• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 76
  • 41
  • 34
  • 33
  • 15
  • 8
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 618
  • 618
  • 211
  • 157
  • 156
  • 116
  • 84
  • 81
  • 77
  • 64
  • 58
  • 53
  • 53
  • 47
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

The discovery and characterization of variable stars in the All-Sky Automated Survey for SuperNovae

Jayasinghe Arachchilage, Tharindu Keshawa 27 September 2022 (has links)
No description available.
372

Spectroscopy and Photometry of Scattered Light Echoes from Supernovae

Sinnott, Brendan 10 1900 (has links)
<p>We present an observational protocol to observe and interpret asymmetries in stellar explosions using scattered light echoes. Spectroscopy of multiple light echoes are used to observe single astronomical sources from multiple viewing angles, allowing for direct observations of explosion asymmetries, when they exist. We present asymmetry detections for two famous historical supernovae: the ~25-year-old SN 1987A and the ~330-year-old Cassiopeia A. In both supernovae we find asymmetries in the first few hundred days of the explosion that appear to be correlated with the geometry of Fe-rich material in the remnant states.</p> <p>Spectroscopy of SN 1987A light echoes reveals a variation in the Hα line profile as a function of echo azimuth, with maximum asymmetry at position angles 16◦ and 186◦, in agreement with the major-axis of the elongated remnant ejecta. We interpret our asymmetry detection as evidence for a two-sided distribution of high-velocity 56Ni in the first few hundred days of SN 1987A, with the most dominant asymmetry redshifted in the south. For Cassiopeia A, we find evidence for a ~4000 km/s velocity excess in the first hundred days of the explosion, roughly aligned with an Fe-rich outflow in the supernova remnant and approximately opposite in direction to the motion of the compact object.</p> <p>Core-collapse supernovae have not yet been successfully modelled despite decades of progress in input physics and computing capability. Despite the significance of thermonuclear Type Ia supernovae to cosmology, the progenitor systems and explosion details also remain unclear. Both observational and theoretical work suggest that non-spherical effects are not only common in supernovae, but may in fact aid in generating successful explosions. In addition to offering a new technique for observing supernova asymmetries, spectroscopy of scattered light echoes allows a direct causal connection to be made between stellar explosions and their observed remnant states.</p> / Doctor of Philosophy (PhD)
373

Electromagnetic Field Interaction Between Overhead High Voltage Power Transmission Line and Buried Utility Pipeline

Ramli, Khairun N., Abd-Alhameed, Raed, Hraga, Hmeda I., Liang, D.T.W., Excell, Peter S. 2011 March 1922 (has links)
Yes / This work presents the development of a new approach of modelling the source excitation and the penetration of structures by continuous propagating electromagnetic (EM) plane waves. The technique incorporates the solution of time-dependent Maxwell's equations and the initial value problem as the structures are illuminated by the plane waves. The propagation of waves from source excitation is simulated by solving a finite-difference Maxwell's equation in the time domain. Subgridding method is used to condense the lattice at the point of interest locally for observing field distribution in high resolution. The computational burden due to huge number of time steps has been eased by employing quasi-static approach. An example of induced EM fields near an underground pipeline runs parallel to a 132 kV overhead power transmission line (OHTL) has been presented which paves the way in the development of new approach of EM fields interaction modelling. / MSCRC
374

Reconfigurable Discrete-time Analog FIR filters for Wideband Analog Signal Processing

