• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Espectroscopia resolvida no tempo aplicada ao estudo de transferência de energia em moléculas orgânicas e em nanopartículas de ouro / Time-resolved spectroscopy applied to the study of the electronic energy transfer in organic molecules and energy transfer in gold nanoparticles

Ferbonink, Guilherme Ferreira, 1985- 25 August 2018 (has links)
Orientador: René Alfonso Nome Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-25T09:25:13Z (GMT). No. of bitstreams: 1 Ferbonink_GuilhermeFerreira_M.pdf: 3339040 bytes, checksum: ef20418e159acb6b4683d177155e28be (MD5) Previous issue date: 2014 / Resumo: Nos últimos anos, várias descobertas vêm sendo realizada sobre como características intrínsecas de um dado sistema podem afetar a transferência eletrônica de energia. Um dos objetivos desta pesquisa é estudar experimentalmente como a estrutura vibrônica pode afetar a transferência eletrônica de energia em moléculas orgânicas segundo o modelo de Förster. Utilizando um sistema molecular com sobreposição espectral sobre bandas vibrônicas bem definidas, podemos verificar experimentalmente que o abaixamento da intensidade de emissão do doador unicamente nos comprimentos de onda de absorção do receptor caracteriza transferência de energia pelo modelo emissivo. Abaixamento da intensidade integrada de emissão caracteriza transferência de energia pelo mecanismo de Förster. A taxa de transferência de energia pelo mecanismo de Förster foi mais significativa quando a sobreposição espectral ocorre nas bandas vibrônica 0-1,0-2 ao invés da banda 0-0. Na segunda parte do trabalho realizado, aplicamos a técnica de absorção transiente para o estudo de nano prismas de ouro depositados sobre dois substratos diferentes. Neste trabalho, nós descrevemos a preparação e caracterização de matrizes isoladas de nanoprismas triangulares de ouro sobre o vidro contendo uma camada de ITO por litografia de nanoesferas. O espectro de absorção linear de Au / vidro e Au / ITO / vidro exibe ressonância de plásmon de superfície em 800 nm e 870 nm, com um deslocamento para o vermelho de 70 nm associado ao índice de refração de ITO. Foram realizadas medidas de espectroscopia de uma única cor de bombeio e prova com resolução temporal de 100 fs em comprimentos de onda inferiores a ressonância, em ressonância, e acima da ressonância de plásmon de superfície para cada um destes dois sistemas. A dinâmica ultra-rápida em ambos os sistemas pode ser bem descrita com um modelo que contabiliza o espalhamento elétron-elétron, o acoplamento elétron-fônon, e oscilações acústicas no término do resfriamento da estrutura de ouro. Os resultados para as nanopartículas de ouro, para cada um dos comprimentos de onda são bem descritos como tendo índice de refração complexo com dependência do comprimento de onda, que modula os sinais de bombeio e prova medidos / Abstract: Structure-property relationships for electronic energy transfer have been investigated in recent years. One of the goals of the present research is to perform an experimental study vibronic structure effects in electronic energy transfer between small organic molecules according to Forster¿s model. We have chosen organic molecules with well-defined spectral overlap between vibronic bands, which enabled us to experimentally characterize a decrease in donor emission intensity at the acceptor absorption wavelengths thereby indicating radiative energy transfer. A decrease in the emission integrated intensity characterizes energy transfer by the Forster mechanism. Forster energy transfer rates were higher when the spectral overlap involved 0-1 and 0-2 vibronic bands rather than 0-0 band. In the second part of this work, we have employed ultrafast transient absorption spectroscopy to investigated gold nano prisms deposited over two different substrates: Au over glass (Au/glass) and Au over ITO deposited on glass (Au/ITO/glass). In the present work, we describe the preparation and characterization of these two samples employing the nanosphere lithography technique. The linear absorption spectra of Au/glass and Au/ITO/glass respectively show surface plasmon resonances at 800 nm and 870 nm, with a 70nm redshift attributed to the ITO refractive index. We have performed femtosecond one-color pump-probe measurements with 100 fs time resolution below the surface plasmon resonance, at resonance, and above the surface plasmon resonance for each of these two systems. For both systems, the ultrafast dynamics can be well described with a model that takes into account electron-electron scattering, electron-phonon coupling, phonon-phonon coupling and acoustic damping. The wavelength-dependence observed can be explained in terms of the sample frequency-dependent complex refractive index which modulates the measured pump-probe signals / Mestrado / Físico-Química / Mestre em Química
42

