• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 15
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 38
  • 25
  • 13
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulace lomové zkoušky ve stavebnictví / Simulation of Fracture Tests in Civil Engineering

Bordovský, Gabriel January 2017 (has links)
In this thesis, a program for fracture test in civil engineering has been optimized. The simulation is used for a validation of the fracture characteristics for blocks of construct material used for historic buildings reconstructure. This thesis illustrates the possibilities of an effective usage of the processor’s potential without the loss of the output quality. The individual parts of the simulation are analyzed and this thesis proposes for the critical sections some possible optimizations such as vectorization or parallel processing. The techniques used in this thesis may be used on similar computing problems and help shorten the required runtime. The prototype of the simulation was able to process the simulation in 7.7 hours. Optimized version is capable to process the same simulation in 2.1 hours on one core or 21 minutes on eight cores. The parallel optimized version is 21 times faster than the prototype.
32

Víceprvkové systémy biomateriálů na bázi hořčíku a zinku / Multi-element Systems of Biomaterials Based on Magnesium and Zinc

Hasoňová, Michaela January 2020 (has links)
Dissertation thesis deals with basic research in the field of materials from pure Zn powders and Mg, Zn, and Ca binary mixtures prepared by powder metallurgy. General powder metallurgy principles and methods, a brief description of Mg, Zn, and Ca structure and properties, and the latest research in the field of bulk materials preparation from these elements via powder metallurgy are summarized in the theoretical part of the thesis. The experimental part focuses on the preparation of materials from finer and coarser Zn powder particles by hot pressing at 300 and 400 °C using the pressure of 100, 200, 300, 400, and 500 MPa. Binary mixtures based on Mg with the addition of Zn or Ca were prepared by hot pressing in the solid-state (300 °C) and hot pressing in the semi-solid state (400 °C, 450 °C in the case of Mg-Ca system) using the pressure of 500 MPa. Binary mixtures based on Zn with the addition of Mg or Ca were prepared by hot pressing in the semi-solid state (400 °C) using the pressure of 500 MPa. The prepared materials were evaluated in terms of microstructure, elemental and phase composition, microhardness, flexural strength, and fractography. The results showed that in the case of processed from pure Zn powders, a better combination of the flexural strength and displacement was achieved in the case of the finer Zn powder, namely in the material prepared at a temperature of 400 °C and a pressure of 500 MPa. In the case of mixtures, the best connection between the powder particles was achieved in the case of a material based on finer Zn powder with 0.5 wt.% of Mg, which had a significant effect on the achieved values of flexural strength and displacement. The amount of minor powder in the mixture had a significant effect on the prepared material structure and phase composition, while the processing conditions influenced the reached strength characteristics and fracture mechanism.
33

Hodnocení napjatostního chování lepeného konstrukčního dřeva pomocí DIC analýzy. / Evaluation of load-deformation characteristics of glued timber using DIC analysis

Šot, Michal January 2015 (has links)
The work deals with issues of evaluation of the shear properties of timber structural materials, particularly CLT elements. The work contains an overview of extensive research so far presented scientific studies dealing with the characteristic shear properties of wood. In the practical part was carried out the experiment dealing with the failure mode of transverse lamellae of CLT elements that were exposed to shear stress. There were observed individual effects that this may affect the material properties. In the first part of the experiment were performed numerical models using FEM. In the second part, the test specimens were tested in three point bending. Here, attention was paid to the influence of macroscopic properties of wood on the distribution of stress cracks and shear strength, the tests were recorded using DIC system.
34

Srovnání polonízkého a polovysokého startu / The comparison of standing and crouch start

Talácko, Zdeněk January 2021 (has links)
Title: The comparison of standing and crouch start Objectives: Analysis of time differences in base running from the position of standing and crouch start. Another goal was to compare these starts in group of male sprinters and then to compare these starts with female softball players. Methods: Mainly document analysis was used in my diploma thesis. The author used both Czech and foreign sources. The foreign sources were mainly scientific researches, professional studies and articles from scientific journals. The issue was closely linked to running bases in softball, athletic starts and strenght training focused on thy dynamic component. Standing and crouch starts were then examined in detail. Results: It was found that the standing start compared to the crouch start enhances the results of female softball players by 0,06 s at the distance of 20 meters. The difference in the group of male athletes was only 0,01 s. Major differences were observed in female softball players already within the first 5 meters where the first time difference appeared. This difference was gradually rising until the end of the 20 m distance. Keywords: base running, running in softball, athletic start, three-point stance start, standing start, crouch start
35

Characterization of thin laminate interface by using Double Cantilever Beam and End Notched Flexure tests

