• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 76
  • 41
  • 34
  • 33
  • 15
  • 8
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 618
  • 618
  • 211
  • 157
  • 156
  • 116
  • 84
  • 81
  • 77
  • 64
  • 58
  • 53
  • 53
  • 47
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Analysis, modeling and wide-area spatiotemporal control of low-frequency sound reproduction

Hill, Adam J. January 2012 (has links)
This research aims to develop a low-frequency response control methodology capable of delivering a consistent spectral and temporal response over a wide listening area. Low-frequency room acoustics are naturally plagued by room-modes, a result of standing waves at frequencies with wavelengths that are integer multiples of one or more room dimension. The standing wave pattern is different for each modal frequency, causing a complicated sound field exhibiting a highly position-dependent frequency response. Enhanced systems are investigated with multiple degrees of freedom (independently-controllable sound radiating sources) to provide adequate low-frequency response control. The proposed solution, termed a chameleon subwoofer array or CSA, adopts the most advantageous aspects of existing room-mode correction methodologies while emphasizing efficiency and practicality. Multiple degrees of freedom are ideally achieved by employing what is designated a hybrid subwoofer, which provides four orthogonal degrees of freedom configured within a modest-sized enclosure. The CSA software algorithm integrates both objective and subjective measures to address listener preferences including the possibility of individual real-time control. CSAs and existing techniques are evaluated within a novel acoustical modeling system (FDTD simulation toolbox) developed to meet the requirements of this research. Extensive virtual development of CSAs has led to experimentation using a prototype hybrid subwoofer. The resulting performance is in line with the simulations, whereby variance across a wide listening area is reduced by over 50% with only four degrees of freedom. A supplemental novel correction algorithm addresses correction issues at select narrow frequency bands. These frequencies are filtered from the signal and replaced using virtual bass to maintain all aural information, a psychoacoustical effect giving the impression of low-frequency. Virtual bass is synthesized using an original hybrid approach combining two mainstream synthesis procedures while suppressing each method‟s inherent weaknesses. This algorithm is demonstrated to improve CSA output efficiency while maintaining acceptable subjective performance.
332

Weakly non-local arbitrarily-shaped absorbing boundary conditions for acoustics and elastodynamics theory and numerical experiments

Lee, Sanghoon 28 August 2008 (has links)
Not available / text
333

The inverse medium problem in PML-truncated elastic media

Kucukcoban, Sezgin 07 February 2011 (has links)
We introduce a mathematical framework for the inverse medium problem arising commonly in geotechnical site characterization and geophysical probing applications, when stress waves are used to probe the material composition of the interrogated medium. Specifically, we attempt to recover the spatial distribution of Lame's parameters ( and μ) of an elastic semi-infinite arbitrarily heterogeneous medium, using surface measurements of the medium's response to prescribed dynamic excitations. The focus is on characterizing near-surface deposits, and to this end, we develop a method that is implemented directly in the time-domain, is driven by the full waveform response collected at receivers on the surface, while the domain of interest is truncated using Perfectly-Matched-Layers (PMLs) to limit the originally semi-infinite extent of the physical domain. There are two key issues associated with the problem at hand: (a) the forward problem, namely the numerical simulation of the wave motion in the domain of interest; and (b) the framework and strategies for tackling the inverse problem. To address the forward problem, it is necessary that the domain of interest be truncated, and the resulting finite domain be forced to mimic the physics of the original problem: to this end, we introduce unsplit-field PMLs, and develop and implement two new formulations, one fully-mixed and one hybrid (mixed coupled with a non-mixed approach) that model wave motion within the, now PML-truncated, domain. To address the inverse problem, we adopt a partial-differential-equation-constrained optimization framework that results in the usual triplet of an initial-and-boundary-value forward problem, a final-and-boundary-value adjoint problem, and a time-independent boundary-value control problem. This triplet of boundary-value-problems is used to guide the optimizer to the target profile of the spatially distributed Lame parameters. Given the multiplicity of solutions, we assist the optimizer, by deploying regularization schemes, continuation schemes (regularization factor and source-frequency content), as well as a physics-driven simple procedure to bias the search directions. We report numerical examples attesting to the quality, stability, and efficiency of the forward wave modeling. We also report moderate success with numerical experiments targeting inversion of both smooth and sharp profiles in two dimensions. / text
334

