• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 1
  • 1
  • Tagged with
  • 34
  • 20
  • 18
  • 14
  • 12
  • 9
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tolérancement des Systèmes Assemblés, une approche par le Tolérancement Inertiel et Modal

Adragna, Pierre-Antoine 06 December 2007 (has links) (PDF)
L'objectif du tolérancement des systèmes assemblés est de définir les tolérances des composants permettant la satisfaction du client : l'assemblage et le bon fonctionnement des systèmes. On peut identifier des cas limites du tolérancement pour lesquelles ces objectifs sont mal respectés. Différents modèles de complexité croissante sont identifiés : 1D, 3D et 3D avec prise en compte des défauts de forme. On peut aussi distinguer différentes hypothèses de comportement des composants du système : rigide non déformable, flexible élastique et élasto-plastique. Ce projet de recherche se propose de traiter les problématiques de tolérancement sous l'hypothèse de comportement rigide des composants, pour les différentes complexités de modélisation existante : 1D, 3D et 3D avec défauts de forme. Notre approche se fonde sur le critère inertie I de quantification des écarts d'une caractéristique par rapport à sa cible. Ce critère, basé sur la fonction de perte de Taguchi, est proposé par Pillet dans une méthode de tolérancement 1D. Pour étendre cette approche de tolérancement à la qualification de plusieurs caractéristiques, dans le cas des surfaces, nous choisissons d'utiliser la méthode modale de description des défauts de forme de toutes géométries proposée par Samper. Ces deux approches, de quantification (inertiel) et de qualification (modal), évoluent pour enfin être fusionnées et proposer une méthode d'acceptation multi-caractéristique, le tolérancement modal inertiel. La modélisation 1D du tolérancement est bien cernée. Le graphe (d,s2) permet l'analyse des tolérances des composants en vue de vérifier la conformité de la résultante pour toutes les configurations. On met ainsi à disposition un outil permettant de vérifier un tolérancement quelle que soit l'expression de la tolérance, intervalle de tolérance ou inertie, quels que soient les indices de capabilité et sous l'hypothèse statistique d'indépendance des variables ou non (non illustrée ici).
2

Déploiement du tolérancement inertiel dans la relation client fournisseur.

Denimal, Dimitri 19 November 2009 (has links) (PDF)
Lors de la phase d'industrialisation, l'allocation des tolérances fait partie des étapes clés qui permettront de produire des assemblages dont les performances sont conformes et homogènes à l'ensemble des exigences fonctionnelles spécifiées par le cahier des charges. Depuis toujours, l'approche traditionnelle des tolérances et de leur allocation sous la forme d'une bilimite présente certaines incohérences. En 2002, Pr M.Pillet a suggéré une solution à ces incohérences, l'inertie. Ce travail de thèse est une continuation à ceux de Pr M Pillet et de PA Adragna. Ce travail s'articule en cinq chapitres. Le premier chapitre revient sur l'apport de l'inertie et introduit les travaux développés dans la thèse. Le second propose une analyse de la performance de la carte de contrôle inertielle avec dérive et formalise les conditions d'utilisation des différentes variantes dans un contexte industriel. Le troisième chapitre aborde l'inertie dans un contexte 3D en comparant les trois définitions de l'inertie 3D proposées dans les travaux antérieurs. Le quatrième développe une nouvelle approche de tolérancement de surface, appelée inertie totale et propose en cohérence avec cette définition un outil permettant de donner les réglages optimums pour minimiser l'inertie totale d'une pièce. Le dernier chapitre conclut par une proposition de tolérancement d'un assemblage de surface par une approche inertielle statistique. Ce dernier suppose une variation rigide des défauts des surfaces, et n'intègre pas la notion de jeu de l'assemblage. Il porte explicitement sur la notion de variance et de covariance liée à la structure du mécanisme et introduit un indicateur de capabilité de dimensions n
3

Modélisation des tolérances géométriques des mécanismes pour leur intégration en conception assistée par ordinateur

Kataya, Bassam 19 December 2002 (has links) (PDF)
L'objet de ce travail est de proposer des nouvelles approches d'analyse et synthèse des tolérances géométriques de mécanismes. Nous présentons l'approche par les équations de tolérancement et l'approche statique qui sont basées sur la théorie des mécanismes. ces deux approches permettent de déterminer qualitativement les tolérances de positions relatives des surfaces fonctionnelles d'une même pièce. Nous présentons des méthodes d'analyse et synthèse des tolérances utilisant la notion de domaine jeux et de domaine écarts. Dans les cas de mécanismes en boucle simple, la méthode d'analyse permet de vérifier les conditions d'assemblage grâce à quelques opérations géométriques entre les domaines jeux et écarts. Pour des conditions fonctionnelles données, la méthode de synthèse, permet de choisir, du point de vue qualitatif et quantitatif, des tolérances optimales dans de nombreux cas. Dans le cas de mécanisme en structure parallèle, nous introduisons la notion de domaine jeu résiduel et de domaine d'incertitude. A l'aide de ces domaines, la méthode d'analyse permet de définir les conditions nécessaires et suffisantes d'assemblage. Elle permet également de généraliser cette étude pour vérifier d'autres conditions fonctionnelles comme les conditions de précision. Les perspectives de développements consistent à généraliser l'approche sur des mécanismes de structure quelconque, et à intégrer ces méthodes d'analyse et de synthèse dans les systèmes de C.A.O..
4

Intégration d'un outil d'aide au tolérancement dans un logiciel de C.F.A.O.