Plasmonic cavities and optical nanosources / Cavités plasmoniques et nanosources optiques

Derom, Stephane 17 December 2013 (has links)
Les microcavités optiques présentent de hauts facteurs de qualité, c'est pourquoi ces systèmes sont d'un grand intérêt pour la conception de lasers à bas seuil, ou encore, pour l'étude du régime de couplage fort. En revanche, ces systèmes sont soumis à la limite de diffraction de la lumière, et donc les modes qu'ils supportent ont une extension spatiale ne pouvant être en deçà de l'échelle de la longueur d'onde. Dans ce manuscrit de thèse, nous nous intéressons aux systèmes plasmoniques parce qu'ils supportent des modes confinés à l'échelle nanométrique. En premier lieu, nous étudions une microcavité plasmonique planaire, constituée de deux miroirs plasmoniques qui piègent les ondes de surface au sein du système. Nous sondons spatialement les modes de la cavité en mesurant le temps de vie de fluorescence de molécules individuelles dispersées au sein du système. Puis, nous nous intéressons au confinement en 3 dimensions de modes supportés par des nanoparticules métalliques sphériques. Nous discutons de la définition du volume modal basée sur le calcul du confinement d'énergie autour de la particule. Ensuite, nous étudions l'exaltation de fluorescence d'ions de terres rares au sein d'une particule plasmonique de configuration coeur-coquille. Enfin, nous perturbons la photodynamique d'émission d'une source de photon unique en approchant à proximité l'extrémité d'une pointe plasmonique / Optical microcavities exhibit high resonance quality, so that, they are of key interest for the design of low-threshold lasers or for achieving strong coupling regime. But, such systems support modes whose the volume remain diffraction limited.In this manuscript, we are interested in their plasmonic counterparts because they support confined modes at the sub-wavelength scale. First, we study an in-plane plasmonic cavity which is the transposition of 1D optical cavity to surface wave. We characterize the cavity by measuring the fluorescence lifetime of dye molecules deposited inside.Then, we are interested in 3-dimension mode confinement achieved by spherical metal nanoparticles. We discuss on the definition of the mode volume used in cavity quantum electrodynamic and based on the calculation of energy confinement around the particle. We also simulate the fluorescence enhancement of rare-earth ions embedded inside core-shell plasmonic particles. Finally, we disturb the photodynamic emission of a single-photon source by puttingthe extremity of a plasmonic tip nearby the emitter
43

Solvent Effects on Photochemistry and Photophysics of Aromatic Carbonyls : A Raman and Computational study

