to thermally characterize peculiar combinations of materials like: nanocomposite, organic, irradiated, phase changing and silicide materials. The results grasp new insights on the thermal transport and heat management across these set of materials and encourages novel ways to apply them in diverse applications throughout many research fields.
6

Analysis of the stability of a flat-plate high-speed boundary layer with discrete roughness

Padilla Montero, Ivan 31 May 2021 (has links) (PDF)
Boundary-layer transition from a laminar to a turbulent regime is a critical driver in the design of high-speed vehicles. The aerothermodynamic loads associated with transitional or fully turbulent hypersonic boundary layers are several times higher than those associated with laminar flow. The presence of isolated roughness elements on the surface of a body can accelerate the growth of incoming disturbances and introduce additional instability mechanisms in the flow field, eventually leading to a premature occurrence of transition. This dissertation studies the instabilities induced by three-dimensional discrete roughness elements located inside a high-speed boundary layer developing on a flat plate. Two-dimensional local linear stability theory (2D-LST) is employed to identify the instabilities evolving in the three-dimensional flow field that characterizes the wake induced by the roughness elements and to investigate their evolution downstream. A formulation of the disturbance energy evolution equation available for base flows depending on a single spatial direction is generalized for the first time to base flows featuring two inhomogeneous directions and perturbations depending on three spatial directions. This generalization allows to obtain a decomposition of the temporal growth rate of 2D-LST instabilities into the different contributions that lead to the production and dissipation of the total disturbance energy. This novel extension of the formulation provides an additional layer of information for understanding the energy exchange mechanisms between a three-dimensional base flow and the perturbations resulting from 2D-LST. Stability computations for a calorically perfect gas illustrate that the wake induced by the roughness elements supports the growth of different sinuous and varicose instabilities which coexist together with the Mack-mode perturbations that evolve in the flat-plate boundary layer, and which become modulated by the roughness-element wake. A single pair of sinuous and varicose disturbances is found to dominate the wake instability in the vicinity of the obstacles. The application of the newly developed decomposition of the temporal growth rate reveals that the roughness-induced wake modes extract most of their potential energy from the transport of entropy fluctuations across the base-flow temperature gradients and most of their kinetic energy from the work of the disturbance Reynolds stresses against the base-flow velocity gradients. Further downstream, the growth rate of the wake instabilities is found to be influenced by the presence of Mack-mode disturbances developing on the flat plate. Strong evidence is observed of a continuous synchronization mechanism between the wake instabilities and the Mack-mode perturbations. This phenomenon leads to an enhancement of the amplification rate of the wake modes far downstream of the roughness element, ultimately increasing the associated integrated amplification factors for some of the investigated conditions. The effects of vibrational molecular excitation and chemical non-equilibrium on the instabilities induced by a roughness element are studied for the case of a high-temperature boundary layer developing on a sharp wedge configuration. For this purpose, a 2D-LST solver for chemical non-equilibrium flows is developed for the first time, featuring a fully consistent implementation of the thermal and transport models employed for the base flow and the perturbation fields. This is achieved thanks to the automatic derivation and implementation tool (ADIT) available within the von Karman Institute extensible stability and transition analysis (VESTA) tool-kit, which enables an automatic derivation and implementation of the 2D-LST governing equations for different thermodynamic flow assumptions and models. The stability computations for this configuration show that sinuous and varicose disturbances also dominate the wake instability in the presence of vibrational molecular energy mode excitation and chemical reactions. The resulting base-flow cooling associated with the modeling of such high-temperature phenomena is found to have opposite stabilizing and destabilizing effects on the streamwise evolution of the sinuous and varicose instabilities. The modeling of vibrational excitation and chemical non-equilibrium acting exclusively on the perturbations is found to have a stabilizing influence in all cases. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
7

Amplitude equations and nonlinear dynamics of surface-tension and buoyancy-driven convective instabilities