Fully Printed Chipless RFID Tags towards Item-Level Tracking Applications

Shao, Botao January 2014 (has links)
An ID generating circuit is unquestionably the core of a chipless RFID tag. For convenience of printing process and cost consideration, the circuit should be kept as simple as possible. Based on the cognition, an 8-bit time-domain based ID generating circuit that merely consists of a ML and eight capacitors was offered, and implemented on photo-paper substrates via inkjet printing process. In addition to the experimental measurements, the circuit was also input into circuit simulators for cross-validation. The good agreement between simulations and measurements is observed, exhibiting the tag technical feasibility. Besides of low cost, the tag has wide compatibility with current licensed RFID spectrum, which will facilitate the future deployment in real applications. Compared   to  time-domain   based  chipless   tags,  frequency   signatures   based chipless RFID tags are expected to offer a larger coding capacity. As a response, we presented a 10-bit frequency-domain based chipless RFID tag. The tag composed of ten configurable LC resonators was implemented on flexible polyimide substrate by using  fast  toner-transferring  process.  Field  measurements  revealed  not  only  the practicability  of  the  tag,  but  also  the  high  signal  to  noise  ratio  (SNR).  Another frequency domain tag consists of a configurable coplanar LC resonator. With the use of all printing process, the tag was for the first time realized on common packaging papers.  The tag feasibility was confirmed by subsequent measurements. Owing to the ultra-low cost potential and large SNR, The tag may find wide applications in typical RFID solutions such as management of paper tickets for social events and governing of smart documents. Ultra wide band (UWB) technology possesses a number of inherent merits such as high speed communication and large capacity, multi-path immunity, accurate ranging and positioning, penetration through obstacles, as well as extremely low-cost and low- power transmitters. Thus, passive UWB RFIDs are expected to play an important pole in  the future identification applications for IoT. We explained the feature difference between  UWB  chipless  tags  and  chip  based  tags,  and  forecasted  the  applications respectively  based on the comparison  between the two technologies.  It is expected that the two technologies will coexist and compensate each other in the applications of IoT. Lastly, the thesis ends up with brief summary of the author’s contributions, and technical prospect for the future development of printable chipless RFID tags. / <p>QC 20140304</p>
335

An efficient ground penetrating radar finite-difference time-domain subgridding scheme and its application to the non-descructive testing of masonry arch bridges

Diamanti, Nectaria January 2008 (has links)
This thesis reports on the application of ground penetrating radar (GPR) as a non-destructive technique for the monitoring of ring separation in brick masonry arch bridges. In addition, research is reported on the assessment of the clay capping layer often used in construction as a waterproof backing to arches. The thrust of the research is numerical modelling, verified by large laboratory experiments. Due to the heterogeneity of these structures, the resultant signals from the interaction between the GPR system and the bridge are often complex and hence, hard to interpret. This highlighted the need to create a GPR numerical model that would allow the study of the attributes of reflected signals from various targets within the structure of the bridge. The GPR numerical analysis was undertaken using the finite-difference time-domain (FDTD) method. Since micro regions in the bridge structure need to be modelled, the introduction of subgrids of supporting finer spatial resolution into the standard FDTD method was considered essential in order to economise on the required computational resources. In the main part of this thesis, it is demonstrated how realistic numerical modelling of GPR using the FDTD method could greatly benefit from the implementation of subgrids into the conventional FDTD mesh. This is particularly important when (a) parts of the computational domain need to be modelled in detail (i.e., ring separation between the mortar layers and the brick units, which is the case studied in this thesis); and also (b) when there are features or regions in the overall computational mesh with values of high relative permittivity supporting propagation of waves at very short wavelengths. A scheme is presented that simplifies the process of implementing these subgrids into the traditional FDTD method. This scheme is based on the combination of the standard FDTD method and the unconditionally stable alternating-direction implicit (ADI) FDTD technique. Given that ADI-FDTD is unconditionally stable, its time-step can be set to any value that facilitates the accurate calculation of the electromagnetic fields. By doing so, the two grids can efficiently communicate information across their boundary without requiring to use a time-interpolation scheme. The performance of ADI-FDTD subgrids when implemented into the traditional FDTD method is discussed herein. The developed algorithm can handle cases where the subgrid crosses dielectrically inhomogeneous and/or conductive media. In addition, results from the comparison between the proposed scheme and a commonly employed purely FDTD subgridding technique are presented. After determination of the optimum ADI-FDTD scheme, numerical experiments were conducted and calibrated using GPR laboratory experiments. Good correlations were obtained between the numerical experiments and the actual GPR experiments. It was shown both numerically and experimentally that significant mortar loss between the masonry arch rings can be detected. Dry hairline delaminations between the mortar and the brick masonry are difficult to detect using standard GPR procedures. However, hairline faults containing water produce distinct and detectable GPR responses. In addition, the clay layer was successfully identified and its thickness calculated to a satisfactory accuracy.
336

