401 |
Inclusão do efeito da frequência nas equações de estado de linhas bifásicas : análise no domínio do tempo /Yamanaka, Fábio Norio Razé. January 2009 (has links)
Orientador: Sérgio Kurokawa / Banca: Afonso José do Prado / Banca: Lourenço Matias / Resumo: O objetivo deste projeto é o desenvolvimento de um modelo de linha de transmissão bifásica diretamente no domínio do tempo, que leve em consideração o efeito da freqüência sobre seus parâmetros longitudinais, utilizando os conceitos de variáveis de estado. Os parâmetros longitudinais, variáveis em relação à freqüência, serão aproximados por funções racionais, cujos pólos e resíduos deverão ser determinados por meio do algoritmo vector fitting. Em seguida, as funções racionais que descrevem o comportamento dos parâmetros longitudinais serão associadas com um circuito elétrico equivalente, que será inserido em cada um dos circuitos π, constituindo uma grande quantidade de cascata de circuitos π. O modelo será utilizado para a realização de simulações de transitórios resultantes das operações de manobras e chaveamentos que ocorrem em uma linha bifásica com plano de simetria vertical. Os resultados serão comparados com os resultados obtidos com programas computacionais do tipo EMTP (cascata de circuitos π inserida no EMTP). Ao término do projeto teremos a nossa disposição um modelo de linha de transmissão que não necessita do uso de simuladores do tipo EMTP. / Abstract: The objective of this work is to implement a computational model of two-phase transmission line in time domain taking into account its frequency dependent longitudinal parameters. The line is represented through a cascade of π circuits and the frequency dependence of the longitudinal parameters is approximated by a rational functions that can be associated with an equivalent circuit representation and this equivalent circuit is inserted in each π circuit. After that the cascade is described through state equations. Validating the model, a frequency dependent two-phase line is represented by a cascade of π circuits. The model will be use for typical switching transients in a two-phase transmission line with a vertical symmetrical plan. The simulations were carried out using state space techniques and an EMTP program (in this case, the cascade was inserted in the EMTP program). It is observed that the simulation results obtained with state space representation are in agreement with those results obtained with EMTP. / Mestre
|
402 |
Avaliação de uma sonda TDR helicoidal para a estimativa do teor de umidade de solos em campo e laboratório / Evaluation of a helicoidal TDR probe to estimate the soil water content in laboratory and in situAssis, Cleber Decarli de 09 May 2008 (has links)
Este trabalho de pesquisa apresenta a avaliação de uma sonda TDR helicoidal para estimar o teor de umidade dos solos, em diferentes profundidades, através da técnica da reflectometria no domínio do tempo (TDR). Essa sonda, desenvolvida especificamente para esse fim, foi devidamente calibrada em laboratório para diferentes tipos de solo. O processo de calibração consistiu na determinação da constante dielétrica aparente (Ka) e condutividade elétrica volumétrica (ECb) de um mesmo solo com diferentes teores de umidade. Posteriormente foram buscadas correlações entre Ka e o teor de umidade gravimétrico (w), obtido em estufa. São propostas correlações entre w e Ka, entre w e \'KA POT. 1/2\' e entre teor de umidade volumétrico (\'teta\') e Ka. Também foram consideradas as correlações propostas por Yu e Drnevich (2004), visando estimar também a massa específica seca dos solos. Foram realizados ensaios de campo para a validação das equações de calibração. Os valores dos teores de umidade estimados através da técnica da reflectometria no domínio do tempo, tanto em laboratório como em campo, foram comparados com os valores de teor de umidade obtidos com o método da estufa. Com base nos resultados foram determinados os erros referentes às calibrações. Nos ensaios de campo, os teores de umidade obtidos através da correlação entre w e \'KA POT. 1/2\' apresentaram melhores resultados, quando comparados com aqueles estimados com as outras correlações. Pelos resultados obtidos conclui-se que a técnica TDR é uma alternativa viável para a estimativa em campo do teor de umidade em grandes profundidades. / In this work is presented the evaluation of a recently developed helicoidal probe used for estimating the soil water content through the time domain technology (TDR). This probe has been calibrated in laboratory for different types of soils. The calibration process consisted in assessing the values of the apparent dielectric constant (Ka) and the bulk electric conductivity (ECb) of a specific soil at different levels of water content (w). Subsequently, correlations between the apparent dielectric constant and the water content have been established. The same has done with the bulk electric conductivity. Correlations between Ka and w, \'KA POT. 1/2\' and w, \'teta\' (volumetric water content) and Ka have been proposed. Also, the correlations proposed by Yu and Drnevich (2004) have been considered. To validate the proposed correlations, tests using the helicoidal probe were performed in the field. Estimated values of field water content, using the TDR technology have been compared to the correspondent oven water content values. Based on these comparisons, errors regarding the calibrations have been calculated. In the field tests, the correlations between \'KA POT. 1/2\' and w have presented more accurate results than those obtained with the other correlations. Experimental results have shown that the TDR technology for estimating water content at different depths in the field is feasible and expedite.
