• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 10
  • 7
  • Tagged with
  • 44
  • 26
  • 24
  • 24
  • 20
  • 20
  • 20
  • 20
  • 15
  • 15
  • 15
  • 15
  • 14
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Approche multidisciplinaire pour l’amélioration de l’estimation de l’exposition aux sous-produits de désinfection de l’eau en milieu domestique et en piscine

Catto, Cyril 01 1900 (has links)
La désinfection de l’eau de consommation et des piscines induit la formation de sous-produits (SPD) potentiellement nocifs pour la santé, parmi lesquels les trihalométhanes (THM), les acides haloacétiques (HAA) et les chloramines (CAM). La difficulté d’estimer l’exposition humaine à ces SPD empêche de cerner précisément les risques sanitaires possiblement associés (i.e., cancérigènes, reprotoxiques, irritatifs). Nos travaux s’articulent autour d’une méthodologie consistant à intégrer des données d’occurrence environnementales à des modèles toxicocinétiques à base physiologique (TCBP) pour améliorer les mesures de l’exposition aux SPD. Cette approche multidisciplinaire veut prendre en compte de manière aussi appropriée que possible les deux composantes majeures des variations de cette exposition : les variations spatio-temporelles des niveaux de contamination environnementale et l’impact des différences inter- et intra-individuelles sur les niveaux biologiques. Cette thèse, organisée en deux volets qui explorent chacun successivement des aspects environnemental et biologique de la problématique, vise à contribuer au développement de cette stratégie innovante d’estimation de l’exposition et, plus généralement, à des meilleures pratiques en la matière. Le premier volet de la thèse s’intéresse à l’exposition en milieu domestique (i.e., résultant de l’utilisation de l’eau potable au domicile) et est consacré au cas complexe des THM, les plus abondants et volatils des SPD, absorbables par ingestion mais aussi par inhalation et voie percutanée. Les articles I et II, constitutifs de ce volet, documentent spécifiquement la question des variations inter- et intra- journalières de présence des SPD en réseau et de leurs impacts sur les estimateurs de l’exposition biologique. Ils décrivent l’amplitude et la diversité des variations à court terme des niveaux environnementaux, présentent les difficultés à proposer une façon systématique et « épidémiologiquement » pratique de les modéliser et proposent, de manière originale, une évaluation des mésestimations, somme toute modestes, des mesures biologiques de l’exposition résultant de leurs non-prise en compte. Le deuxième volet de la thèse se penche sur l’exposition aux SPD en piscine, d’un intérêt grandissant au niveau international, et se restreint au cas jugé prioritaire des piscines publiques intérieures. Ce volet envisage, pour quantifier l’exposition dans ce contexte particulier, l’extension de l’approche méthodologique préconisée, élaborée originellement pour application dans un contexte domestique : d’abord, à travers une analyse approfondie des variations des niveaux de contamination (eau, air) des SPD en piscine en vue de les modéliser (article III); puis en examinant, dans le cas particulier du chloroforme, le THM le plus abondant, la possibilité d’utiliser la modélisation TCBP pour simuler des expositions en piscine (article IV). Les résultats mettent notamment en évidence la difficulté d’appréhender précisément la contamination environnementale autrement que par un échantillonnage in situ tandis que la modélisation TCBP apparait, sur le plan toxicologique, comme l’outil le plus pertinent à ce jour, notamment au regard des autres approches existantes, mais qu’il convient d’améliorer pour mieux prédire les niveaux d’exposition biologique. Finalement, ces travaux illustrent la pertinence et la nécessité d’une approche multidisciplinaire et intégratrice et suggère, sur cette base, les pistes à explorer en priorité pour mieux évaluer l’exposition aux SPD et, in fine, cerner véritablement les risques sanitaires qui en résultent. / Disinfection of drinking and swimming pool waters disinfection is unavoidable but induces the formation of by-products (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs) and chloramines (CAMs), that could be harmful to human health. The still challenging DBP exposure assessment prevent their suspected adverse effects (i.e., cancers, adverse pregnancy outcomes, irritations) to be clearly established. A methodology has been conceptualized which consists of integrating environmental occurrence data with physiologically based toxicokinetic (PBTK) modeling to improve DBP exposure assessment. It was designed to allow