Park, Shinwoong 27 February 2019 (has links)
Demand for data communication capacity is rapidly increasing with more and more number of users and higher bandwidth services. As a result, a critical research issue is the implementation of wideband and flexible signal processing in communication and sensing applications. Although software defined radio (SDR) is a possible solution, it may not be practical due to the excessive requirements for analog-to-digital converter (ADCs) and digital filters for wideband signals. In this environment, discrete-time (DT) domain circuits are gaining attention in various architectures such as N-path filters, sampling mixers, and analog FIR/IIR/FFT filters. DT analog signal processing (DT-ASP) ahead of an ADC considerably relaxes the ADC requirements by flexible filtering, offers the potential for higher dynamic range performance, and provides robustness in the presence of digital CMOS scaling. The primary work presented in this dissertation is the design of wideband analog finite impulse response (AFIR) filters. Analog FIR filters have been used as low pass filters for out-of-band rejection in narrow-band applications. However, this work seeks to develop AFIR filters suitable for wideband applications, extending its possible applications. To achieve these performance goals, capacitive digital to analog converters (CDACs) have been introduced for the first time as wideband analog coefficient multipliers, which has led to high linearity analog multiplication with coefficient selection at the DAC resolution. A prototype 4th order DT FIR filter has been implemented in 32nm SOI CMOS technology and has achieved low-pass, band-pass, and high-pass filter (LPF, BPF and HPF) transfer functions corresponding to the programmed coefficient sets with IIP3>11dBm linearity and less than 2 mW/tap of power consumption. The AFIR filter is also utilized to demonstrate a proof-of-concept FIR-based beamforming. The beamforming network consisting of 4 antenna element inputs followed by AFIR filters was implemented with PCB modules with the previously fabricated AFIR filter chip. Behavioral simulations are used to verify the beamforming function with given coefficient sets. Based on the developed AFIR filter modules, FIR-based beamforming was demonstrated with measurement results matching well with the simulations. Further work presented is the design and optimization of multi-section CDAC (MS-CDAC) structures. The proposed MS-CDAC approach provides wide range of options to optimize the tradeoff between kT/C noise, linearity versus switching energy, speed and area. When the optimization approach is applied to a proof-of-concept 10-bit CDAC design, the selected MS-CDAC structure reduces total capacitance and switching energy by 97% and 98%, respectively for given linearity and noise limitations. The proposed MS-CDAC structures are applicable in both DT-ASP coefficient multiplier and SAR-ADC applications. / PHD / In communication systems, filter design is a fundamental task required to recover the signal of interest in the presence of interference. As upcoming communication systems, such as 5th generation (5G) mobile communications and future IEEE 802.11 standards (Wi-Fi), require higher speed and flexibility in signal processing due to the rapidly increasing number of users and data rates, it becomes more challenging to design such filters. In general, analog filters are useful for high-speed, digital filters features flexibility. To take advantage of both aspects, discrete-time (DT) domain filters have become a promising alternative, which can be used to implement digital signal processing functions in the analog domain. This dissertation presents the development of DT analog finite-impulse-response (AFIR) filter design for mixed-signal processing applications. The core idea in this work is to adopt the capacitive DAC (CDAC) as a coefficient multiplier, which enables digital code coefficient multiplication as well as high-speed and high-linearity performance while consuming low power. A prototype 4th order DT FIR filter implemented in 32nm SOI CMOS process is demonstrated with measurements. Based on the developed AFIR filters, proof-of-concept FIR-based beamforming is investigated as well. For this purpose, AFIR filter modules are built on printed-circuit-boards (PCBs) and coefficients are calculated by a simplified method. In addition, this dissertation also includes analysis and optimization of multi-section CDAC (MS-CDAC) structures. Traditional CDAC approaches have a fundamental trade-off between noise and linearity versus size, switching energy and speed. This work explores the characteristics of CDACs depending on the section segmentations and the optimal structure is selected based on the trade-off. Through comprehensive simulations and calculations, the selected structure for 10-bit MS-CDAC achieved 97% and 98% reduced total capacitance and switching energy, respectively.
375

Multi-fold TDEM Experiment Design for Near Surface Conductivity Mapping

Kazlauskas, Eric Michael 07 September 2010 (has links)
Multi-fold Time Domain Electromagnetics (TDEM) is a novel experimental approach that couples elements of traditional land-based TDEM survey designs to obtain a robust data set. This design inherently accommodates a broad range of possible Earth models through a rich combination of analysis opportunities making it ideally suited for reconnaissance. Kentland Farms, VA was chosen as the test site, for its ease of access and interesting geologic features such as river terraces and karstic landscape. Three independent methods of analyzing the 3-component data set each provided unique insights into the subsurface electrical structure through a complementary interpretation. Synthesis of log-normalized ∂tB<sub>z</sub> pseudo-sections provided a first-order analysis of the lateral and vertical heterogeneities of the profile. A Zero-Crossing Moveout (ZCMO) analysis used a brute-force grid-search inversion to estimate the two-layer Earth model that best-fit the observed moveout times for a range of interface depths. By using the ZCMO result as an initial model, regularized 1D Occam inversions determined a 3-layer electrical structure consisting of a 3.5 m – 5 m thick resistive upper layer, over an 12.5 m – 15 m thick conductive layer, overlying a resistive half-space. From correlation of the inverse solutions with ZCMO derived conductivity models and prior resistivity information, the depth to the limestone bedrock was approximated to be 16 – 20 m. The delineation of the bedrock depth provided additional support for the fill-cut terrace formation model (Ward et al., 2005), as well as possible evidence of groundwater drainage on the 40 m terrace at Kentland Farm. / Master of Science
376

