1 |
Biochemical and genetic analysis of RNA processing and decayGhazal, Ghada January 2009 (has links)
Gene expression is the conduit by which genetic information is connected into cellular phenotypes. Recently, it was shown that gene expression in mammalian cells is governed, at least in part, by the expression of short double stranded RNA (dsRNA). This mode of gene regulation is influenced by a large group of dsRNA binding proteins that could either stabilize or trigger the degradation of dsRNA. Indeed, double stranded RNA (dsRNA) specific ribonucleases (RNases) play an important role in regulating gene expression. In most eukaryotes, members of the dsRNA specific RNase III family trigger RNA degradation and initiate cellular immune response. Disruption of human . RNase III (Dicer) deregulates fetal gene expression and promotes the development of cancer. However, very little is known about the housekeeping function of eukaryotic RNase III and the mechanism by which they distinguish between exogenous and endogenous cellular RNA species. This thesis elucidates how dsRNAs are selected for cleavage and demonstrates their contribution to RNA metabolism in yeast as model eukaryote. Initially, the reactivity determinants of yeast RNase III (Rnt1p) were identified in vitro and used to study the global impact of Rnt1p on the processing of non-coding RNA. The results indicate that Rnt1p is required for the processing of all small nucleolar RNAs (snoRNAs) involved in rRNA methylation and identify a new role of Rnt1p in the processing of intronic snoRNAs. It was shown that Rnt1p cleavage helps to coordinate the expression of some ribosomal protein genes hosting intronic snoRNAs. Direct snoRNA processing from the pre-mRNA blocks the expression of the host gene, while delayed snoRNA processing from the excised intron allows the expression of both genes. In this way, the cell can carefully calibrate the amount of snoRNA and ribosomal proteins required for ribosome biogenesis. In addition, a global analysis of snoRNA processing identified new forms of Rnt1p cleavage signals that do not exhibit a conserved sequence motif but instead use a new RNA fold to recruit the enzyme to the cleavage site. This finding led to the conclusion that Rnt1p may use a wide combination of structural motifs to identify its substrates and thus increases the theoretical number of potential degradation targets in vivo . To evaluate this possibility, a new search for snoRNA independent Rnt1p cleavage targets was performed. Interestingly, many Rnt1p cleavage signals were identified in intergenic regions devoid of known RNA transcripts. In vivo , it was shown that Rnt1p induce the termination of non-polyadenylated transcripts and functions as a surveillance mechanism for transcription read-through. This finding directly links Rnt1p to the transcription machinery and provides a new mechanism for polyadenylation independent transcription termination. Together the work described in this thesis presents an example of how eukaryotic RNase III may identify its substrates and present a case study where transcription, RNA processing and stability are linked.
|
2 |
Structural and functional studies of the transcriptional regulator Seb1 in fission yeastWittmann, Sina January 2016 (has links)
RNA polymerase II (Pol II) is responsible for the transcription of all protein-coding and some non-coding genes in eukaryotes. Its largest subunit, Rpb1, contains a unique C-terminal domain (CTD) which consists of repeats of the heptad YSPTSPS. It acts as a binding platform for proteins that control the different stages of transcription and their recruitment is regulated mainly by differential phosphorylation of residues contained within the CTD. Previous studies could unveil proteins containing a CTD-interacting domain (CID) as important players that specifically bind to certain phosphorylation types of the CTD. More precisely, they were shown to be important for the last step of transcription, termination. Despite extensive research over the past 30 years, the exact mechanism of how these proteins facilitate the dislodgement of Pol II from the DNA template, still remains unknown. The work presented here contains detailed studies of the CID-containing protein Seb1 from the fission yeast Schizosaccharomyces pombe, revealing an unexpectedly broad role of this protein in transcription termination. In addition to a CID, Seb1 also contains an RNA recognition motif (RRM) which allows direct binding to RNA. Here, I present high-resolution crystal structures of both domains of Seb1. While the CID has a very conserved fold, the RNA binding regions contains an unusual arrangement of a canonical RRM intertwined with a second domain that are both important for RNA binding. Structure-based mutations were introduced and a combination of in vitro and genome-wide in vivo studies uncover Seb1 as an essential player in transcription termination. Importantly, both domains are required to promote the full function of Seb1. Despite its homology to the well-studied budding yeast protein Nrd1, the role of Seb1 in fission yeast is quite different. This thesis therefore provides important insight into the mechanisms that underlie eukaryotic transcription termination.