Venkatraman, Ravi Kumar January 2016 (has links) (PDF)
Solvent effects play diverse roles in myriads of chemical, physical and biological processes. The solvent interacts with the solute by: i) non-specific (Coulombic, van der Waals interactions) and ii) specific interactions (hydrogen bonding, etc.). These interactions are responsible for solvation of the solute and are collectively termed as “solvent polarity”. Differential solvation of ground and excited electronic states is manifested in the absorption spectrum as a change in the band position, intensity or shape, which is termed as “solvatochromism”. Intermolecular hydrogen bonding (IHB) is a kind of specific solute-solvent interaction, which plays a key role in molecular or supramolecular photochemistry, as well as in photobiology. Solvation and its influence on various physico-chemical and biological processes can be understood by i) top-down; and ii) bottom-up approaches. In the top-down approach, the macroscopic properties like dielectric constant, refractive index are used to understand the microscopic solvation. This approach fails when specific interactions like hydrogen bonding interactions come into play, and furthermore it can reproduce only the macroscopic polarization of the solvent but fails miserably at the cybotactic region of solvation. With the recent advancements in the computational field, the molecular level description of solvation has been within reach for chemical physicists and experimentalists to corroborate their experimental results and in turn to visualize processes of fundamental or technologically relevant problems. The energy levels of the nπ* and ππ* singlet and triplet excited states of aromatic ketones are close-lying and therefore their energy levels can be altered by the substituents. The solvent polarity can be used as a surrogate to tune their energy levels. In certain cases, the lowest triplet or singlet excited states can switch their electronic character with increasing solvent polarity known as “electronic state switching” and thus modulate their photochemical or photophysical properties. Therefore, aromatic ketones were used as solvatochromic probes in this work. Comprehensive analyses of the solvent effects on xanthone (XT), 9,10-phenanthrenequinone (PQ) and benzophenone (Bzp) were carried out using steady-state and nanosecond time-resolved absorption, and resonance Raman spectroscopy in conjunction with ad hoc and classical-molecular dynamics and simulations generated supermolecule-continuum solvent model quantum mechanical calculations to corroborate the experimental outcomes and in turn to visualize the solvation process at the molecular level. The present thesis is divided into eight chapters and the summary of each chapter is described below: Chapter 1 provides a brief literature review of solvation effects and their influence on various physico-chemical and biological processes. Furthermore, the importance of understanding solvation at the molecular level and key concepts are discussed, which forms the heart of this thesis. Chapter 2 discusses the experimental and computational approaches used to study the solvation processes at the molecular level. A detailed explanation of spectroscopic techniques like resonance Raman (RR) and nanosecond-time resolved resonance Raman (ns-TR3) spectroscopy and their experimental and theoretical aspects are discussed, followed by a discussion on the fundamental concepts of computational methods like ab initio calculations density functional theory (DFT), and classical molecular dynamics and simulations (c-MDS) utilized in this study. Chapter 3 focuses on microscopic understanding of solvatochromic shifts observed for 9,10-phenanthrenequinone in protic solvents using UV-Vis and RR spectroscopy in conjunction with an ad hoc explicit solvation model and time-dependent density functional theory (TDDFT) calculations. The hypsochromic shift and bathochromic shift of the singlet nπ* and ππ* electronic transitions in protic solvents are due to hydrogen bond weakening and strengthening in the excited state for the corresponding electronic transitions, respectively as indicated by TD-DFT calculations and Kamlet-Taft linear solvation energy relationships. The hydrogen bond strengthening in the singlet ππ* excited state is further confirmed by Raman excitation profile (REP) analysis