both spatial and temporal variations of the environmental contamination and the biological impacts of between- and within- individual differences to be accounted for. This thesis comprised of two parts. Each one investigates successively both environmental and biological aspects. The objective is to contribute to the development of an innovative integrated strategy and to the definition of best practices for DBP exposure assessment. The first part of the thesis, comprising papers I and II, focuses on household exposure (i.e., resulting from drinking water use at home) and on THMs, the most abundant and volatile DBPs that can be absorbed not only by ingestion but also by inhalation and dermal absorption. These two papers investigate particularly the short-term (day-to-day and within-day) variations of THM levels in the drinking water and then their impact on the internal exposure indicators. They described the amplitudes and the diversity of the environmental variations, failed to model them in a systematic and practical way for epidemiological purposes but assessed, for the first time, their impacts on the predicted biological levels which appeared quite low. The second part concerns the exposure to DBPs in swimming pool which is of a growing international interest. Only the allegedly worrying case of public indoor swimming pool was regarded. This section focuses on the feasibility of using the previously mentioned approach, which was first designed for dealing with household exposure, for DBP exposure assessment in swimming pools. First, Paper III investigated the occurrence and spatial and temporal variations of DBPs in both water and air of swimming pools to model them. Focusing on chloroform, the most abundant THM, Paper IV examined the ability and reliability of PBTK modeling to simulate various swimming pool exposure events and predict the resulting biological levels in individuals. The results show, among other things, the difficulty of explaining precisely the environmental contamination and point out the necessity to carry out a minimal in situ sampling to monitor the environmental levels of DBPs. Compared to other approaches, PBTK modeling is a powerful but still to be improved tool for predicting swimming pool exposure. Eventually, these works underline the relevance and the necessity of a multidisciplinary and integrating approach for better estimating exposure to DBPs and therefore health risks. Further issues that should be addressed are recommended.
42

Caractérisation de la composante toxicocinétique du facteur d’ajustement pour la variabilité interindividuelle utilisé en analyse du risque toxicologique

Valcke, Mathieu 11 1900 (has links)
Un facteur d’incertitude de 10 est utilisé par défaut lors de l’élaboration des valeurs toxicologiques de référence en santé environnementale, afin de tenir compte de la variabilité interindividuelle dans la population. La composante toxicocinétique de cette variabilité correspond à racine de 10, soit 3,16. Sa validité a auparavant été étudiée sur la base de données pharmaceutiques colligées auprès de diverses populations (adultes, enfants, aînés). Ainsi, il est possible de comparer la valeur de 3,16 au Facteur d’ajustement pour la cinétique humaine (FACH), qui constitue le rapport entre un centile élevé (ex. : 95e) de la distribution de la dose interne dans des sous-groupes présumés sensibles et sa médiane chez l’adulte, ou encore à l’intérieur d’une population générale. Toutefois, les données expérimentales humaines sur les polluants environnementaux sont rares. De plus, ces substances ont généralement des propriétés sensiblement différentes de celles des médicaments. Il est donc difficile de valider, pour les polluants, les estimations faites à partir des données sur les médicaments. Pour résoudre ce problème, la modélisation toxicocinétique à base physiologique (TCBP) a été utilisée pour simuler la variabilité interindividuelle des doses internes lors de l’exposition aux polluants. Cependant, les études réalisées à ce jour n’ont que peu permis d’évaluer l’impact des conditions d’exposition (c.-à-d. voie, durée, intensité), des propriétés physico/biochimiques des polluants, et des caractéristiques de la population exposée sur la valeur du FACH et donc la validité de la valeur par défaut de 3,16. Les travaux de la présente thèse visent à combler ces lacunes. À l’aide de simulations de Monte-Carlo, un modèle TCBP a d’abord été utilisé pour simuler la variabilité interindividuelle des doses internes (c.