Spelling suggestions: "subject:"till,""
111 |
Pelvic biomechanics and muscle activation patterns during non-weighted squats in U/19 university-level rugby union players / Miemie GreylingGreyling, Miemie January 2013 (has links)
Hyperlordosis or anterior pelvic tilt is a common non-neutral spinal posture associated with weak core stability, low back pain and altered lumbopelvic muscle activation patterns. Yet the effects of altered lumbopelvic posture and core stability on muscle activation patterns have not been evaluated during a functional movement. The main purpose of this study was to determine the relationship between pelvic tilt, core stability and muscle activation patterns during non-weighted squats in U/19 university-level rugby union players. A total of 49 rugby union players participated in this study. Pelvic tilt (dominant side) was measured from a digital photo with clear reflector markers on the anterior superior iliac spine (ASIS) and posterior superior iliac spine (PSIS) using the Kinovea video analysis software programme (version 0.8.15). Flexibility of the hamstrings, hip flexors and knee extensors was assessed with goniometry. Core stability was assessed using the pressure biofeedback unit and muscle onset times during the ascent phase of non-weighted squats. The onset times of the transverse abdominis (TrA), erector spinae (ES), gluteus maximus (GM) and biceps femoris (BF) muscles were measured using electromyography (EMG). Players were then grouped according to pelvic tilt (anterior and neutral) and by playing position (forwards and backs). The between group differences were evaluated for the abovementioned variables using p-value (statistical significance) and d-value (practical significance) measures. Muscle activation patterns and firing order were determined using descriptive statistics.
The mean pelvic tilt of all participants (N=49) was an anterior tilt of 15.35°. When grouped by pelvic tilt, the anterior tilt group showed a mean pelvic tilt of 17.83° (n=27) and the neutral pelvic tilt group showed a mean pelvic tilt of 11.75° (n=22). Despite the differences in pelvic tilt, there was no significant difference in flexibility between the groups. Another controversial result is that the anterior tilt group showed practical significantly better core stability (d=0.54) than the neutral tilt group (46.93° vs 56.3°).
During the double leg squat the muscle activation patterns were consistent between the groups. TrA activated first, followed by ES. Thereafter, the BF muscle activated, followed by the GM. The first place activation of TrA is consistent with the literature stating that the deep abdominal stabilisers of individuals with good core stability activate before the movement is initiated. The early onset of muscle activity of ES points to a focus on back extension during the ascent of the squat. Because the pelvic tilt was measured during static standing only, it is unclear whether the players in the neutral tilt group were able to hold the neutral pelvic tilt posture throughout the movement. Research has shown that there is an increased focus on trunk extension during the ascent phase of the squat which is not present during the descent. Future research should focus on assessing the pelvic tilt at the beginning of the ascent phase of the squat to ensure accurate results.
The delay in GM activation during the ascent of the squat is concerning. GM acts as a lumbopelvic stabilizer, and its slow activation points to a decrease in lumbopelvic stability. This is very important in weight training, because weight training increases the strain on the lumbar spinal structures, which decreases performance and increases the risk of injury. / MSc (Biokinetics), North-West University, Potchefstroom Campus, 2014
|
112 |
Pelvic biomechanics and muscle activation patterns during non-weighted squats in U/19 university-level rugby union players / Miemie GreylingGreyling, Miemie January 2013 (has links)
Hyperlordosis or anterior pelvic tilt is a common non-neutral spinal posture associated with weak core stability, low back pain and altered lumbopelvic muscle activation patterns. Yet the effects of altered lumbopelvic posture and core stability on muscle activation patterns have not been evaluated during a functional movement. The main purpose of this study was to determine the relationship between pelvic tilt, core stability and muscle activation patterns during non-weighted squats in U/19 university-level rugby union players. A total of 49 rugby union players participated in this study. Pelvic tilt (dominant side) was measured from a digital photo with clear reflector markers on the anterior superior iliac spine (ASIS) and posterior superior iliac spine (PSIS) using the Kinovea video analysis software programme (version 0.8.15). Flexibility of the hamstrings, hip flexors and knee extensors was assessed with goniometry. Core stability was assessed using the pressure biofeedback unit and muscle onset times during the ascent phase of non-weighted squats. The onset times of the transverse abdominis (TrA), erector spinae (ES), gluteus maximus (GM) and biceps femoris (BF) muscles were measured using electromyography (EMG). Players were then grouped according to pelvic tilt (anterior and neutral) and by playing position (forwards and backs). The between group differences were evaluated for the abovementioned variables using p-value (statistical significance) and d-value (practical significance) measures. Muscle activation patterns and firing order were determined using descriptive statistics.