|
403 |
Multidimensional Measurements : on RF Power AmplifiersAl-Tahir, Hibah January 2008 (has links)
<p>Abstract</p><p>In this thesis, a measurement system was set to perform comprehensive measurements on RF power amplifiers. Data obtained from the measurements is then processed mathematically to obtain three dimensional graphs of the basic parameters affected or generated by nonlinearities of the amplifier i.e. gain, efficiency and distortion. Using a class AB amplifier as the DUT, two sets of signals – both swept in power level and frequency - were generated to validate the method, a two-tone signal and a WCDMA signal. The three dimensional plot gives a thorough representation of the behavior of the amplifier in any arbitrary range of spectrum and input level. Sweet spots are consequently easy to detect and analyze. The measurement setup can also yield other three dimensional plots of variations of gain, efficiency or distortion versus frequencies and input levels. Moreover, the measurement tool can be used to plot traditional two dimensional plots such as, input versus gain, frequency versus efficiency etc, making the setup a practical tool for RF amplifiers designers.</p><p>The test signals were generated by computer then sent to a vector signal generator that generates the actual signals fed to the amplifier. The output of the amplifier is fed to a vector signal analyzer then collected by computer to be handled. MATLAB® was used throughout the entire process.</p><p>The distortion considered in the case of the two-tone signals is the third order intermodulation distortion (IM3) whereas Adjacent Channel Power Ratio (ACPR) was considered in the case of WCDMA.</p>
|
404 |
The Impulse-Radiating AntennaRosenlind, Johanna January 2009 (has links)
<p>As the interest in intentional electromagnetic interference (IEMI) increases, so does the need of a suitable antenna which endures those demanding conditions. The ultrawideband (UWB) technology provides an elegant way of generating high-voltage UWB pulses which can be used for IEMI. One UWB antenna, invented solely for the purpose of radiating pulses, is the impulse radiating antenna (IRA). In the course of this master thesis work, a suitable geometry of the IRA is suggested, and modelled, for the high-voltage application of 90 kV.</p>
|
405 |
Nematic Liquid Crystal Spatial Light Modulators for Laser Beam Steering / Spatiella ljusmodulatorer med nematisk flytande kristall för laserstrålstyrningHällstig, Emil January 2004 (has links)
<p>Laser beam control is important in many applications. Phase modulating spatial light modulators (SLMs) can be used to electronically alter the phase distribution of an optical wave-front and thus change the direction and shape of a laser beam. Physical constraints set limitations to the SLM and an ideal phase distribution can usually not be realised. In order to understand how such components can be used for non-mechanical beam control three nematic liquid crystal (NLC) SLMs have been thoroughly characterised and modelled.</p><p>The pixel structure and phase quantisation give a discrepancy between ideal and realised phase distributions. The impact on beam steering capability was examined by measurements and simulations of the intensity distribution in the far-field.</p><p>In two of the studied SLMs the pixel period was shorter than the thickness of the LC layer giving the optical phase shift. This results in a so-called “fringing field”, which was shown to degrade the phase modulation and couple light between polarisation modes. The deformation of the LC was simulated and a finite-difference time-domain (FDTD) algorithm was used to calculate how polarised light propagates through the optically anisotropic SLM.</p><p>Non-mechanical beam steering and tracking in an optical free-space communication link were demonstrated. Continual optimisation of the steering angle was achieved by feedback from a video camera.</p><p>The optical properties of the SLM in the time period right after a voltage update were studied. It was shown how light is redistributed between orders during the switching from one blazed grating to another. By appropriate choice of the blazed gratings the effects on the diffraction efficiency can be minimised.</p><p>The detailed knowledge of the SLM structure and its response to electronic control makes it possible to predict and optimise the device performance in future systems.</p>