Design, fabrication and characterization of plasmonic components based on silicon nanowire platform

Lou, Fei January 2014 (has links)
Optical interconnects based on CMOS compatible photonic integrated circuits are regarded as a promising technique to tackle the issues traditional electronics faces, such as limited bandwidth, latency, vast energy consumption and so on. In recent years, plasmonic integrated components have gained great attentions due to the properties of nano-scale confinement, which may potentially bridge the size mismatch between photonic and electronic circuits. Based on silicon nanowire platform, this thesis work studies the design, fabrication and characterization of several integrated plasmonic components, aiming to combine the benefits of Si and plasmonics. The basic theories of surface plasmon polaritons are introduced in the beginning, where we explain the physics behind the diffraction-free confinement. Numerical methods frequently used in the thesis including finite-difference time-domain method and finite-element method are then reviewed. We summarize the device fabrication techniques such as film depositions, e-beam lithography and inductively coupled plasma etching as well as characterization methods, such as direct measurement method, butt coupling, grating coupling etc. Fabrication results of an optically tunable silicon-on-insulator microdisk and III-V cavities in applications as light sources for future nanophotonics interconnects are briefly discussed. Afterwards we present in details the experimental demonstrations and novel design of plasmonic components. Hybrid plasmonic waveguides and directional couplers with various splitting ratios are firstly experimentally demonstrated. The coupling length of two 170 nm wide waveguides with a separation of 140 nm is only 1.55 µm. Secondly, an ultracompact polarization beam splitter with a footprint of 2×5.1 μm2 is proposed. The device features an extinction ratio of 12 dB and an insertion loss below 1.5 dB in the entire C-band. Thirdly, we show that plasmonics offer decreased bending losses and enhanced Purcell factor for submicron bends. Novel hybrid plasmonic disk, ring and donut resonators with radii of ~ 0.5 μm and 1 μm are experimentally demonstrated for the first time. The Q-factor of disks with 0.5 μm radii are                         , corresponding to Purcell factors of . Thermal tuning is also presented. Fourthly, we propose a design of electro-optic polymer modulator based on plasmonic microring. The figure of merit characterizing modulation efficiency is 6 times better comparing with corresponding silicon slot polymer modulator. The device exhibits an insertion loss below 1 dB and a power consumption of 5 fJ/bit at 100 GHz. At last, we propose a tightly-confined waveguide and show that the radius of disk resonators based on the proposed waveguide can be shrunk below 60 nm, which may be used to pursue a strong light-matter interaction. The presented here novel components confirm that hybrid plasmonic structures can play an important role in future inter- and intra-core computer communication systems. / <p>QC 20140404</p>
377

Modelling and analysis of complex electromagnetic problems using FDTD subgridding in hybrid computational methods : development of hybridised Method of Moments, Finite-Difference Time-Domain method and subgridded Finite-Difference Time-Domain method for precise computation of electromagnetic interaction with arbitrarily complex geometries

Ramli, Khairun Nidzam January 2011 (has links)
The main objective of this research is to model and analyse complex electromagnetic problems by means of a new hybridised computational technique combining the frequency domain Method of Moments (MoM), Finite-Difference Time-Domain (FDTD) method and a subgridded Finite-Difference Time-Domain (SGFDTD) method. This facilitates a significant advance in the ability to predict electromagnetic absorption in inhomogeneous, anisotropic and lossy dielectric materials irradiated by geometrically intricate sources. The Method of Moments modelling employed a two-dimensional electric surface patch integral formulation solved by independent linear basis function methods in the circumferential and axial directions of the antenna wires. A similar orthogonal basis function is used on the end surface and appropriate attachments with the wire surface are employed to satisfy the requirements of current continuity. The surface current distributions on structures which may include closely spaced parallel wires, such as dipoles, loops and helical antennas are computed. The results are found to be stable and showed good agreement with less comprehensive earlier work by others. The work also investigated the interaction between overhead high voltage transmission lines and underground utility pipelines using the FDTD technique for the whole structure, combined with a subgridding method at points of interest, particularly the pipeline. The induced fields above the pipeline are investigated and analysed. FDTD is based on the solution of Maxwell's equations in differential form. It is very useful for modelling complex, inhomogeneous structures. Problems arise when open-region geometries are modelled. However, the Perfectly Matched Layer (PML) concept has been employed to circumvent this difficulty. The establishment of edge elements has greatly improved the performance of this method and the computational burden due to huge numbers of time steps, in the order of tens of millions, has been eased to tens of thousands by employing quasi-static methods. This thesis also illustrates the principle of the equivalent surface boundary employed close to the antenna for MoM-FDTD-SGFDTD hybridisation. It depicts the advantage of using hybrid techniques due to their ability to analyse a system of multiple discrete regions by employing the principle of equivalent sources to excite the coupling surfaces. The method has been applied for modelling human body interaction with a short range RFID antenna to investigate and analyse the near field and far field radiation pattern for which the cumulative distribution function of antenna radiation efficiency is presented. The field distributions of the simulated structures show reasonable and stable results at 900 MHz. This method facilitates deeper investigation of the phenomena in the interaction between electromagnetic fields and human tissues.
378