|
3 |
Characterization of the mechanisms of transcription termination by the helicase Sen1 / Caractérisation des mécanismes de terminaison de la transcription par l'hélicase Sen1Han, Zhong 11 September 2017 (has links)
La transcription cachée est un phénomène répandu aussi bien chez les eucaryotes que chez les procaryotes. Elle se caractérise par une production massive d’ARNs non-codants au niveau de régions non-annotées du génome et est potentiellement dangereuse pour la cellule car elle peut interférer avec l’expression normale des gènes. Chez S. cerevisiae, l’hélicase Sen1 induit la terminaison précoce de la transcription non-codante et joue ainsi un rôle clé dans le contrôle de la transcription cachée. Sen1 est très conservée et des mutations dans son homologue humain, senataxin (SETX), ont été associées à des maladies neurodégénératives. Malgré de nombreuses recherches menées sur ces protéines, leurs propriétés biochimiques ainsi que leurs mécanismes d’action restent peu connus. Durant ma thèse, j’ai étudié le mécanisme de terminaison par Sen1.Premièrement, j’ai caractérisé les activités biochimiques de Sen1 et analysé comment elles permettent d’induire la terminaison. Pour cela, j’ai utilisé un ensemble de techniques in vitro, notamment un système de transcription-terminaison qui contient uniquement des composants purifiés : Sen1, l’ARN polymérase II (Pol II) et les ADN matrices. Ce système permet de modifier les différents éléments de façon contrôlée afin de comprendre leur rôle précis dans la terminaison. J’ai tout d’abord analysé la fonction des différents domaines de Sen1 dans la terminaison. Sen1 est une protéine de taille importante qui possède un domaine central catalytique flanqué par deux domaines impliqués dans l’interaction avec d’autres facteurs. J’ai montré que le domaine hélicase est suffisant pour déclencher la terminaison de la transcription in vitro. Ensuite, j’ai montré que Sen1 utilise l’énergie de l’hydrolyse de l’ATP pour se déplacer sur des acides nucléiques simple bras (ARN et ADN) dans le sens 5’ vers 3’. J’ai alors étudié le rôle des différents acides nucléiques du système dans la terminaison par Sen1 et j’ai montré que l’interaction de Sen1 avec l’ADN n’est pas nécessaire; en revanche Sen1 doit s’associer à l’ARN naissant et se déplacer vers la polymérase. J’ai aussi montré qu’une fois que Sen1 entre en collision avec la Pol II, elle y exerce une action mécanique qui conduit à la terminaison uniquement quand la Pol II marque une pause. Cela indique que la terminaison est fortement dépendante de la pause transcriptionnelle. Deuxièmement, en collaboration avec le groupe d’E. Conti, nous avons réalisé une analyse structure-fonction du domaine hélicase de Sen1. Nous avons observé que Sen1 présente une organisation similaire à celle d’autres hélicases proches avec un core composé de deux domaines de type RecA avec plusieurs domaines auxiliaires. En général, le core est très conservé au sein des hélicases proches, alors que les domaines accessoires ont des caractéristiques distinctes qui confèrent des propriétés spécifiques aux différentes hélicases. En effet, nous avons identifié un sous-domaine spécifique à Sen1 mais conservé au cours de l’évolution que nous avons appelé le “brace”. Nous avons également détecté des différences notables au niveau d’un autre domaine accessoire que nous avons nommé le “prong”. Nous avons pu montrer que le “prong” est essentiel pour la terminaison par Sen1. Nos données suggèrent que les caractéristiques structurales spécifiques de Sen1 que nous avons révélées sont des déterminants majeurs de son activité dans la terminaison de la transcription. Finalement, nous avons utilisé Sen1 comme modèle pour étudier des mutations dans SETX qui sont associées à des maladies neurodégénératives. Nous avons introduit chez Sen1 une partie des mutations liées à des maladies et nous avons réalisé une caractérisation biochimique complète de chaque mutant. Nous avons ainsi montré que toutes les mutations sont fortement délétères pour la terminaison de la transcription. En conclusion, nos résultats ont permis d’améliorer la compréhension de l’origine des maladies provoquées par des mutations dans SETX. / Pervasive transcription is a common phenomenon both in