The mean pelvic tilt of all participants (N=49) was an anterior tilt of 15.35°. When grouped by pelvic tilt, the anterior tilt group showed a mean pelvic tilt of 17.83° (n=27) and the neutral pelvic tilt group showed a mean pelvic tilt of 11.75° (n=22). Despite the differences in pelvic tilt, there was no significant difference in flexibility between the groups. Another controversial result is that the anterior tilt group showed practical significantly better core stability (d=0.54) than the neutral tilt group (46.93° vs 56.3°).
During the double leg squat the muscle activation patterns were consistent between the groups. TrA activated first, followed by ES. Thereafter, the BF muscle activated, followed by the GM. The first place activation of TrA is consistent with the literature stating that the deep abdominal stabilisers of individuals with good core stability activate before the movement is initiated. The early onset of muscle activity of ES points to a focus on back extension during the ascent of the squat. Because the pelvic tilt was measured during static standing only, it is unclear whether the players in the neutral tilt group were able to hold the neutral pelvic tilt posture throughout the movement. Research has shown that there is an increased focus on trunk extension during the ascent phase of the squat which is not present during the descent. Future research should focus on assessing the pelvic tilt at the beginning of the ascent phase of the squat to ensure accurate results.
The delay in GM activation during the ascent of the squat is concerning. GM acts as a lumbopelvic stabilizer, and its slow activation points to a decrease in lumbopelvic stability. This is very important in weight training, because weight training increases the strain on the lumbar spinal structures, which decreases performance and increases the risk of injury. / MSc (Biokinetics), North-West University, Potchefstroom Campus, 2014
|
113 |
Uncertainty due to speckle noise in laser vibrometryMartin, Peter January 2010 (has links)
This thesis presents fundamental research in the field of laser vibrometry for the application to vibration measurements. A key concern for laser vibrometry is the effect of laser speckle which appears when a coherent laser beam scatters from an optically rough surface. The laser vibrometer is sensitive to changes in laser speckle which result from surface motions not in the direction of the incident beam. This adds speckle noise to the vibrometer output which can be indistinguishable from the genuine surface vibrations. This has been termed ‘pseudo-vibration' and requires careful data interpretation by the vibration engineer. This research has discovered that measurements from smooth surfaces, even when no identifiable speckle pattern is generated, can produce noise and therefore reference to speckle noise, in such circumstances, is inappropriate. This thesis has, therefore, adopted the more general term of pseudo-vibration to include noise generated from any surface roughness or treatment, i.e. including but not limited to speckle noise. This thesis develops and implements novel experimental methods to quantify pseudovibration sensitivities (transverse, tilt and rotation sensitivity) with attention focussed on commercially available laser vibrometers and consideration is given to a range of surface roughnesses and treatments. It investigates, experimentally, the fundamental behaviour of speckles and attempts to formulate, for the first time, a relationship between changes in intensity to pseudo-vibration sensitivity levels. The thesis also develops and implements models for computational simulation of pseudo-vibrations using the fundamental behaviour of speckles. The combination of experimentation and simulation improves current understanding of the pseudo-vibration mechanisms and provides the vibration engineer with a valuable resource to improve data interpretation. Two experimental methods of quantifying pseudo-vibration sensitivity are developed and successfully applied in the evaluation of transverse, tilt and rotation sensitivity for two models of commercial laser vibrometer. These evaluations cover both single beam (translational vibration measurement) and parallel beam (for angular vibration measurement) modes. The first method presented requires correction of the vibrometer measurement with an independent measurement of genuine velocity to produce an iii apparent velocity dominated by the required noise components. The second method requires a differential measurement using two vibrometers to cancel common components such as genuine velocity, leaving only uncorrelated noise from each measurement in the resulting apparent velocity. In each case, a third measurement is required of the surface motion component causing pseudo-vibration and this is used to normalise the apparent velocity. Pseudo-vibration sensitivity is then presented as a map showing the spectral shape of the noise, as a mean and standard deviation of harmonic peaks in the map and as a total rms level across a defined bandwidth. The simulations employ a novel and effective approach to modelling speckle evolution. Transverse and tilt sensitivity are predicted for the first time and are verified by the experimental study. They provide the vibration engineer with the potential to estimate pseudo-vibrations using a simple piece of software. The laser beam spot diameter has a large influence on the pseudo-vibration sensitivity. Transverse sensitivity has been quantified as around 0.03% and 0.01% (per order) of the transverse velocity of the surface for beam spot diameters of 100 μm and 600 μm respectively. Larger beam spots have been shown to significantly reduce transverse sensitivity and measurements from smoother surfaces have also shown a reduced level of transverse sensitivity. Tilt sensitivity has been quantified at about 0.1 μms-1/degs-1 and 0.3 μms-1/degs-1 (per order) of angular velocity of the surface for beam spot diameters of 100 μm and 600 μm respectively. Smaller beam spot diameters significantly reduce tilt sensitivity. The surface roughness or treatment has been shown to have little effect on the level of tilt sensitivity. Rotation sensitivity has been quantified at approximately 0.6 μms- 1/rads-1 and 1.9μms-1/rads-1 (per order) of rotation velocity of the rotor for 90 μm and 520 μm. Smaller beam spot diameters have shown a significant reduction in rotation sensitivity and measurements on smoother surfaces have shown a reduced rotation sensitivity. Focussing the laser beam approximately on the rotation axis has also shown a significant reduction in rotation sensitivity. Parallel beam rotation sensitivity has been quantified at 0.016 degs-1/rads-1 and it is demonstrated that this can adequately be estimated using the single beam rotation sensitivity.