of PQ in different solvents. Furthermore, with increasing solvent polarity the two lowest singlet excited states undergo different hydrogen bonding mechanisms, leading to a decreasing energy gap between them. Therefore, hyperchromism of the nπ* transition has been hypothesized to be due to an increasing vibronic coupling between the lowest singlet nπ* and ππ* excited states. In Chapter 4, a real time observation of the thermal equilibrium between the lowest triplet excited states of PQ in acetonitrile solvent was carried out using ns-TR3 spectroscopy and this can explain its high reactivity towards H-atom abstraction, despite the fact that the lowest triplet excited state has ππ* character. Furthermore, extending the concept of hydrogen bonding mechanisms of the lowest singlet to the triplet excited states, the different hydrogen bonding mechanisms exhibited by them can lead to alteration of the intersystem crossing mechanisms in PQ. Chapter 5 highlights the very different role of intermolecular hydrogen bonding in the reduced reactivity of the xanthone (XT) triplet towards H-atom abstraction in protic solvents. The different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states in protic solvents are derived from an ad hoc explicit solvation model, TD-DFT calculations and ns-time resolved absorption (ns-TRA): they separate them further in energy and thereby the nearest T2(nπ*) triplet state to the T1(ππ*) excited state plays an insignificant role in the reactivity towards H-atom abstraction, in contrast to the PQ triplet discussed in Chapter 4. Chapter 6 discusses the structure of XT triplet states using TR3 spectroscopy in combination with TD-DFT studies. The TR3 spectrum of the XT in acetonitrile identified a vibronic coupling mode responsible for the reactivity of XT towards H-atom abstraction, despite the fact that the lowest triplet excited state (T1) has ππ* character. This vibronic active mode is absent in the TR3 spectra of XT in protic solvents (methanol and ethanol). Furthermore, the REP analysis suggests that the nanosecond triplet-triplet absorption spectrum of XT in acetonitrile involves two different species, while in methanol it involves only one species. This observation is in agreement with the previous chapter (Chapter 5) which proposes a different hydrogen bonding mechanisms for the two lowest triplet excited states and their influence on the reduced reactivity towards H-atom abstraction. Chapters 3-6 emphasize the need for a proper solvation model at the molecular level to describe the various photophysical and photochemical processes of aromatic ketones. Therefore, Chapter 7 includes discussions on the bottom-up solvation methodology applied to benzophenone (Bzp) to understand its vibrational and electronic solvatochromic behaviour at the molecular level. Raman and UV-Vis spectroscopic techniques were used in conjunction with a c-MDS-generated supermolecule continuum solvation model DFT calculation to corroborate and to visualize the experimental outcome. The carbonyl stretching frequency of Bzp in protic solvents has two bands, corresponding to free carbonyl and hydrogen bonded carbonyl. Despite the fact that the macroscopic polarity of acetonitrile and methanol solvents are similar, the free carbonyl stretching of Bzp in methanol solvent was blue-shifted by 4 cm-1 with respect to the carbonyl stretching in acetonitrile solvent. The Gutmann’s acceptor number plot for carbonyl stretching frequencies indicates that the free carbonyl group is neighboured by a hydrophobic environment. The c-MDS-generated supermolecule-continuum solvation model DFT calculations suggest that the extended hydrogen bonding network of methanol solvent is responsible for the hydrophobic solvation around the free carbonyl. Furthermore, a linear correlation was obtained for the vibrational and electronic solvatochromism of the carbonyl frequency and energy of the singlet nπ* transition, respectively, which indicates that a variation in excitation wavelength for the singlet nπ* transition can arise from different solvation states. This can have implications for ultrafast processes associated with electron transfer, charge-transfer and also the photophysical aspects of excited states.Finally, Chapter 8 contains overall conclusions of the thesis and future directions for the present research area.
44