eukaryotes and prokaryotes that consists in the massive production of non-coding RNAs from non-annotated regions of the genome. Pervasive transcription poses a risk that needs to be controlled since it can interfere with normal transcription of canonical genes. In S.cerevisiae, the helicase Sen1 plays a key role in restricting pervasive transcription by eliciting early termination of non-coding transcription. Sen1 is highly conserved across species and mutations in the human Sen1 orthologue, senataxin (SETX), are associated with two neurological disorders. Despite the major biological relevance of Sen1 proteins, little is known about their biochemical properties and precise mechanisms of action. During my PhD I have studied in detail the mechanisms of termination by Sen1.In a first project, I have characterized the biochemical activities of Sen1 and investigated how these activities partake in termination. To this end I have employed a variety of in vitro approaches, including a minimal transcription-termination system containing only purified Sen1, RNA polymerase II (RNAPII) and DNA transcription templates that allows modifying the different elements of the system in a controlled manner to understand their role in termination. First, we have analysed the function of the different domains of Sen1 in termination. Sen1 is a large protein composed of a central catalytic domain flanked by additional domains with proposed roles in protein-protein interactions. We have demonstrated that the central helicase domain is sufficient to elicit transcription termination in vitro. Next, we have shown that Sen1 can translocate along single-stranded nucleic acids (both RNA and DNA) from 5’ to 3’. Then, we have analysed the role of the different nucleic acid components of the elongation complex (i.e. nascent RNA and DNA transcription templates) in termination. Our results indicate that termination does not involve the interaction of Sen1 with the DNA but requires Sen1 translocation on the nascent RNA towards the RNAPII. Importantly, we show that upon encountering RNAPII, Sen1 can apply a mechanical force on the polymerase that results in transcription termination when RNAPII is paused under certain conditions. This indicates that RNAPII pausing is a strict requirement for Sen1-mediated termination. In a second project, in collaboration with the group of E. Conti we have performed a structure-function analysis of the helicase domain of Sen1. Comparison of Sen1 structure with that of other related helicases has revealed an overall similar organization consisting in two tandem RecA-like domains from which additional accessory subdomains protrude. In general, the core RecA-like domains are very well conserved among related helicases and most variation is found in the accessory subdomains, that often confer specific characteristics to different helicases. Indeed, we have found that Sen1 contains a unique but evolutionary conserved structural feature that we have dubbed the “brace”. In addition, Sen1 is different from other helicases in an auxiliary subdomain that we have named the “prong”. Importantly, we have shown that the integrity of this subdomain is critical transcription termination by Sen1. We propose that the specific features identified in our structural analyses are important determinants of the transcription termination activity of Sen1. Finally, we have used Sen1 as a model to investigate the molecular effect of SETX mutations linked to neurodegenerative diseases. We have introduced disease-associated mutations in Sen1 and performed a complete biochemical characterization of the different mutants in vitro. Importantly, we found that all mutants were severely affected in transcription termination. Taken together, our results elucidate the key structural determinants of the function of Sen1 and shed light on the molecular origin of the diseases associated with SETX mutations.
|
4 |
Analysis of Stem I elements required for antitermination of the T box riboswitchKreuzer, Kiel D. 11 September 2018 (has links)
No description available.
|
5 |
Characterization of the in vitro interaction between bacillus subtilis glyQS T Box leader RNA and tRNA(Gly)Yousef, Mary Roneh 06 January 2005 (has links)
No description available.