Efficient high-order time domain finite element methods in electromagnetics

Marais, Neilen 03 1900 (has links)
Thesis (DEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / The Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can beused to solve a large class of Electromagnetics problems with high accuracy and good computational efficiency. For solving wide-band problems time domain solutions are often preferred; while time domain FEM methods are feasible, the Finite Difference Time Domain (FDTD) method is more commonly applied. The FDTD is popular both for its efficiency and its simplicity. The efficiency of the FDTD stems from the fact that it is both explicit (i.e. no matrices need to be solved) and second order accurate in both time and space. The FDTD has limitations when dealing with certain geometrical shapes and when electrically large structures are analysed. The former limitation is caused by stair-casing in the geometrical modelling, the latter by accumulated dispersion error throughout the mesh. The FEM can be seen as a general mathematical framework describing families of concrete numerical method implementations; in fact the FDTD can be described as a particular FETD (Finite Element Time Domain) method. To date the most commonly described FETD CEM methods make use of unstructured, conforming meshes and implicit time stepping schemes. Such meshes deal well with complex geometries while implicit time stepping is required for practical numerical stability. Compared to the FDTD, these methods have the advantages of computational efficiency when dealing with complex geometries and the conceptually straight forward extension to higher orders of accuracy. On the downside, they are much more complicated to implement and less computationally efficient when dealing with regular geometries. The FDTD and implicit FETD have been combined in an implicit/explicit hybrid. By using the implicit FETD in regions of complex geometry and the FDTD elsewhere the advantages of both are combined. However, previous work only addressed mixed first order (i.e. second order accurate) methods. For electrically large problems or when very accurate solutions are required, higher order methods are attractive. In this thesis a novel higher order implicit/explicit FETD method of arbitrary order in space is presented. A higher order explicit FETD method is implemented using Gauss-Lobatto lumping on regular Cartesian hexahedra with central differencing in time applied to a coupled Maxwell’s equation FEM formulation. This can be seen as a spatially higher order generalisation of the FDTD. A convolution-free perfectly matched layer (PML) method is adapted from the FDTD literature to provide mesh termination. A curl conforming hybrid mesh allowing the interconnection of arbitrary order tetrahedra and hexahedra without using intermediate pyramidal or prismatic elements is presented. An unconditionally stable implicit FETD method is implemented using Newmark-Beta time integration and the standard curl-curl FEM formulation. The implicit/explicit hybrid is constructed on the hybrid hexahedral/tetrahedral mesh using the equivalence between the coupled Maxwell’s formulation with central differences and the Newmark-Beta method with Beta = 0 and the element-wise implicitness method. The accuracy and efficiency of this hybrid is numerically demonstrated using several test-problems.
379

A comparative analysis of the performance and deployment overhead of parallelized Finite Difference Time Domain (FDTD) algorithms on a selection of high performance multiprocessor computing systems