Gaëtan, Legrais 22 November 2005 (has links) (PDF)
Dans la plupart des systèmes de CFAO actuels, les tolérances sont indiquées grâce à des outils de représentation graphique symbolique (cotes, cadres de tolérances, repères, textes, ...). Cette représentation doit être correcte du point de vue syntaxique et sémantique. Les règles de bases de la syntaxe sont en général prises en compte par le logiciel, mais pas toutes. Il est encore possible d'écrire des tolérances qui ne sont pas correctes du fait même de leur écriture. Pour vérifier que la sémantique d'une tolérance est correcte, il faut pouvoir lui donner une interprétation conformément aux règles définies par les normes. Or ces règles sont complexes. Jusqu'à présent seul un technicien, avant une connaissance approfondie, est capable de vérifier si une tolérance indiquée sur le dessin est correcte du point de vue sémantique. Je développe un système intégré au logiciel TopSolid qui permet d'inscrire les tolérances sur le plan à partir du modèle 3D de la pièce. L'utilisateur travaillera sur un modèle 3D. Après avoir indiquer sur la pièce les surfaces tolérancées, le logiciel propose alors de contrôler les paramètres et les choix possibles de l'utilisateur. Le concepteur pourra ensuite définir des références de tolérance dont la cohérence avec le cadre de tolérance sera automatiquement vérifiée au fur et à mesure de leurs créations. Il s'agira, ensuite, d'aider le concepteur à déterminer quelles sont les surfaces à prendre en références et celles qui doivent être tolérancées. Cette partie permettra alors de définir un tolérancement complet à partir d'un ensemble de surfaces fonctionnelles hiérarchisées. Cette thése propose d'assister le concepteur dans sa démarche de tolérancement. Pour ce faire, je mets à sa disposition au travers de mes travaux un outil de transfert des connaissances sur le tolérancement et un atelier d'aide à la prise de décision.
5

Optimisation du calcul des dispersions angulaires tridimensionnelles.

Mezghani, Aïda 05 November 2010 (has links) (PDF)
Ce travail de recherche traite un problème qui joue un rôle très important pour le succès desprogrammes de fabrication : le tolérancement tridimensionnel, essentiel pour définir la géométried'une pièce mécanique assurant sa meilleure fonctionnalité dans un assemblage avec uneprécision optimale.Une méthode des chaînes de cotes angulaires tridimensionnelles a été développée. Cette méthodepermet d'une part l'optimisation du calcul des dispersions angulaires tridimensionnelles etd'autre part de valider la gamme de fabrication par la vérification du respect des tolérancesimposées par le bureau d'études en tenant compte des précisions des procédés utilisés.Cette étude est basée sur l'analyse de deux fonctions paramétrées qui sont étudiées pourdéterminer le défaut fabriqué : le défaut angulaire et la longueur projetée. Le défaut angulairereprésente le cumul des défauts angulaires générés par le processus de fabrication de la pièce. Lesdéfauts angulaires sont déterminés en fonction de la précision des machines outils. La longueurprojetée de la surface tolérancée est une caractéristique qui dépend uniquement de la forme de lasurface.Ensuite, à partir de ces deux fonctions paramétrées, le défaut fabriqué est déterminé puiscomparé avec la condition fonctionnelle afin de vérifier si la gamme choisie permet en fin duprocessus de fabrication de donner une pièce conforme.
6

Maîtrise de la qualité géométrique des pièces de formes complexes dans le contexte de la continuité numérique / Control of the geometric quality of complex shapes in the context of digital continuity