|
6 |
Characterization of the S-adenosylmethionine-dependent regulation and physiological roles of genes in the S box systemMcDaniel, Brooke A. 14 July 2005 (has links)
No description available.
|
7 |
DEVELOPMENT OF TRAPPING STYLE CASSETTES FOR NEW GENE TARGETING STRATEGIESSimsek, Senem 29 October 2007 (has links) (PDF)
Because of shared physiological, anatomical and metabolical features with humans, mice have served for a long time as mammalian disease models. In particular, these last ten years have been the golden age for this favoured model animal. Human and mouse genome projects show that there is 95% genome homology. Spurred by this fact, research attention has shifted from reading these sequences to deciphering the functions of these genes. The 1980s saw the remarkable achievement of homologous recombination in mammalian cell culture systems. Later in the 1990s, innovative gene trapping strategies were developed to enabled random mutagenesis. Today, the goal is to generate more versatile tools to avoid limitations posed by these earlier mutagenesis strategies. Many public and private research centers have united with the aim of mutating all mouse genes. In order to achieve this mutagenesis, the first requirement is a set of practical and efficient viral or plasmid based vectors that can be used globally in the genome. This will be aided by advances in understanding of biological events such as gene transcription, recombination, and embryonic stem cell cycle. In addition, technical improvements such as vector development, precise cell culture assay, and recombinant DNA delivery will also be important. The vector design work in this PhD thesis encompasses 0.00001 % ofthese efforts but may to out to be highly relevant...
|
8 |
Role of Rho-dependent transcription termination in the regulation of gene expression in Bacillus subtilis / Rôle de la terminaison de la transcription Rho-dépendante dans la régulation de l'expression génique chez Bacillus subtilisGrylak-Mielnicka, Aleksandra 27 September 2016 (has links)
La transcription bactérienne est un processus dans lequel l'information codée dans l'ADN est transféré à l'ARN messager (ARNm). Au cours de la dernière étape de ce procédé, la terminaison de la transcription, l'ARNm est libéré et peut être utilisé pour la synthèse des protéines. Un type de terminaison de la transcription décrit chez les bactéries est la terminaison Rho-dépendante. Le rôle de Rho a été largement étudié dans le modèle à Gram négatif bactérie, Escherichia coli dans laquelle Rho est une protéine essentiel est abondant. En revanche, la connaissance de Rho chez les bactéries qui il ne sont pas essentiels et est présent en faibles quantités: par exemple Gram-positif Bacillus subtilis reste limité..Pour étudier le rôle de Rho dans le contrôle de l'expression des gènes chez B. subtilis plusieurs analyses à grande échelle ont été réalisées, y compris des tests d'interactions physiques et fonctionnelles et une analyse globale des changements observés dans l'expression des gènes en corrélation avec la production de protéines.En effet, un ensemble des Rho-spécifiques interactions physiques et fonctionnelles ont été établies. En outre, de nouveaux phénotypes de mutant dépourvu de rho ont été décrits ce qui élucider le rôle de Rho dans le contrôle des différents aspects de la physiologie cellulaire. / Bacterial transcription is a process in which the information encoded in DNA is transferred to messenger RNA (mRNA). During the final step of this process, transcription termination, mRNA is released and can be used for protein synthesis. One type of transcription termination described in bacteria is Rho-dependent termination. The role of Rho has been widely investigated in model Gram-negative bacterium, Escherichia coli in which Rho is essential an abundant protein. In contrast, the knowledge about Rho inbacteria in which it is not essential and is present in low amounts, i. e. Gram-positive Bacillus subtilis remains limited.To investigate the role of Rho in control of gene expression in B. subtilis several large-scale analysis were performed. In effect, a set of Rho-specific physical and functional interactions were established. Additionally, new phenotypes of rho-null mutant were described unraveling the role of Rho in control of different aspects of cell physiology.