THE APPLICATION OF DISCONTINUOUS GALKERIN FINITE ELEMENT TIME-DOMAIN METHOD IN THE DESIGN, SIMULATION AND ANALYSIS OF MODERN RADIO FREQUENCY SYSTEMS

Zhao, Bo 01 January 2011 (has links)
The discontinuous Galerkin finite element time-domain (DGFETD) method has been successfully applied to the solution of the coupled curl Maxwell’s equations. In this dissertation, important extensions to the DGFETD method are provided, including the ability to model lumped circuit elements and the ability to model thin-wire structures within a discrete DGFETD solution. To this end, a hybrid DGFETD/SPICE formulation is proposed for high-frequency circuit simulation, and a hybrid DGFETD/Thin-wire formulation is proposed for modeling thin-wire structures within a three-dimensional problem space. To aid in the efficient modeling of open-region structures, a Complex Frequency Shifted-Perfectly Matched Layer (CFS-PML) absorbing medium is applied to the DGFETD method for the first time. An efficient CFS-PML method that reduces the computational complexity and improves accuracy as compared to previous PML formulations is proposed. The methods have been successfully implemented, and a number of test cases are provided that validate the proposed methods. The proposed hybrid formulations and the new CFS-PML formulation dramatically enhances the ability of the DGFETD method to be efficiently applied to simulate complex, state of the art radio frequency systems.
337

Direct and Inverse Methods for Waveguides and Scattering Problems in the Time Domain

Abenius, Erik January 2005 (has links)
Numerical simulation is an important tool in understanding the electromagnetic field and how it interacts with the environment. Different topics for time-domain finite-difference (FDTD) and finite-element (FETD) methods for Maxwell's equations are treated in this thesis. Subcell models are of vital importance for the efficient modeling of small objects that are not resolved by the grid. A novel model for thin sheets using shell elements is proposed. This approach has the advantage of taking into account discontinuities in the normal component of the electric field, unlike previous models based on impedance boundary conditions (IBCs). Several results are presented to illustrate the capabilities of the shell element approach. Waveguides are of fundamental importance in many microwave applications, for example in antenna feeds. The key issues of excitation and truncation of waveguides are addressed. A complex frequency shifted form of the uniaxial perfectly matched layer (UPML) absorbing boundary condition (ABC) in FETD is developed. Prism elements are used to promote automatic grid generation and enhance the performance. Results are presented where reflection errors below -70dB are obtained for different types of waveguides, including inhomogeneous cases. Excitation and analysis via the scattering parameters are achieved using waveguide modes computed by a general frequency-domain mode solver for the vector Helmholtz equation. Huygens surfaces are used in both FDTD and FETD for excitation in waveguide ports. Inverse problems have received an increased interest due to the availability of powerful computers. An important application is non-destructive evaluation of material. A time-domain, minimization approach is presented where exact gradients are computed using the adjoint problem. The approach is applied to a general form of Maxwell's equations including dispersive media and UPML. Successful reconstruction examples are presented both using synthetic and experimental measurement data. Parameter reduction of complex geometries using simplified models is an interesting topic that leads to an inverse problem. Gradients for subcell parameters are derived and a successful reconstruction example is presented for a combined dielectric sheet and slot geometry.
338