Quantum dots and upconverting nanoparticles : Bioconjugation and time-resolved multiplexed FRET spectroscopy for cancer diagnostics / Boîtes quantiques et nanoparticules à conversion ascendante : Bio-conjugaison et spectroscopie multiplexée de FRET résolue en temps pour le diagnostic du cance

Bhuckory, Shashi 13 December 2016 (has links)
La haute sensibilité et l’analyse simultanée de plusieurs biomarqueurs (multiplexage) sont des enjeux essentiels pour permettre des avancées significatives pour le diagnostic médical. De telles avancées permettraient d’augmenter la précocité des diagnostics pour de nombreuses maladies comme le cancer ou des maladies cardiaques. Les immunodosages de FRET (transfer d’énergie par resonance de type Förster) sont basées sur la reconnaissance de biomarqueurs par des anticorps marqués avec des fluorophores et le FRET qui résulte du processus de reconnaissance immunologique. Aujourd’hui des telles immunodosages sont établis en utilisant des lanthanides comme donneurs de FRET et des fluorophores organiques comme accepteurs de FRET. Néanmoins, ils ne permettent pas de réaliser un multiplexage efficace car l’utilisation de plusieurs différents fluorophores organiques résulte dans un recouvrement spectral. Ce projet a pour but de mettre en application les propriétés optiques exceptionnelles des complexes de terbium (Tb) et des boîtes quantiques (QDs) pour parvenir à des analyses biologiques de FRET multiplexées et ultrasensibles. Nous avons également étudié les propriétés optiques et morphologiques de nouvelles nanoparticules à conversion ascendante de type coeur et coeur/coquille dopées à l'ytterbium (Yb) et des ions d'erbium (Er) comme donneurs de FRET. / Combining high sensitivity with simultaneous analysis of numerous biomarkers (multiplexing) is an essential requirement for significantly improving the field of biomedical diagnostics. Such progresses would allow earlier diagnosis, which is required for numerous diseases such as cancer or cardiac diseases. FRET-immunoassays are based on biomolecular recognition events that occur between biomarkers and two specific antibodies conjugated with different fluorophores. The spatial proximity of the two fluorophores can lead to Förster resonance energy transfer (FRET), which can be detected for biomarker quantification. To date, such assays are established using lanthanide complexes as FRET donors and fluorescence dyes as FRET acceptors. However, these assays do not provide sufficient multiplexing capability due to spectral overlap, when several acceptor dyes are used. This project aims at exploiting the exceptional photophysical properties of terbium complexes (Tb) and semiconductor quantum dots (QDs) to provide ultrasensitive multiplexed FRETimmunoassays. We also studied the optical and morphological properties of novel core and core/shell upconverting nanoparticles doped with ytterbium (Yb) and erbium (Er) ions as possible FRET-donors for biosensing.
45

Electronic and Vibrational Dynamics of Heme Model Compounds-An Ultrafast Spectroscopic Study

Challa, Jagannadha Reddy 08 June 2007 (has links)
No description available.
46

Nitric Oxide and Other Characterizations of an Atmospheric Pressure Plasma Jet

Pulcini, Annie Rae 14 May 2015 (has links)
No description available.
47

Synthèse,Relaxivité et Luminescence de complexes de lanthanides dérivés de ligands ditopiques et assemblages supramoléculaires

Paris, Jérôme 07 October 2010 (has links)
Lanthanide elements display many remarkable and exciting properties which explain their widespread use in a number of very important biomedical tools like efficient MRI contrast agents or luminescent probes for highly sensitive assays of bioanalytes amongst other fields of application. In this context, the aim of the present work was to prepare and characterize lanthanide complexes of two ligands that feature a linear or a macrocyclic chelating unit compactly grafted onto a 1,10-phenanthroline derived moiety (phenDTPA and PhenHDO3A). The ditopic nature of the ligands allows the selective incorporation of a d6 metal ion and a lanthanide one in close proximity. The resulting rigid heterobimetallic supramolecular species show useful properties and constitute potential MRI contrast agents or new luminescent compounds depending on the type of the lanthanide and transition metal ions employed: for example, the selfassembly process of gadolinium(III) chelates around an iron(II) ion brings a remarkable increase of their relaxivity, a key parameter for use in MRI. On the other hand, association of a ruthenium and and a near infrared emitting 4f ion like ytterbium(III) gives mixed d-f structures able to harvest visible light and convert it into near infra-red signal. Visible light luminescent pH probes were also obtained with Eu3+ or Tb3+ phenHDO3A complexes.
48

Investigation of thermal and mechanical behavior of ultra-thin liquids at GHz frequencies / Investigation des propriétés thermiques et mécaniques de liquides ultra-minces aux fréquences GHz