|
114 |
Development of the fast steering secondary mirror assembly of GMTLee, Sungho, Cho, Myung K., Park, Chan, Han, Jeong-Yeol, Jeong, Ueejeong, Yoon, Yang-noh, Song, Je Heon, Park, Byeong-Gon, Dribusch, Christoph, Park, Won Hyun, Jun, Youra, Yang, Ho-Soon, Moon, Il-Kwon, Oh, Chang Jin, Kim, Ho-Sang, Lee, Kyoung-Don, Bernier, Robert, Alongi, Chris, Rakich, Andrew, Gardner, Paul, Dettmann, Lee, Rosenthal, Wylie 22 July 2016 (has links)
The Giant Magellan Telescope (GMT) will be featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, Phase 0 study was conducted to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The FSM development plan has been matured through an internal review by the GMTO-KASI team in May 2016 and fully assessed by an external review in June 2016. In this paper, we present the technical aspects of the FSM development plan.
|
115 |
ROBUST BACKGROUND SUBTRACTION FOR MOVING CAMERAS AND THEIR APPLICATIONS IN EGO-VISION SYSTEMSSajid, Hasan 01 January 2016 (has links)
Background subtraction is the algorithmic process that segments out the region of interest often known as foreground from the background. Extensive literature and numerous algorithms exist in this domain, but most research have focused on videos captured by static cameras. The proliferation of portable platforms equipped with cameras has resulted in a large amount of video data being generated from moving cameras. This motivates the need for foundational algorithms for foreground/background segmentation in videos from moving cameras. In this dissertation, I propose three new types of background subtraction algorithms for moving cameras based on appearance, motion, and a combination of them. Comprehensive evaluation of the proposed approaches on publicly available test sequences show superiority of our system over state-of-the-art algorithms.
The first method is an appearance-based global modeling of foreground and background. Features are extracted by sliding a fixed size window over the entire image without any spatial constraint to accommodate arbitrary camera movements. Supervised learning method is then used to build foreground and background models. This method is suitable for limited scene scenarios such as Pan-Tilt-Zoom surveillance cameras. The second method relies on motion. It comprises of an innovative background motion approximation mechanism followed by spatial regulation through a Mega-Pixel denoising process. This work does not need to maintain any costly appearance models and is therefore appropriate for resource constraint ego-vision systems. The proposed segmentation combined with skin cues is validated by a novel application on authenticating hand-gestured signature captured by wearable cameras. The third method combines both motion and appearance. Foreground probabilities are jointly estimated by motion and appearance. After the mega-pixel denoising process, the probability estimates and gradient image are combined by Graph-Cut to produce the segmentation mask. This method is universal as it can handle all types of moving cameras.
|
116 |
Examining the effects of openings at the base of slender reinforced concrete (tilt-up) wall panels subjected to varying wind pressuresCook, Andrew January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly Waggle Kramer / This report examines the effects of openings located at the base of reinforced concrete slender wall panels (tilt-up panels) designed in accordance with the American Concrete Institute (ACI) Committee 318-11 Building Code Requirements for Structural Concrete Section 14.8 Alternative Design of Slender Walls. The parametric study calculates the reinforcement (longitudinal) required for specific panels in accordance with ACI 318-11 Section 14.8 and compares the designs to a finite element analysis conducted with SAP 2000 version 14 to determine the appropriateness of the assumptions made in Section 14.8. Furthermore, this report compares the design of a tilt-up panel designed by Section 14.8 Alternative Design of Slender Walls and designed by Section 10.10 Slenderness Effects in Compression Members.