|
406 |
Nematic Liquid Crystal Spatial Light Modulators for Laser Beam Steering / Spatiella ljusmodulatorer med nematisk flytande kristall för laserstrålstyrningHällstig, Emil January 2004 (has links)
Laser beam control is important in many applications. Phase modulating spatial light modulators (SLMs) can be used to electronically alter the phase distribution of an optical wave-front and thus change the direction and shape of a laser beam. Physical constraints set limitations to the SLM and an ideal phase distribution can usually not be realised. In order to understand how such components can be used for non-mechanical beam control three nematic liquid crystal (NLC) SLMs have been thoroughly characterised and modelled. The pixel structure and phase quantisation give a discrepancy between ideal and realised phase distributions. The impact on beam steering capability was examined by measurements and simulations of the intensity distribution in the far-field. In two of the studied SLMs the pixel period was shorter than the thickness of the LC layer giving the optical phase shift. This results in a so-called “fringing field”, which was shown to degrade the phase modulation and couple light between polarisation modes. The deformation of the LC was simulated and a finite-difference time-domain (FDTD) algorithm was used to calculate how polarised light propagates through the optically anisotropic SLM. Non-mechanical beam steering and tracking in an optical free-space communication link were demonstrated. Continual optimisation of the steering angle was achieved by feedback from a video camera. The optical properties of the SLM in the time period right after a voltage update were studied. It was shown how light is redistributed between orders during the switching from one blazed grating to another. By appropriate choice of the blazed gratings the effects on the diffraction efficiency can be minimised. The detailed knowledge of the SLM structure and its response to electronic control makes it possible to predict and optimise the device performance in future systems.
|
407 |
Block-based Bayesian Decision Feedback Equalization for ZP-OFDM Systems with Semi-Blind Channel EstimationBai, Yun-kai 25 August 2007 (has links)
Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions. The introduced redundancy at the transmitter allows us to overcome serious inter-block interference (IBI) problems due to highly dispersive channel. However, the selection of redundancy length will affect the system performance and spectral efficiency, and is highly dependent on the length of channel impulse response. In this thesis, based on the pseudorandom postfix (PRP) OFDM scheme we propose a novel block-based OFDM transceiver framework. Since in the PRP-OFDM system the PRP can be employed for semi-blind channel estimation with order-one statistics of the received signal. Hence, for sufficient redundancy case the PRP-OFDM system with the Bayesian decision feedback equalizer (DFE) is adopted for suppressing the IBI and ISI simultaneously. However, for the insufficient redundancy case (the length of redundancy is less than the order of channel), we first propose a modified scheme for channel estimation. To further reduce the complexity of receiver, the maximum shortening signal-to-noise-ratio time domain equalizer (MSSNR TEQ) with the Bayesian DFE is developed for suppressing the IBI and ISI, separately. That is, after knowing the channel state information (CSI) and removing the effect of IBI with MSSNR TEQ, the Bayesian DFE is applied for eliminating the ISI. Via computer simulation, we verify that performance improvement, in terms of bit error rate (BER), compared with the conventional block-based minimum mean square error (MMSE)-DFE can be achieved.