Majeed, Moiz, Venkata Teja Geesala, Rahitya January 2020 (has links)
This thesis is intended to identify the mode I and mode II fracture toughness to characterize the thin laminate interface by using the Double Cantilever Beam test (DCB) and End Notched Flexure test (ENF). This study’s thin laminate was Polyethylene Terephthalate and Low-Density Polyethylene (PET-LDPE), which is mostly used by packaging industries in the manufacturing of packages to store liquid food. As PET-LDPE film is very flexible and difficult to handle, DCB and ENF tests cannot be performed directly so, sheet metal (Aluminium) was used as carrier material. PET-LDPE film is placed between two aluminum plates to reduce the flexibility and perform the tests. Therefore, the Aluminium plate was also studied to find the constitutive parameters (young’s modulus (E) and mixed hardening parameters (Plastic properties)) under the tensile test and three-point bending test. From the test response, energy release rate calculation has been done for different Pre-crack lengths to validate the DCB and ENF experimental setup, study the different Pre-crack lengths, and characterize the laminate interface. Finite Element simulation (FE simulation) for those tests were carried out in AbaqusTM2020. When needed, the force versus displacement response from FE simulation was optimized against experimental response to find the required constitutive parameters (Young’s modulus, Hardening parameters, and PET-LDPE material properties). Implementing of optimization algorithm and automated simulation has been done with the help of MATLAB code. In contrast, MATLAB works as a server, and Abaqus works as a client and connected two interfaces to run the optimization. The results obtained from experiments and FE simulations were compared to the results found in the literature.
36

Printing, characterization, and mechanical testing of additively manufactured refractory metal alloys

Sexton, Brianna M. 31 May 2022 (has links)
No description available.
37

Squeeze Casting as Alternative Fabrication Process for Carbon Fiber Reinforced Aluminium Matrix Composites

Alam, Muhammad Faisal January 2013 (has links)
Aluminium matrix composites are among the most promising candidate materials for light weight and high strength applications such as transportation and armour. In a previous study 6061 aluminum matrix composites reinforced with plain weave carbon fiber preform (AS4 Hexcel) were successfully fabricated by squeeze casting using the laminate fabrication technique. This research aims at optimizing the fabrication process in order to achieve improved strength and mechanical properties. It focuses on the liquid infiltration squeeze casting method. Good mechanical bonding between fiber and aluminium is achieved thanks to improved infiltration and impregnation of the fabric by liquid aluminium. Oxidation products at fiber/aluminium interface and porosity are reduced. As a result, composites are produced with overall improved mechanical properties. The flexural strength is increased by up to 19.9% and 15.4% compared to the laminate approach and the reference 6061 aluminium alloy squeeze cast under identical conditions, respectively. Similarly, overall hardness is improved. However, the impact strength is reduced by 7.76% and 25.78% when compared to casts fabricated by the laminate method and the reference aluminium alloy, respectively. The thesis constitutes a good basis for further research on fiber and particle reinforced aluminium matrix composites with the goal of further improving fracture toughness, particularly for gradient materials used in armour applications.
38

On initiation of chemically assisted crack growth and crack propagation paths of branching cracks in polycarbonate

Hejman, Ulf January 2010 (has links)
Stress corrosion, SC, in some cases gives rise to stress corrosion cracking, SCC, which differs from purely stress intensity driven cracks in many aspects. They initiate and grow under the influence of an aggressive environment in a stressed substrate. They grow at low load and may branch. The phenomenon of SCC is very complex, both the initiation phase and crack extension itself of SCC is seemingly associated with arbitrariness due to the many unknown factors controlling the process. Such factors could be concentration of species in the environment, stress, stress concentration, electrical conditions, mass transport, and so on.In the present thesis, chemically assisted crack initiation and growth is studied with special focus on the initiation and branching of cracks. Polycarbonate plates are used as substrates subjected to an acetone environment. Experimental procedures for examining initiation and branching in polycarbonate are presented. An optical microscope is employed to study the substrate.The attack at initiation is quantified from pits found on the surface, and pits that act as origin for cracks is identified and the distribution is analysed. A growth criterion for surface cracks is formulated from the observations, and it is used to numerically simulate crack growth. The cracks are seen to coalesce, and this phenomenon is studied in detail. Branching sites of cracks growing in the bulk of polycarbonate are inspected at the sample surface. It is found that the total width of the crack branches are approximately the same as the width of the original crack. Also, angles of the branches are studied. Further, for comparison the crack growth in the bulk is simulated using a moving boundary problem based algorithm and similar behaviour of crack branching is found. / <p>Both papers in thesis as manuscript, paper II with title "Branching cracks in a layered material - Dissolution driven crack growth in polycarbonate"</p>
39