-à-d. chez les adultes, ainés, enfants, femmes enceintes) de contaminants de l’eau lors d’une exposition par voie orale, respiratoire, ou cutanée. Dans un deuxième temps, un tel modèle a été utilisé pour simuler cette variabilité lors de l’inhalation de contaminants à intensité et durée variables. Ensuite, un algorithme toxicocinétique à l’équilibre probabiliste a été utilisé pour estimer la variabilité interindividuelle des doses internes lors d’expositions chroniques à des contaminants hypothétiques aux propriétés physico/biochimiques variables. Ainsi, les propriétés de volatilité, de fraction métabolisée, de voie métabolique empruntée ainsi que de biodisponibilité orale ont fait l’objet d’analyses spécifiques. Finalement, l’impact du référent considéré et des caractéristiques démographiques sur la valeur du FACH lors de l’inhalation chronique a été évalué, en ayant recours également à un algorithme toxicocinétique à l’équilibre. Les distributions de doses internes générées dans les divers scénarios élaborés ont permis de calculer dans chaque cas le FACH selon l’approche décrite plus haut. Cette étude a mis en lumière les divers déterminants de la sensibilité toxicocinétique selon le sous-groupe et la mesure de dose interne considérée. Elle a permis de caractériser les déterminants du FACH et donc les cas où ce dernier dépasse la valeur par défaut de 3,16 (jusqu’à 28,3), observés presqu’uniquement chez les nouveau-nés et en fonction de la substance mère. Cette thèse contribue à améliorer les connaissances dans le domaine de l’analyse du risque toxicologique en caractérisant le FACH selon diverses considérations. / A default uncertainty factor of 10 is used in toxicological risk assessment to account for human variability, and the toxicokinetic component of this factor corresponds to a value of square root of 10, or 3,16. The adequacy of this value has been studied in the literature on the basis of pharmaceutical data obtained in various subpopulations (e.g. adults, children, elderly). Indeed, it is possible to compare the default value of 3,16 to the Human Kinetic Adjustment Factor (HKAF), computed as the ratio of an upper percentile value (e.g. 95th) of the distribution of internal dose metrics in presumed sensitive subpopulation to its median in adults, or alternatively an entire population. However, human experimental data on environmental contaminants are sparse. Besides, these chemicals generally exhibit characteristics that are quite different as compared to drugs. As a result, it is difficult to extrapolate, for pollutants, estimates of HKAF that were made using data on drugs. To solve this problem, physiologically-based toxicokinetic (PBTK) modeling has been used to simulate interindividual variability in internal dose metrics following exposure to xenobiotics. However, studies realized to date have not systematically evaluated the impact of the exposure conditions (route, duration and intensity), the physico/biochemical properties of the chemicals, and the characteristics of the exposed population, on the HKAF, and thus the adequacy of the default value. This thesis aims at compensating this lack of knowledge. First, a probabilistic PBTK model was used to simulate, by means of Monte Carlo simulations, the interindividual variability in internal dose metrics (i.e. in adults, children, elerly, pregnant women) following the oral, inhalation or dermal exposure to drinking water contaminants, taken separately. Second, a similar model was used to simulate this variability following inhalation exposures of various durations and intensities to air contaminants. Then, a probabilistic steady-state algorithm was used to estimate interindividual variability in internal dose metrics for chronic exposures to hypothetical contaminants exhibiting different physico/biochemical properties. These include volatility, the fraction metabolized, the metabolic pathway by which they are biotransformed and oral bioavailability. Finally, the impact of a population’s demographic characteristics and the referent considered on the HKAF for chronic inhalation exposure was studied, also using a probabilistic steady-state algorithm. The distributions of internal dose metrics that were generated for every scenario simulated were used to compute the HKAF as described above. This study has pointed out the determinants of the toxicokinetic sensitivity considering a given subpopulation and dose metric. It allowed identifying determinants of the numeric value of the HKAF, thus cases for which it exceeded the default value of 3,16. This happened almost exclusively in neonates and on the basis of the parent compound. Overall, this study has contributed to the field of toxicological risk assessment by characterizing the HKAF as a function of various considerations.