Fallot, Yann 11 July 2019 (has links)
Ces travaux de recherche sont réalisés dans le cadre d'une thèse CIFRE en collaboration entre Safran Aircraft Engines et le LURPA de l'ENS Paris-Saclay. Safran Aircraft Engines conçoit et réalise des moteurs pour avions civils et militaires. Afin de répondre au fort développement industriel mondial, Safran Aircraft Engines est constamment en recherche d'optimisation des définitions de ses pièces tout en respectant les cadences de fabrication. Les normes de tolérancement évoluent et les moyens de contrôle s'améliorent. La problématique des travaux est de maîtriser la qualité géométrique des pièces de formes complexes dans le contexte de la continuité numérique.Une méthode permet d'établir les liens entre les fonctions et les spécifications géométriques. De plus, la traçabilité des caractéristiques dimensionnelles et géométriques est établie lors de la phase de tolérancement du produit.Une extension de la méthode CLIC à des composants qui se déforme localement est proposée. Cette extension s'intègre dans la méthode de tolérancement qui établit les liens entre les fonctions et les spécifications.Une méthode originale de génération de descripteurs de forme sur des surfaces permettant la séparation des écarts de taille, de forme, de position et d'orientation est présentée afin de réaliser une Décomposition Modale Discrète. De plus, l'analyse des résultats de la Décomposition Modale Discrète appliquée sur trente surfaces complexes permet de connaître la répétabilité du processus de fabrication. / This PhD work is being carried out as part of a CIFRE PhD thesis in collaboration between Safran Aircraft Engines and the LURPA of the ENS Paris-Saclay. Safran Aircraft Engines designs and manufactures engines for civil and military aircraft. In order to meet the high level of global industrial development, Safran Aircraft Engines is constantly seeking to optimize the definitions of its parts while respecting production rate. Tolerancing standards are changing and control methods are improving. The challenge of this work is to control the geometric quality of complex shaped parts in the context of digital continuity.A method is used to establish the links between functions and geometric specifications. In addition, the traceability of dimensional and geometric characteristics is established during the product tolerancing phase.An extension of the CLIC method to components that deform locally is proposed. This extension is integrated into the tolerance method used to establish the links between functions and specifications.An innovative method of generating shape descriptors on surfaces allowing the separation of size, of shape, of position, and of orientation deviations is described in order to achieve a Discrete Modal Decomposition. In addition, the analysis of the results of the Discrete Modal Decomposition applied to thirty complex surfaces allows us to know the repeatability of the manufacturing process.
7

Méthodologie de maîtrise des variations géométriques des produits en conception, fabrication et contrôle dans le contexte de l'usine numérique / Methodology of control of geometrical variations in product design, manufacturing and control in the context of digital factory

Caux, Mickael 29 June 2012 (has links)
Le dessin de définition fonctionnelle décrit les exigences géométriques à respecter pour une pièce afin de garantir le bon fonctionnement d'un mécanisme. Le gammiste détermine une gamme de fabrication permettant de réaliser la pièce en respectant les spécifications fonctionnelles. Il doit déterminer les spécifications de fabrication pour chaque phase, qui permettront de respecter les spécifications fonctionnelles. La méthode présentée dans cette thèse a pour but de générer automatiquement ces spécifications de fabrication pour une gamme donnée. La méthode de transfert s'appuie sur l'analyse des mobilités des surfaces tolérancées et des surfaces de référence. Les mobilités sont modélisées par des indications vectorielles, exprimées dans un repère local pour chaque élément. Quatre opérateurs sont proposés pour manipuler ces mobilités. La méthode est ascendante. Une spécification de fabrication positionne ou oriente la surface réalisée en dernier par rapport au système de références de la phase. La méthode des droites d'analyse donne l'influence de sa tolérance sur l'exigence. Le transfert se poursuit jusqu'à ce que toutes les surfaces soient actives dans la même phase. Un démonstrateur de transfert a été réalisé avec Excel pour une pièce et une gamme décrites dans CATIA. / Functional drawing describes geometrical requirements to respect for a part in order to ensure the good functioning of a mechanism. Process engineer determines a plan process for the realization of the part in accordance with the functional requirements. He must determine manufacturing requirements for each phase, which allow to respect functional requirements. The method introduced in this PhD thesis aims at automatically generating these manufacturing requirements for a given plan process. The transfer method is based on the analyse of toleranced surfaces and datum surfaces mobilities. Mobilities are modeled by vectorial representations, expressed in a local frame for each element. Four operators are put forward to manipulate these mobilities. The method is ascendant. A manufacturing requirement locates or orientes the last manufactured surface regarding the datum target frame of the phase. The analysis line method gives the impact of its tolerance on the functional requirement. The transfert follows through until all surfaces are active in the same phase. A transfer software has been developped with Excel for a part and a plan process described in CATIA.
8

Méthodologie de maîtrise des variations géométriques des produits en conception, fabrication et contrôle dans le contexte de l'usine numérique