An FRA Transformer Model with Application on Time Domain Reflectometry

Tavakoli, Hanif January 2011 (has links)
Frequency response analysis (FRA) is a frequency-domain method which is used to detect mechanical faults in transformers. The frequency response of a transformer is determined by its geometry and material properties, and it can be considered as the transformer’s fingerprint. If there are any mechanical changes in the transformer, for example if the windings are moved or distorted, its fingerprint will also be changed so, theoretically, mechanical changes in the transformer can be detected with FRA. A problem with FRA is the fact that there is no general agreement about how to interpret the measurement results for detection of winding damages. For instance, the interpretation of measurement results has still not been standardized.The overall goal of this thesis is to try to enhance the understanding of the information contained in FRA measurements. This has been done in two ways: (1) by examining the FRA method for (much) higher frequencies than what is usual, and (2) by developing a new method in which FRA is combined with the ideas of Time Domain Reflectometry (TDR). As tools for carrying out the above mentioned steps, models for the magnetic core and the winding have been developed and verified by comparison to measurements.The usual upper frequency limit for FRA is around 2 MHz, which in this thesis has been extended by an order of magnitude in order to detect and interpret new phenomena that emerge at high frequencies and to investigate the potential of this high-frequency region for detection of winding deteriorations.Further, in the above-mentioned new method developed in this thesis, FRA and TDR are combined as a step towards an easier and more intuitive detection and localization of faults in transformer windings, where frequency response measurements are visualized in the time domain in order to facilitate their interpretation. / QC 20111122
339

Medium frequency radar studies of meteors

Grant, Stephen Ian January 2003 (has links)
This thesis details the application of a medium frequency (MF) Doppler radar to observations of meteoroids entering the Earth's atmosphere. MF radars make possible a greater height coverage of the meteor region (70 to 160 km) than conventional meteor radars. However this type of radar has generally been under-utilised for meteor observations, primarily due to the less than ideal radio environment associated with MF systems. This situation demanded selection of the most appropriate radar meteor techniques and in this respect a variety of techniques are evaluated for application at this frequency. The 2 MHz radar system used in this study is located at the Buckland Park research facility (35.6 deg. S, 138.5 deg. E), near Adelaide, South Australia and is operated by the Department of Physics of the University of Adelaide. This radar has the largest antenna of any MF radar with 89 crossed dipoles distributed over an area of about 1 km in diameter. Beam forming is achieved by varying the phase to groups of elements of the array. The array was constructed in the 1960's, and while having several upgrades, a preliminary examination of the array and associated systems indicated that a significant amount of maintenance work would be required to enable the system to be used for meteor observations. It was also apparent that the software used with the radar hardware for atmospheric studies was not suitable for processing meteor data. Thus a major refurbishment of the radar hardware, as well as the development of appropriate software, was initiated. The complete radar system was divided into its constituent components of antenna array, transmitter, receiver and computer systems. The transmitter and receiver systems were examined and various improvements made including increasing total output power and enhancing beam steering capability. Time domain reflectometry (TDR) techniques were extensively used on the antenna array, as many feed cables showed the presence of moisture. New hardware in the form of a portable power combining system was designed, constructed and tested to further increase radar experimental capabilities. Techniques were developed that verified system performance was to specification. Extensive night time observations of sporadic and shower meteor events were made over a two and a half year period. A particular study was made of the Orionids shower as well as other meteor activity on the night of 22 October 2000. Using the upgraded beam swinging features of the array, a narrow radar beam was used to track the shower radiant in an orthogonal sense so as to maximise the number of shower meteors detected. From each echo, various intrinsic meteoroid parameters were determined, including meteor reflection point angle-of-arrival using a five-element interferometer, echo duration and height; meteoroid speeds were determined using the Fresnel phase time technique. Meteor echoes belonging to the Orionids radiant were selected using a coordinate transform technique. The speed was then used as an additional discriminant to confirm the Orionid shower members. A second radiant, observed at a slightly higher declination is classified as also part of the Orionid stream. The sporadic meteor component in the data set was examined and found to exhibit speeds much higher than expected for sporadic meteors at the time of the observations. However, these results are consistent with a selection bias based on meteoroid speed, that is inherent in radar observations. The Orionid observations indicate that the refurbishment of the radar system and the introduction of new software for meteor analysis has been successfully achieved and that radar meteor studies can now be carried out routinely with the Buckland Park 2 MHz radar. Moreover it has been shown for the first time that meteoroid speeds can be determined with a MF radar operating on a PRF as low as 60 Hz. / Thesis (Ph.D.)--School of Chemistry and Physics, 2003.
340