Colinet, Pierre 17 October 1997 (has links)
<p align="justify">This work is a theoretical contribution to the study of thermo-hydrodynamic instabilities in fluids submitted to surface-tension (Marangoni) and buoyancy (Rayleigh) effects in layered (Benard) configurations. The driving constraint consists in a thermal (or a concentrational) gradient orthogonal to the plane of the layer(s).</p><p><p align="justify">Linear, weakly nonlinear as well as strongly nonlinear analyses are carried out, with emphasis on high Prandtl (or Schmidt) number fluids, although some results are also given for low-Prandtl number liquid metals. Attention is mostly devoted to the mechanisms responsible for the onset of complex spatio-temporal behaviours in these systems, as well as to the theoretical explanation of some existing experimental results. </p><p><p align="justify">As far as linear stability analyses (of the diffusive reference state) are concerned, a number of different effects are studied, such as Benard convection in two layers coupled at an interface (for which a general classification of instability modes is proposed), surface deformation effects and phase-change effects (non-equilibrium evaporation). Moreover, a number of different monotonous and oscillatory instability modes (leading respectively to patterns and waves in the nonlinear regime) are identified. In the case of oscillatory modes in a liquid layer with deformable interface heated from above, our analysis generalises and clarifies earlier works on the subject. A new Rayleigh-Marangoni oscillatory mode is also described for a liquid layer with an undeformable interface heated from above (coupling between internal and surface waves).</p><p><p align="justify">Weakly nonlinear analyses are then presented, first for monotonous modes in a 3D system. Emphasis is placed on the derivation of amplitude (Ginzburg-Landau) equations, with universal structure determined by the general symmetry properties of the physical system considered. These equations are thus valid outside the context of hydrodynamic instabilities, although they generally depend on a certain number of numerical coefficients which are calculated for the specific convective systems studied. The nonlinear competitions of patterns such as convective rolls, hexagons and squares is studied, showing the preference for hexagons with upflow at the centre in the surface-tension-driven case (and moderate Prandtl number), and of rolls in the buoyancy-induced case.</p><p><p align="justify">A transition to square patterns recently observed in experiments is also explained by amplitude equation analysis. The role of several fluid properties and of heat transfer conditions at the free interface is examined, for one-layer and two-layer systems. We also analyse modulation effects (spatial variation of the envelope of the patterns) in hexagonal patterns, leading to the description of secondary instabilities of supercritical hexagons (Busse balloon) in terms of phase diffusion equations, and of pentagon-heptagon defects in the hexagonal structures. In the frame of a general non-variational system of amplitude equations, we show that the pentagon-heptagon defects are generally not motionless, and may even lead to complex spatio-temporal dynamics (via a process of multiplication of defects in hexagonal structures).</p> <p><p align="justify">The onset of waves is also studied in weakly nonlinear 2D situations. The competition between travelling and standing waves is first analysed in a two-layer Rayleigh-Benard system (competition between thermal and mechanical coupling of the layers), in the vicinity of special values of the parameters for which a multiple (Takens-Bogdanov) bifurcation occurs. The behaviours in the vicinity of this point are numerically explored. Then, the interaction between waves and steady patterns with different wavenumbers is analysed. Spatially quasiperiodic (mixed) states are found to be stable in some range when the interaction between waves and patterns is non-resonant, while several transitions to chaotic dynamics (among which an infinite sequence of homoclinic bifurcations) occur when it is resonant. Some of these results have quite general validity, because they are shown to be entirely determined by quadratic interactions in amplitude equations.</p><p><p align="justify">Finally, models of strongly nonlinear surface-tension-driven convection are derived and analysed, which are thought to be representative of the transitions to thermal turbulence occurring at very high driving gradient. The role of the fastest growing modes (intrinsic length scale) is discussed, as well as scalings of steady regimes and their secondary instabilities (due to instability of the thermal boundary layer), leading to chaotic spatio-temporal dynamics whose preliminary analysis (energy spectrum) reveals features characteristic of hydrodynamic turbulence. Some of the (2D and 3D) results presented are in qualitative agreement with experiments (interfacial turbulence).</p><p><p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0747 seconds