|
117 |
The Structure of Bovine Mitochondrial ATP Synthase by Single Particle Electron CryomicroscopyBaker, Lindsay 20 August 2012 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a method of structure determination that uses many randomly oriented images of the specimen to construct a three-dimensional density map. In this thesis, single particle cryo-EM has been used to determine the structure of intact adenosine triphosphate (ATP) synthase from bovine heart mitochondria, an approximately 550 kDa membrane protein complex. In respiring organisms, ATP synthase is responsible for synthesizing the majority of ATP, a molecule that serves as an energy source for many cellular reactions. In order to understand the mechanism of ATP synthase, knowledge of the arrangement of subunits in the intact complex is necessary. To obtain maps of intact ATP synthase showing internal density distributions by single particle cryo-EM, methodological improvements to image acquisition, map refinement, and data selection were developed. Further, a novel segmentation algorithm was developed to aid in interpretation of maps. The use of these tools allowed for construction and interpretation of two maps of ATP synthase, solubilized in different membrane mimetics, in which the arrangement of subunits could be identified. These maps revealed interactions within the complex important for its function. In addition, evidence was obtained for curvature of membrane mimetics around ATP synthase, suggesting a role for the complex in maintenance of mitochondrial membrane morphology.
|
118 |
The Structure of Bovine Mitochondrial ATP Synthase by Single Particle Electron CryomicroscopyBaker, Lindsay 20 August 2012 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a method of structure determination that uses many randomly oriented images of the specimen to construct a three-dimensional density map. In this thesis, single particle cryo-EM has been used to determine the structure of intact adenosine triphosphate (ATP) synthase from bovine heart mitochondria, an approximately 550 kDa membrane protein complex. In respiring organisms, ATP synthase is responsible for synthesizing the majority of ATP, a molecule that serves as an energy source for many cellular reactions. In order to understand the mechanism of ATP synthase, knowledge of the arrangement of subunits in the intact complex is necessary. To obtain maps of intact ATP synthase showing internal density distributions by single particle cryo-EM, methodological improvements to image acquisition, map refinement, and data selection were developed. Further, a novel segmentation algorithm was developed to aid in interpretation of maps. The use of these tools allowed for construction and interpretation of two maps of ATP synthase, solubilized in different membrane mimetics, in which the arrangement of subunits could be identified. These maps revealed interactions within the complex important for its function. In addition, evidence was obtained for curvature of membrane mimetics around ATP synthase, suggesting a role for the complex in maintenance of mitochondrial membrane morphology.
|
119 |
Dynamic, In-Situ Pressure Measurements during CMPOsorno, Andres 26 September 2005 (has links)
A rotational setup for measuring interfacial fluid pressure and temperature was successfully constructed. Interfacial fluid measurements were performed with various slurries, slurry flow rates, and pad topographies. It was experimentally determined that the pad topography has the biggest effect in pressure and temperature distribution. This was also confirmed by tilt experiments ran in a rotational environment. For all cases, the edge high conditioned pad displayed the most changes during the experiments.
For an edge high conditioned pad, the fluid pressure was found to be mostly subambient reaching levels of up to 42 kPa at the center of the fixture, and dissipating towards the edges. The pressure maps appear to be almost center symmetric. The pressure was found to be positive during the first second of contact, and rapidly turn subambient. The Subambient pressures stabilize after about 5 seconds, and their suction force was found to slow the rotating platen significantly. Suction forces were confirmed by displacement observed during the tilt experiments. The fixtures center was sucked down into the pad up to 20 m, and tends to tilt towards the leading edge.
Interfacial temperatures were also found to vary with pad geometry. The edge-high conditioned pad exhibited changes of up to 4 C, concentrated at the center. The relative position and shape of these temperature rises matches the results observed in the pressure experiments. Temperature takes a longer time to reach equilibrium, up to 30 seconds in most measurements.
|
120 |
Composite condensates and phase transformations via pulsed laser ablation on Zn, Zn-Cu and Cu-Au targets in liquid or vacuumLin, Bo-Cheng 19 August 2012 (has links)
This research deals with the synthesis and characterization (transmission electron microscopy and optical spectroscopy) of composite nanocondensates produced by pulse laser ablation (PLA) on Zn, Zn-Cu and Cu-Au targets in liquid or vacuum.
First, wurtzite-type (W)-ZnO and
|
Page generated in 0.0566 seconds