|
9 |
Sen1-mediated RNAPIII transcription termination controls the positioning of condensin on mitotic chromosomes / L'hélicase Sen1 contrôle le positionnement de condensine sur les chromosomes en régulant la terminaison de la transcription par l'ARN polymérase IIIRivosecchi, Julieta 24 September 2019 (has links)
Le complexe condensine est le moteur de la condensation mitotique des chromosomes, un processus essentiel à la stabilité du génome au cours de la division cellulaire. De nombreuses données publiées indiquent qu’il existe des liens fonctionnels étroits entre le processus de transcription des gènes et le processus d’organisation des chromosomes par condensine. Ces données sont toutefois souvent contradictoires et aucun modèle ne fait actuellement consensus pour expliquer les liens entre transcription et condensine. Au cours de cette thèse, nous avons montré chez la levure Schizosaccharomyces pombe qu’en l’absence de l’hélicase à ADN/ARN Sen1, condensine s’accumule spécifiquement à proximité des gènes transcrits par l’ARN Polymérase III. Nous avons utilisé ces observations pour mieux comprendre les liens entre transcription par l’ARN polymérase III et le positionnement de condensine. Nos données montrent que Sen1 est un cofacteur de l’ARN Polymérase III impliqué dans la terminaison de la transcription. Ce résultat est important car il démontre que les modèles existants qui affirment que l’ARN polymérase III termine de transcrire de façon autonome sont erronés. Nous avons ensuite démontré que les défauts de terminaison de l’ARN polymérase III observés en l’absence de Sen1 suffisent entièrement à expliquer l’accumulation de condensine en ces sites. Cette observation importante démontre que le contrôle de qualité de la transcription est directement impliqué dans le positionnement de condensine sur les chromosomes en mitose. Nos résultats nous permettent de proposer qu’au-delà d’un certain seuil, la densité en ARN polymérases est un obstacle à la translocation de condensine sur les chromosomes. / The condensin complex is a key driver of chromosome condensation in mitosis. The condensin-dependent assembly of highly compacted chromosomes is essential for the faithful transmission of the genome during cell division. Many independent studies have established that gene transcription impacts the association of condensin with chromosomes, but the molecular mechanisms involved are still unclear. This is especially true as a number of sometimes contradictory mechanisms have been proposed so far. Here, we show in Schizosaccharomyces pombe that condensin accumulates specifically in the vicinity of a subset of RNA polymerase III-transcribed genes in the absence of the conserved DNA/RNA helicase Sen1. We demonstrate that Sen1 is a cofactor of RNA polymerase III (RNAPIII) required for efficient transcription termination. These results are important because they fundamentally challenge the pre-existing view that RNAPIII terminates transcription autonomously. Strikingly, we show that the RNAPIII transcription termination defects are directly responsible for the accumulation of condensin in the absence of Sen1. This indicates that the quality control of transcription impacts the distribution of condensin on mitotic chromosomes. We propose that above a certain density threshold, the accumulation of RNAPIII constitutes a barrier for the translocation of condensin on chromosomes.
|
10 |
DEVELOPMENT OF TRAPPING STYLE CASSETTES FOR NEW GENE TARGETING STRATEGIESSimsek, Senem 15 October 2007 (has links)
Because of shared physiological, anatomical and metabolical features with humans, mice have served for a long time as mammalian disease models. In particular, these last ten years have been the golden age for this favoured model animal. Human and mouse genome projects show that there is 95% genome homology. Spurred by this fact, research attention has shifted from reading these sequences to deciphering the functions of these genes. The 1980s saw the remarkable achievement of homologous recombination in mammalian cell culture systems. Later in the 1990s, innovative gene trapping strategies were developed to enabled random mutagenesis. Today, the goal is to generate more versatile tools to avoid limitations posed by these earlier mutagenesis strategies. Many public and private research centers have united with the aim of mutating all mouse genes. In order to achieve this mutagenesis, the first requirement is a set of practical and efficient viral or plasmid based vectors that can be used globally in the genome. This will be aided by advances in understanding of biological events such as gene transcription, recombination, and embryonic stem cell cycle. In addition, technical improvements such as vector development, precise cell culture assay, and recombinant DNA delivery will also be important. The vector design work in this PhD thesis encompasses 0.00001 % ofthese efforts but may to out to be highly relevant...
|
Page generated in 0.2205 seconds