Characterization of Kelvin Cell Cored Sandwich Structures with Analysis and Experiments / Karaktärisering av sandwichstrukturer med Kelvin-cellkärna med analys och experiment

Günay, Sabahattin Bora January 2023 (has links)
In order to satisfy the mechanical requirements for space structures, achieving lightweight designs is of the greatest significance. The primary focus of this study is the utilization of Kelvin cell core in the design of sandwich structures for space applications. The research encompasses a variety of production techniques, analyzes, and tests related to the design of sandwich structures with Kelvin cells as the core material. While a variety of configurations are evaluated in a general sense, particular configurations are examined in greater extensive detail. In this context, the structure's bending stiffness, compression stiffness, and vibration characteristics are analyzed. The analytical procedure begins with a simplified structure analysis, followed by the modeling of the actual geometry. According to applicable standards, stiffness values are calculated based on the deflection results of the analyzes. However, it is important to note that the tests performed on the modeled structures are conducted in a laboratory environment using additively manufactured samples. This permits a comparison between the obtained test results and the findings of the analyzes, shedding light on the effect of the manufacturing method. This study demonstrates that the honeycomb sandwich structure is superior in terms of overall stiffness. In addition, a specially designed reinforced Kelvin Cell structure possesses exceptional bending rigidity properties. In light of these findings, it is clear that the combination of Kelvin Cell core and specific reinforcement strategies has the potential to improve the mechanical performance of sandwich structures. In addition, the deformation results revealed by the analyzes showed that the structure can be deformed in large amounts in directions other than the direction of the force it is exposed to. This situation is of great importance for damping in space applications. As a result of vibration analyzes and tests, the effect of stiffness and mass increase in a certain direction on natural frequencies has been revealed, and with 3-point bending tests, the facing elastic modulus and core shear modulus values of the structure have been determined separately and its effect on the sandwich structure has been shown. Accordingly, this study examined and evaluated many aspects of the possible role of the Kelvin Cell in space applications. / För att tillgodose de mekaniska kraven på rymdkonstruktioner är det av största vikt att uppnå lätta konstruktioner. Det primära fokuset för denna studie är utnyttjandet av Kelvin-Cellkärna vid design av sandwichstrukturer för rymdtillämpningar. Forskningen omfattar en mängd olika produktionstekniker, analyser och tester relaterade till design av sandwichstrukturer med Kelvin-Celler som kärnmaterial. En mängd olika konfigurationer utvärderas generellt, medan vissa specifika konfigurationer undersöks mer utförligt på detaljnivå. I detta sammanhang analyseras strukturens böjstyvhet, kompressionsstyvhet och vibrationsegenskaper. Den analytiska proceduren börjar med en förenklad strukturanalys, följt av modellering av den faktiska geometrin. Enligt gällande standarder beräknas styvhetsvärdena baserat på strukturanalysens resultat. Det är dock viktigt att notera att de tester som utförs på de modellerade strukturerna utförs i en laboratoriemiljö med hjälp av additivt tillverkade prover. Detta möjliggör en jämförelse mellan de erhållna testresultaten och resultaten av analysen, vilket belyser effekten av tillverkningsmetoden. Denna studie visar att sandwichstrukturen honeycomb är bäst när det gäller total styvhet. Dessutom har en specialdesignad förstärkt Kelvin-Cellstruktur exceptionella böjstyvhetsegenskaper. I ljuset av dessa fynd är det tydligt att kombinationen av Kelvin-Cellkärna och specifika förstärkningsstrategier har potential att förbättra den mekaniska prestandan hos sandwichstrukturer. Dessutom visade deformationsresultaten från analyserna att strukturen kan deformeras till hög grad i andra riktningar än den kraft som den utsätts för. Denna iaktagelse är av stor betydelse för dämpning i rymdapplikationer. Som ett resultat av vibrationsanalyser och tester har effekten av styvhet och massökning i en viss riktning på naturliga frekvenser upptäckts, och med 3-punkts böjtester har konstruktionens elasticitetsmodul och skjuvmodulsvärden bestämts separat och dess effekt på sandwichstrukturen har visats. Följaktligen undersökte och utvärderade denna studie många aspekter av Kelvin-Cellens möjliga roll i rymdtillämpningar.
40

Exploration of Data Clustering Within a Novel Multi-Scale Topology Optimization Framework

Lawson, Kevin Robert 10 August 2022 (has links)
No description available.

Page generated in 0.0737 seconds