43

Développement de modèles prédictifs de la toxicocinétique de substances organiques

Peyret, Thomas 02 1900 (has links)
Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain. / Physiologically-based pharmacokinetic (PBPK) models simulate the internal dose metrics of chemicals based on species-specific and chemical-specific parameters. The existing quantitative structure-property relationships (QSPRs) allow to estimate the chemical-specific parameters (partition coefficients (PCs) and metabolic constants) but their applicability is limited by their lack of consideration of variability in input parameters and their restricted application domain (i.e., substances containing CH3, CH2, CH, C, C=C, H, Cl, F, Br, benzene ring and H in benzene ring). The objective of this study was to develop new knowledge and tools to increase the applicability domain of QSPR-PBPK models for predicting the inhalation toxicokinetics of organic compounds in humans. First, a unified mechanistic algorithm was developed from existing models to predict macro (tissue and blood) and micro (cell and biological fluid) level PCs of 142 drugs and environmental pollutants on the basis of tissue and blood composition along with physicochemical properties. The resulting algorithm was applied to compute the tissue:blood, tissue:plasma and tissue:air PCs in rat muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, ethers, aliphatic and aromatic hydrocarbons. Then, a quantitative property-property relationship (QPPR) model was developed for the in vivo rat intrinsic clearance (CLint) (calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM)) of CYP2E1 substrates (n = 26) as a function of n-octanol:water PC, blood:water PC, and ionization potential). The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals were then integrated within a human PBPK model. Subsequently, the PC algorithm and QPPR for CLint were integrated along with a QSPR model for the hemoglobin:water and oil:air PCs to simulate the inhalation pharmacokinetics and cellular dosimetry of volatile organic compounds (VOCs) (benzene, 1,2-dichloroethane, dichloromethane, m-xylene, toluene, styrene, 1,1,1-trichloroethane and 1,2,4 trimethylbenzene) using a PBPK model for rats. Finally, the variability in the tissue and blood composition parameters of the PC algorithm for rat tissue:air and human blood:air PCs was characterized by performing Markov chain Monte Carlo (MCMC) simulations. The resulting distributions were used for conducting Monte Carlo simulations to predict tissue:blood and blood:air PCs for VOCs. The distributions of PCs, along with distributions of physiological parameters and CYP2E1 content, were then incorporated within a PBPK model, to characterize the human variability of the blood toxicokinetics of four VOCs (benzene, chloroform, styrene and trichloroethylene) using Monte Carlo simulations. Overall, the quantitative approaches for PCs and CLint implemented in this study allow the use of generic molecular descriptors rather than specific molecular fragments to predict the pharmacokinetics of organic substances in humans. In this process, the current study has, for the first time, characterized the variability of the biological input parameters of the PC algorithms to expand the ability of PBPK models to predict the population distributions of the internal dose metrics of organic substances prior to testing in animals or humans.
44

Evaluating the use of dose-response relationships based on in vitro data in establishing acceptable exposure levels in humans

Bloch, Sherri 09 1900 (has links)
Avec plus de 350 000 produits chimiques utilisés et de nouveaux arrivant sur le marché chaque année, des outils rapides et à coûts réduits sont nécessaires pour l'étude de ces produits. L’évaluation des risques pour ces produits est généralement faite à partir d’études animales, mais celles-ci présentent plusieurs limitations. Par exemple, évaluer le potentiel cancérogène d’une substance prendre jusqu'à trois ans et coûter six millions de dollars. En outre, il a été démontré que les modèles animaux n'ont qu'un faible pouvoir prédictif par rapport aux effets chez l’humain. Pour surmonter ces obstacles, on assiste actuellement à un mouvement mondial en faveur du développement et de l'acceptation de nouvelles approches méthodologiques (NAM) pour la priorisation des produits chimiques et l'évaluation des risques. Notre objectif était d’élaborer et d'évaluer une nouvelle approche d’extrapolation in vitro à in vivo (IVIVE) pour établir des niveaux d'exposition acceptables chez l'homme en combinant des des études in vitro et des outils de modélisation toxicologique. À cette fin, nous avons développé et évalué un outil informatique utilisé dans l'approche IVIVE et mené des études de cas sur deux produits chimiques pour lesquels étaient disponibles des données in vitro, des modèles d'exposition, et des études épidémiologiques associant l’exposition à des effets néfastes chez l’humain. Dans le premier article, nous avons développé et évalué un modèle de bilan de masse dynamique (IV-MBM DP v1.0) pour estimer les concentrations intracellulaires au cours d'expériences in vitro avec administration répétée, incluant une description du transport facilité. Pour évaluer la précision du modèle, nous avons paramétré et appliqué le modèle à des scénarios de dose unique et de doses répétées, et évalué les concentrations estimées aux données empiriques. En outre, nous avons simulé des scénarios de dosage répété pour des produits chimiques organiques représentant une diversité de caractéristiques physico-chimiques, et nous avons comparé leur dispersion dans le système au fil du temps. Dans l'ensemble, pour les scénarios de dosage unique et répété, la concordance entre les données simulées et expérimentales a illustré le pouvoir prédictif du modèle. i Dans les deuxième et troisième articles, nous nous