|
408 |
Computational methods for the analysis and design of photonic bandgap structuresQiu, Min January 2000 (has links)
In the present thesis, computational methods for theanalysis and design of photonic bandgap structure areconsidered. Many numerical methods have been used to study suchstructures. Among them, the plane wave expansion method is veryoften used. Using this method, we show that inclusions ofelliptic air holes can be used effectively to obtain a largercomplete band gap for two-dimensional (2D) photonic crystals.An optimal design of a 2D photonic crystal is also consideredin the thesis using a combination of the plane wave expansionmethod and the conjugate gradient method. We find that amaximum complete 2D band gap can be obtained by connectingdielectric rods with veins for a photonic crystal with a squarelattice of air holes in GaAs. For some problems, such as defect modes, the plane waveexpansion method is extremely time-consuming. It seems that thefinite-difference time-domain (FDTD) method is promising, sincethe computational time is proportional to the number of thediscretization points in the computation domain (i.e., it is oforderN). A FDTD scheme in a nonorthogonal coordinate systemis presented in the thesis to calculate the band structure of a2D photonic crystal consisting of askew lattice. The algorithmcan easily be used for any complicated inclusion configuration,which can have both the dielectric and metallic constituents.The FDTD method is also applied to calculate the off-plane bandstructures of 2D photonic crystals in the present thesis. Wealso propose a numerical method for computing defect modes in2D crystals (with dielectric or metallic inclusions). Comparedto the FDTD transmission spectra method, our method reduces thecomputation time and memory significantly, and finds as manydefect modes as possible, including those that are not excitedby an incident plane wave in the FDTD transmission spectramethod. The FDTD method has also been applied to calculateguided modes and surface modes in 2D photonic crystals using acombination of the periodic boundary condition and theperfectly matched layer for the boundary treatment. Anefficient FDTD method, in which only real variables are used,is also proposed for the full-wave analysis of guided modes inphotonic crystal fibers. / QC 20100629
|
409 |
Design, Fabrication, and Characterization of Nano-Photonic Components Based on Silicon and Plasmonic MaterialLiu, Liu January 2006 (has links)
Size reduction is a key issue in the development of contemporary integrated photonics. This thesis is mainly devoted to study some integrated photonic components in sub-wavelength or nanometric scales, both theoretically and experimentally. The possible approaches to reduce the sizes or to increase the functionalities of photonic components are discussed, including waveguides and devices based on silicon nanowires, photonic crystals, surface plasmons, and some near-field plasmonic components. First, some numerical methods, including the finite-difference time-domain method and the full-vectorial finite-difference mode solver, are introduced. The finite-difference time-domain method can be used to investigate the interaction of light fields with virtually arbitrary structures. The full-vectorial finite-difference mode solver is mainly used for calculating the eigenmodes of a waveguide structure. The fabrication and characterization technologies for nano-photonic components are reviewed. The fabrications are mainly based on semiconductor cleanroom facilities, which include thin film deposition, electron beam lithography, and etching. The characterization setups with the end-fire coupling and the vertical grating coupling are also described. Silicon nanowire waveguides and related devices are studied. Arrayed waveguide gratings with 11nm and 1.6nm channel spacing are fabricated and characterized. The dimension of these arrayed waveguide gratings is around 100 μm, which is 1--2 order of magnitude smaller than conventional silica based arrayed waveguide gratings. A compact polarization beam splitter employing positive/negative refraction based on a photonic crystal of silicon pillars is designed and demonstrated. Extinction ratio of ~15dB is achieved experimentally in a wide wavelength range. Surface plasmon waveguides and devices are analyzed theoretically. With surface plasmons the light field can be confined in a sub-wavelength dimension. Some related photonic devices, e.g., directional couplers and ring resonators, are studied. We also show that some ideas and principles of microwave devices, e.g., a branch-line coupler, can be borrowed for building corresponding surface plasmon based devices. Near-field plasmonic components, including near-field scanning optical microscope probes and left handed material slab lenses, are also analyzed. Some novel designs are introduced to enhance the corresponding systems. / QC 20100908
|
410 |
Multidimensional Measurements : on RF Power AmplifiersAl-Tahir, Hibah January 2008 (has links)
Abstract In this thesis, a measurement system was set to perform comprehensive measurements on RF power amplifiers. Data obtained from the measurements is then processed mathematically to obtain three dimensional graphs of the basic parameters affected or generated by nonlinearities of the amplifier i.e. gain, efficiency and distortion. Using a class AB amplifier as the DUT, two sets of signals – both swept in power level and frequency - were generated to validate the method, a two-tone signal and a WCDMA signal. The three dimensional plot gives a thorough representation of the behavior of the amplifier in any arbitrary range of spectrum and input level. Sweet spots are consequently easy to detect and analyze. The measurement setup can also yield other three dimensional plots of variations of gain, efficiency or distortion versus frequencies and input levels. Moreover, the measurement tool can be used to plot traditional two dimensional plots such as, input versus gain, frequency versus efficiency etc, making the setup a practical tool for RF amplifiers designers. The test signals were generated by computer then sent to a vector signal generator that generates the actual signals fed to the amplifier. The output of the amplifier is fed to a vector signal analyzer then collected by computer to be handled. MATLAB® was used throughout the entire process. The distortion considered in the case of the two-tone signals is the third order intermodulation distortion (IM3) whereas Adjacent Channel Power Ratio (ACPR) was considered in the case of WCDMA.
|
Page generated in 0.0459 seconds