Medium frequency radar studies of meteors

Grant, Stephen Ian January 2003 (has links)
This thesis details the application of a medium frequency (MF) Doppler radar to observations of meteoroids entering the Earth's atmosphere. MF radars make possible a greater height coverage of the meteor region (70 to 160 km) than conventional meteor radars. However this type of radar has generally been under-utilised for meteor observations, primarily due to the less than ideal radio environment associated with MF systems. This situation demanded selection of the most appropriate radar meteor techniques and in this respect a variety of techniques are evaluated for application at this frequency. The 2 MHz radar system used in this study is located at the Buckland Park research facility (35.6 deg. S, 138.5 deg. E), near Adelaide, South Australia and is operated by the Department of Physics of the University of Adelaide. This radar has the largest antenna of any MF radar with 89 crossed dipoles distributed over an area of about 1 km in diameter. Beam forming is achieved by varying the phase to groups of elements of the array. The array was constructed in the 1960's, and while having several upgrades, a preliminary examination of the array and associated systems indicated that a significant amount of maintenance work would be required to enable the system to be used for meteor observations. It was also apparent that the software used with the radar hardware for atmospheric studies was not suitable for processing meteor data. Thus a major refurbishment of the radar hardware, as well as the development of appropriate software, was initiated. The complete radar system was divided into its constituent components of antenna array, transmitter, receiver and computer systems. The transmitter and receiver systems were examined and various improvements made including increasing total output power and enhancing beam steering capability. Time domain reflectometry (TDR) techniques were extensively used on the antenna array, as many feed cables showed the presence of moisture. New hardware in the form of a portable power combining system was designed, constructed and tested to further increase radar experimental capabilities. Techniques were developed that verified system performance was to specification. Extensive night time observations of sporadic and shower meteor events were made over a two and a half year period. A particular study was made of the Orionids shower as well as other meteor activity on the night of 22 October 2000. Using the upgraded beam swinging features of the array, a narrow radar beam was used to track the shower radiant in an orthogonal sense so as to maximise the number of shower meteors detected. From each echo, various intrinsic meteoroid parameters were determined, including meteor reflection point angle-of-arrival using a five-element interferometer, echo duration and height; meteoroid speeds were determined using the Fresnel phase time technique. Meteor echoes belonging to the Orionids radiant were selected using a coordinate transform technique. The speed was then used as an additional discriminant to confirm the Orionid shower members. A second radiant, observed at a slightly higher declination is classified as also part of the Orionid stream. The sporadic meteor component in the data set was examined and found to exhibit speeds much higher than expected for sporadic meteors at the time of the observations. However, these results are consistent with a selection bias based on meteoroid speed, that is inherent in radar observations. The Orionid observations indicate that the refurbishment of the radar system and the introduction of new software for meteor analysis has been successfully achieved and that radar meteor studies can now be carried out routinely with the Buckland Park 2 MHz radar. Moreover it has been shown for the first time that meteoroid speeds can be determined with a MF radar operating on a PRF as low as 60 Hz. / Thesis (Ph.D.)--School of Chemistry and Physics, 2003.

Page generated in 0.2505 seconds