Ilgner, Robert Georg 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The parallel FDTD method as used in computational electromagnetics is implemented on a variety of different high performance computing platforms. These parallel FDTD implementations have regularly been compared in terms of performance or purchase cost, but very little systematic consideration has been given to how much effort has been used to create the parallel FDTD for a specific computing architecture. The deployment effort for these platforms has changed dramatically with time, the deployment time span used to create FDTD implementations in 1980 ranging from months, to the contemporary scenario where parallel FDTD methods can be implemented on a supercomputer in a matter of hours. This thesis compares the effort required to deploy the parallel FDTD on selected computing platforms from the constituents that make up the deployment effort, such as coding complexity and time of coding. It uses the deployment and performance of the serial FDTD method on a single personal computer as a benchmark and examines the deployments of the parallel FDTD using different parallelisation techniques. These FDTD deployments are then analysed and compared against one another in order to determine the common characteristics between the FDTD implementations on various computing platforms with differing parallelisation techniques. Although subjective in some instances, these characteristics are quantified and compared in tabular form, by using the research information created by the parallel FDTD implementations. The deployment effort is of interest to scientists and engineers considering the creation or purchase of an FDTD-like solution on a high performance computing platform. Although the FDTD method has been considered to be a brute force approach to solving computational electromagnetic problems in the past, this was very probably a factor of the relatively weak computing platforms which took very long periods to process small model sizes. This thesis will describe the current implementations of the parallel FDTD method, made up of a combination of several techniques. These techniques can be easily deployed in a relatively quick time frame on computing architectures ranging from IBM’s Bluegene/P to the amalgamation of multicore processor and graphics processing unit, known as an accelerated processing unit. / AFRIKAANSE OPSOMMING: Die parallel Eindige Verskil Tyd Domein (Eng: FDTD) metode word gebruik in numeriese elektromagnetika en kan op verskeie hoë werkverrigting rekenaars geïmplementeer word. Hierdie parallele FDTD implementasies word gereeld in terme van werkverrigting of aankoop koste vergelyk, maar word bitter min sistematies oorweeg in terme van die hoeveelheid moeite wat dit geverg het om die parallele FDTD vir 'n spesifieke rekenaar argitektuur te skep. Mettertyd het die moeite om die platforms te ontplooi dramaties verander, in the 1980's het die ontplooings tyd tipies maande beloop waarteenoor dit vandag binne 'n kwessie van ure gedoen kan word. Hierdie tesis vergelyk die inspanning wat nodig is om die parallelle FDTD op geselekteerde rekenaar platforms te ontplooi deur te kyk na faktore soos die kompleksiteit van kodering en die tyd wat dit vat om 'n kode te implementeer. Die werkverrigting van die serie FDTD metode, geïmplementeer op 'n enkele persoonlike rekenaar word gebruik as 'n maatstaf om die ontplooing van die parallel FDTD met verskeie parallelisasie tegnieke te evalueer. Deur hierdie FDTD ontplooiings met verskillende parallelisasie tegnieke te ontleed en te vergelyk word die gemeenskaplike eienskappe bepaal vir verskeie rekenaar platforms. Alhoewel sommige gevalle subjektief is, is hierdie eienskappe gekwantifiseer en vergelyk in tabelvorm deur gebruik te maak van die navorsings inligting geskep deur die parallel FDTD implementasies. Die ontplooiings moeite is belangrik vir wetenskaplikes en ingenieurs wat moet besluit tussen die ontwikkeling of aankoop van 'n FDTD tipe oplossing op 'n höe werkverrigting rekenaar. Hoewel die FDTD metode in die verlede beskou was as 'n brute krag benadering tot die oplossing van elektromagnetiese probleme was dit waarskynlik weens die relatiewe swak rekenaar platforms wat lank gevat het om klein modelle te verwerk. Hierdie tesis beskryf die moderne implementering van die parallele FDTD metode, bestaande uit 'n kombinasie van verskeie tegnieke. Hierdie tegnieke kan maklik in 'n relatiewe kort tydsbestek ontplooi word op rekenaar argitekture wat wissel van IBM se BlueGene / P tot die samesmelting van multikern verwerkers en grafiese verwerkings eenhede, beter bekend as 'n versnelde verwerkings eenheid.
380

Finite element tearing and interconnecting for the electromagnetic vector wave equation in two dimensions

Marchand, Renier Gustav 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007. / The finite element tearing and interconnect(FETI) domain decomposition(DD) method is investigated in terms of the 2D transverse electric(TEz) finite element method(FEM). The FETI is for the first time rigorously derived using the weighted residual framework from which important insights are gained. The FETI is used in a novel way to implement a total-/scattered field decomposition and is shown to give excellent results. The FETI is newly formulated for the time domain(FETI-TD), its feasibility is tested and it is further formulated and tested for implementation on a distributed computer architecture.

Page generated in 0.0471 seconds