Chaban, Levgeniia 11 December 2017 (has links)
La structuration des liquides près d'interfaces est liée aux forces d'interactions liquides/interface à des distances de quelques dimensions moléculaires. Cet effet universel joue un rôle primordial dans divers domaines tels que le transport de chaleur, le transport de particules à travers les membranes biologiques, la nanofluidique, la microbiologie et la nanorhéologie.Le but principal de cette thèse est de réaliser l'échographie par laser de liquides nanostructurés près d'une interface, afin de mieux comprendre les propriétés physiques de liquides confinés à des échelles moléculaires. La méthode utilisée est la technique d'acoustique picoseconde, qui est une technique tout optique impliquant des lasers impulsionnels pour la génération et la détection d'ultrasons picosecondes. Nous avons adapté la technique pour étudier les propriétés acoustiques longitudinales à haute fréquence des liquides ultra-minces. Les résultats de la diffusion de Brillouin dans le domaine temporel sont utilisés pour déterminer le profil de distribution de la température dans le volume de liquide étudié qui peut être extrapolé aux dimensions nanométriques. Les résultats sur le changement de la fréquence de Brillouin aussi bien que sur l’atténuation acoustique en fonction de la puissance du laser donnent un aperçu de la relation entre les propriétés thermiques et mécaniques des liquides. L'analyse de Fourier des résultats pour différentes épaisseurs de liquide donnent l'information sur la vitesse du son et de l’atténuation aux fréquences GHz. Ce nouveau schéma expérimental est une première étape vers la compréhension des liquides confinés mesuré par l'échographie d'ultrasons aux fréquences GHz. / The phenomenon of liquid structuring near interfaces is related to the liquid/interface interaction forces at distances of some molecular dimensions. Despite the fact that this universal structuring effect plays a key role in various fields such as heat transport, particle transport through biological membranes, nanofluidics, microbiology and nanorheology, the experimental investigation of liquid structuring remainschallenging.The aim of this PhD thesis is the experimental study of the structuring/ordering of liquids at nanoscale distances from their interfaces with solids. In this context, we have adapted the experimental technique of picosecond laser ultrasonics to investigate high-frequency longitudinal acoustic properties of ultrathin liquids confined between solid surfaces of different types. At first, we will present results of time-domain Brillouin scattering (TDBS) used to determine the temperature distribution profile in the investigated liquid volume which can be extrapolated to nanometer dimensions. Results for the evolution of the extracted Brillouin scattering frequencies and attenuation rates recorded at different laser powers give insight to the intrinsic relationship between thermal and mechanical properties of liquids. Second, we will describe our results for the measurements of mechanical properties of ultrathin liquids with a nanometric resolution. Fourier analysis of the recorded TDBS signals for different liquid thicknesses yield the value of the longitudinal speed of sound and attenuation at GHz frequencies. This novel TDBS experimental scheme is a first step towards the understanding of confined liquids measured by GHz ultrasonic probing.
49

Ultrafast photogeneration and photodetection of coherent acoustic phonons in ferroelectric BiFeO3 / Photogénération et Photodétection Ultrarapide de Phonons Acoustiques Cohérentes dans le Ferroélectrique BiFeO3