Caux, Mickael 29 June 2012 (has links) (PDF)
Le dessin de définition fonctionnelle décrit les exigences géométriques à respecter pour une pièce afin de garantir le bon fonctionnement d'un mécanisme. Le gammiste détermine une gamme de fabrication permettant de réaliser la pièce en respectant les spécifications fonctionnelles. Il doit déterminer les spécifications de fabrication pour chaque phase, qui permettront de respecter les spécifications fonctionnelles. La méthode présentée dans cette thèse a pour but de générer automatiquement ces spécifications de fabrication pour une gamme donnée. La méthode de transfert s'appuie sur l'analyse des mobilités des surfaces tolérancées et des surfaces de référence. Les mobilités sont modélisées par des indications vectorielles, exprimées dans un repère local pour chaque élément. Quatre opérateurs sont proposés pour manipuler ces mobilités. La méthode est ascendante. Une spécification de fabrication positionne ou oriente la surface réalisée en dernier par rapport au système de références de la phase. La méthode des droites d'analyse donne l'influence de sa tolérance sur l'exigence. Le transfert se poursuit jusqu'à ce que toutes les surfaces soient actives dans la même phase. Un démonstrateur de transfert a été réalisé avec Excel pour une pièce et une gamme décrites dans CATIA.
9

Contribution à la recherche de spécifications pour la gestion des variations géométriques au plus tôt dans le cycle de conception

Costadoat, Renaud 08 July 2010 (has links) (PDF)
Les travaux présentés proposent une méthode appelée GeoSpecif. L'objectif de cette méthode est de proposer une assistance à la recherche de spécifications géométriques. Cette méthode doit, de plus, s'intégrer au cycle de conception. Ces travaux sur la spécification sont basés sur deux outils : le Torseur des Petits Déplacements, pour la simulation, le langage GeoSpelling, pour l'expression de la spécification. Le produit est modélisé par deux vues, une première géométrique (correspondant aux pièces) et une seconde architecturale (correspondant à l'assemblage). La méthode peut être décomposée en plusieurs étapes : éprouver le mécanisme nominal afin de vérifier la robustesse de la conception, générer une architecture avec défauts afin de trouver des solutions pour gérer les mécanismes hyperstatiques, mettre en place une spécification, sur les éléments influents, exprimée dans le langage GeoSpelling. Un mécanisme industriel a servi d'application à ces résultats, il s'agit d'un manchon d'hélicoptère Eurocopter®. La méthode permet ainsi de passer d'une simulation des variations géométriques des pièces grâce à l'outil Torseur des Petits Déplacements à une spécification exprimée dans le langage GeoSpelling. Elle peut être appliquée sur toute sorte de mécanisme hyperstatique, sans changer son comportement, grâce à l'introduction des interfaces à l'issue de la définition de la séquence de mise en position. Elle propose une assistance au concepteur à toutes les étapes de la conception. La spécification qui résulte de la simulation est, grâce à cette méthode, plus proche du besoin fonctionnel des pièces.
10

Intégration des effets des dilatations thermiques dans le tolérancement / Integration of thermal expansion into tolerancing

Benichou, Sami 05 July 2012 (has links)
La cotation fonctionnelle doit garantir la montabilité et le bon fonctionnement d'un mécanisme en imposant les spécifications fonctionnelles à respecter sur les pièces. Ces spécifications sont exprimées avec les normes ISO de cotation et doivent être vérifiées à 20°C. Pour les mécanismes soumis à de fortes températures, il est nécessaire de cumuler l'influence des tolérances et des dilatations aux différents régimes thermiques. Après avoir formulé des hypothèses de comportement dans les liaisons avec contact ou avec jeux affectés par les déformations thermiques et l'influence des incertitudes sur les températures, la méthodologie proposée permet de séparer le calcul thermique et le tolérancement. Le bureau de calcul thermique détermine les champs de température et les déplacements des mailles par la méthode des éléments finis à partir des modèles nominaux des pièces. Le cumul des tolérances et des dilatations est basé sur la méthode des droites d'analyse. Pour chaque exigence, la surface terminale est discrétisée en différents points d'analyse. Dans chaque jonction, les relations de transfert déterminent les points de contact et l'influence des dilatations et des écarts thermiques en ces points sur l'exigence. Une application à un mécanisme industriel démontre l'intérêt d'optimiser les dimensions nominales des modèles afin de maximiser les tolérances tout en respectant l'ensemble des exigences. / Functional dimensioning should guarantee assembly feasibility and proper functioning of a mechanism giving functional specifications on parts to be met. Those specifications are defined with ISO standard and may be considered at 20°C. For high heated mechanisms, impacts of tolerances and thermal expansion for all thermal stages have to be combined. After giving behavior assumption into links with clearance or not while considering thermal expansion and uncertainty of temperature, the proposed method makes it possible to separate thermal calculations and tolerancing. Thermal calculations office determines temperature field and displacements from nominal parts by finite elements method. Integration of tolerancing and thermal expansion is based on analysis direction method. For each requirement, final surface is discretized in various points. In every link, transfer relations determine contact points and impact of thermal expansion on these analysis points on the requirement. A study case shows the interest of nominal dimension optimization in order to maximize tolerances while respecting all mechanism requirements.

Page generated in 0.0925 seconds