sommes concentrés sur l'utilisation et l'évaluation de notre nouvelle approche IVIVE en faisant deux études de cas impliquant l'exposition placentaire et lactationnelle à des polluants organiques persistants. La première étape de notre méthodologie a été la sélection d'un point de départ à partir d'une étude in vitro utilisant des cellules humaines. Ensuite, nous avons appliqué la modélisation benchmark dose pour obtenir la concentration associée à un changement relatif de 5% de la réponse par rapport au contrôle. Nous avons ensuite appliqué la modélisation de de bilan de masse pour déterminer la concentration cellulaire pour un point de départ conduisant à un changement de réponse de 5%. Un modèle toxicocinétique pour le transfert placentaire et par l’allaitement a ensuite été utilisé pour calculer la dose équivalente administrée et la concentration plasmatique associée, et des facteurs d'incertitude (variabilité interindividuelle (10) et sous-chronique à chronique (10)) ont été appliqués pour calculer les apports quotidiens tolérables et les équivalents de biosurveillance. Les équivalents de biosurveillance ont été comparés aux concentrations dans le sang de la mère et du cordon ombilical mesurées dans les études épidémiologiques. Nos études de cas portaient sur la neurotoxicité développementale du 2,2',4,4'-tétrabromodiphényléther (BDE-47) et sur l'obésogénicité du dichlorodiphényldichloroéthylène (p,p'-DDE). Pour les deux études, les apports quotidiens tolérables calculés en tenant compte des facteurs d’incertitude étaient plus faibles que les valeurs toxicologiques de référence déterminées sur la base d’études animales. En outre, les deux études de cas ont produit des équivalents de biosurveillance se situant dans la gamme des concentrations maternelles et du cordon ombilical mesurées dans les études épidémiologiques. Dans l'ensemble, l'évaluation de notre modèle de bilan de masse, ainsi que les valeurs conservatrices générées par l'approche IVIVE dans nos études de cas, renforcent la confiance dans les NAM, ce qui est essentiel pour leur adoption future par les organismes de réglementation. / With over 350,000 chemicals in use and more entering the market every year, cost-effective and time-efficient tools are necessary for the investigation of these products. Whole animal models are traditionally used and accepted by regulatory agencies; however, animal models carry multiple limitations. Specifically, animal models may take up to three years and six million dollars to investigate the carcinogenicity of a compound. Additionally, animal models have been shown to have poor predictive power for human safety. To overcome these obstacles, a global movement toward the development and acceptance of new alternative methods (NAMs) for chemical prioritization and risk assessment is taking place. Our objective was to develop and evaluate a novel in vitro to in vivo (IVIVE) approach to establish acceptable exposure levels in humans by combining novel in vitro and biological/computational modeling technologies for chemical safety assessment. To this end, we tested and evaluated a computational tool utilized in the IVIVE approach, and conducted proof-of-concept studies on two case chemicals with publicly available in vitro data, exposure models, and epidemiological studies demonstrating adverse health effects. In the first paper, we aimed to develop and evaluate a dynamic partitioning mass-balance model (IV-MBM DP v1.0) to estimate intracellular concentrations during in vitro experiments of repeat dosing, and incorporate facilitated transport into the model. To evaluate the model accuracy, we parametrized and applied the model to single dose and repeat dosing scenarios and assessed the output against empirical data. In addition, we simulated repeat dosing scenarios for organic chemicals with different properties and compared their dispersion within the system over time. Overall, for single and repeat dosing scenarios, concordance between simulated and experimental data illustrated the predictive power of the model. In the second and third papers, we focused on the use and evaluation of our novel IVIVE approach through case studies involving placental and lactational exposure to persistent organic pollutants. The first step of our methodology was the selection of a point of departure from an in vitro study utilizing human cells. Next, we applied benchmark dose modeling to obtain the nominal iv concentration at a 5% relative change in response from control. We subsequently applied mass- balance modeling to determine the cellular concentration for the POD leading to a 5% change in response. A toxicokinetic model for placental transfer and lactation was then used to calculate the administered equivalent dose and associated maternal and cord plasma concentration, and uncertainty factors (interindividual variability (10) and subchronic to chronic (10)) were applied to calculate tolerable daily intakes and biomonitoring equivalents. Biomonitoring equivalents were compared to concentrations in maternal and cord blood measured in epidemiological studies. Our case studies were on 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) developmental neurotoxicity and dichlorodiphenyldichloroethylene (p,p’-DDE) obesogenicity. For both studies, calculated tolerable daily intakes accounting for uncertainty factors were more conservative than the reference doses determined through the use of whole animal models. Moreover, both case studies produced biomonitoring equivalents within the range of maternal and cord levels measured in epidemiological studies. Overall, assessment of our IV-MBM DP v1.0 mass-balance model, as well as the demonstrated protective quality of the IVIVE approach in our case studies, enhances confidence in NAMs, which is essential for their future adoption by regulatory agencies.

Page generated in 0.0579 seconds