Lejman, Mariusz 06 October 2015 (has links)
La technique d’optique ultra-rapide pompe-sonde, qui repose sur l’emploi de lasers à impulsion ultracourte(femtoseconde), permet de déclencher et étudier des processus ultrarapides dans la matière. L’acoustique picoseconde concerne pour sa part l’étude des processus de génération et détection de phonons acoustiques haute fréquence ainsi quel’analyse des nanomatériaux avec ces phonons (nanoéchographie). Les travaux de recherche de cette thèse avaient pourbut l’étude des couplages électronphonon acoustique dans le matériau ferroélectrique BiFeO3 par acoustique ultrarapide. Nous avons pu mettre en évidence que selon l’orientation du cristal photoexcité, l’émission des phonons acoustiques cohérents longitudinaux (LA) et transverses (TA) pouvait être modulée. De manière spectaculaire, nous avons purévéler un couplage électron-phonon acoustique transverse très efficace comme cela n’avait jamais été observé jusqu’alors dans les métaux, semiconducteurs ou nanostructures artificielles. Une étude détaillée indique que le mécanismepiézoélectrique inverse semble être le moteur de ce couplage électron-phonon (Lejman et al, Nature Communications, 2014). Dans une seconde partie, nous avons montré que BFO, ainsi qu’un autre ferroélectrique biréfringent LiNbO3 (LNO), peuvent être utilisés pour la conversion de mode ultra-rapide par processus acousto-optique (manipulation de la polarisation de la lumière à l’échelle de la picoseconde avec des phonons acoustiques). Cet effet, jamais mis enévidence jusqu’alors dans le domaine GHz, pourrait potentiellement être exploité dans de nouveaux dispositifs photoniques/phononiques pour des modulations acousto-optiques à haute cadence. / Ultrafast optical pump-probe technique, by exploiting ultrashort laser pulses (femtosecond), allows to initiate and monitor ultrafast processes in matter. Picosecond acoustics is a research field that focuses on the generation and detection mechanisms of high frequency coherent acoustic phonons in different media, as well as on their application in testing of nanomaterials and nanostructures. This PhDs research project was devoted to study of electron-acoustic phonon coupling in ferroelectric BiFeO3 (bismuth ferrite, BFO) by ultrafast acoustics. We have evidenced that depending on the BFO crystal orientation it was possible to tune the coherent phonons spectrum with in particular variable amplitude of longitudinal (LA) and transverse (TA) acoustic modes. In some grains with particular crystallographic orientations much stronger TA than LA signal was observed. Spectacularly, we have revealed an efficient coupling between electron and transverse acousticphonon. Such high ratio never reported before in any metal, semiconductor or nanostructure before, can be principally attributed to the photoinduced inverse piezoelectric effect (Lejman et al Nature Communications 2014). In a second part, we have shown that BFO as well as another birefringent ferroelectric LiNbO3 (LNO) can be used for ultrafast acousto-optic modeconversion (manipulation of light polarization at the picosecond time scale with coherent acoustic phonons). This effect, never reported at GHz up to now, can be potentially applied in photonics for ultrafast manipulation of light polarization bycoherent acoustic phonons in next generation photonic/phononic devices.
50

Applications of time-resolved spectroscopy for microenvironment sensing and biomolecular interactions studies / Applications de la spectroscopie ultrarapide à l’étude de sondes locales d’environnement et d’interactions biomoléculaires

Skilitsi, Anastasia Ioanna 30 November 2017 (has links)
La spectroscopie UV-Vis résolue en temps a été appliquée à l'étude de différents systèmes moléculaires dont la photophysique est contrôlée par leur interaction avec l’environnement, mais aussi comme outil pour révéler des interactions moléculaires ou des dynamiques structurelles à des échelles de temps comparativement lentes (sec à min.), en utilisant la microfluidique de gouttes pour déclencher une relaxation structurale par des conditions initiales hors équilibre. J'ai appliqué cette approche selon trois axes allant de 1) l'étude approfondie des propriétés émissives des biosenseurs afin de permettre leur utilisation quantitative dans les études d'interactions biomoléculaires, à 2) le développement d'une approche expérimentale originale pour permettre la résolution la cinétique de relaxation structurelle d'une répartition hors équilibre des structures biomoléculaires, et enfin 3) l'application aux biotechnologies à haut débit de la fluorescence résolue en temps pour des analyses d'interactions biomoléculaires précises et rapides, pertinente à la fois pour les domaines académiques et industriels. / In the context of the present thesis, UV-Vis time-resolved spectroscopy was applied targeting the photophysics investigation of different environmentally sensitive molecular systems, but also as a biosensing approach to reveal molecular interactions or structural dynamics on much slower time scales (sec to min), using droplet microfluidics triggering structural relaxation through out-of-equilibrium initial conditions. I thus investigated on a three-axis-target spanning from 1) the in-depth investigation of the emissive properties of biosensors in order to allow their quantitative use in biomolecular interaction studies, to 2) the development of an original experimental approach to enable resolving the structural relaxation kinetics of an out-of-equilibrium distribution of biomolecular structures, and finally 3) the technological application of time resolved fluorescence for precise, rapid, cost effective, biomolecular interaction assays, appealing both for academic and industrial arenas.

Page generated in 0.0523 seconds