• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 34
  • 27
  • 25
  • 9
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 385
  • 85
  • 74
  • 68
  • 63
  • 55
  • 52
  • 49
  • 45
  • 45
  • 41
  • 38
  • 38
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

New Tools to Understand Mechanisms of Nutrient Transfer from Plants to Biotrophic Pathogens

Dinkeloo, Kasia 12 October 2018 (has links)
The interaction between Arabidopsis and its natural downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa), provides a model for understanding how oomycetes colonize plants. Hpa is a model organism for many highly destructive oomycete pathogens and transcriptomics of this interaction have been well-documented. However, the material in these studies has been derived from infected leaves that contain a mix of pathogen-proximal and pathogen-distal plant cells. The most direct interactions between Arabidopsis and Hyaloperonospora arabidopsidis occur in haustoriated cells- where the pathogen can secrete effectors and acquire nutrients needed for successful colonization and reproduction. These cells are difficult to isolate due to their limited number and ephemeral nature. I have developed a method to isolate the translatome (i.e., mRNAs associated with ribosomes) of pathogen-proximal cells. This method utilizes translating ribosome immuno-purification technology (TRAP), regulated by both pathogen-responsive and tissue-specific promoters, to isolate mRNAs that are being translated in pathogen-proximal cells. Compared to "bulk" transcriptomics of material isolated from homogenized leaves, this method will enrich for transcripts that are differentially expressed, and translated, in pathogen-proximal cells. From this method, RNA was isolated in amount and quality sufficient for sequencing. This sequencing data will enable the discovery of plant genes that may be manipulated by the pathogen to suppress defense responses and extract nutrients. / Ph. D. / The interactions between plants and the pathogens that feed on them are complex and at times difficult to study. Among the many different types of plant pathogens, oomycetes (a class of fungus-like organisms) are especially destructive. Using Arabidopsis and its natural downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa) as model for understanding how oomycetes colonize plants, I hope to learn more about plant-pathogen interactions. Hpa is a model organism for many highly destructive oomycete pathogens and several aspects of this interaction have been well-documented. However, the material in these studies has been derived from infected leaves that contain a mix of plant cells that are both in direct contact with the pathogen, or from uninfected areas of the plant. The most direct interactions between Arabidopsis and Hpa occur in cells that have been invaginated with a pathogen feeding structure called a haustorium. These cells are difficult to isolate due to their limited number and ephemeral nature. I have developed a method to isolate the translatome (i.e., mRNAs that are being translated by and are associated with ribosomes) of pathogen-proximal cells. This method utilizes translating ribosome immuno-purification technology (TRAP), regulated by both pathogen-responsive and tissue-specific promoters, to isolate mRNAs that are being translated in pathogen-proximal cells. Compared to “bulk” transcriptomics of material isolated from homogenized leaves, this method will enrich for transcripts that are differentially expressed, and translated, in pathogen-proximal cells. From this method, RNA was isolated in amount and quality sufficient for sequencing. This sequencing data will enable the discovery of plant genes that may be manipulated by the pathogen to suppress defense responses and extract nutrients.
102

RNA-sequencing muscle plasticity to resistance exercise training and disuse in youth and older age

Fernandez-Gonzalo, R., Willis, Craig R.G., Etheridge, T., Deane, C.S. 16 January 2023 (has links)
Yes / Maintenance of skeletal muscle mass and function is critical to health and wellbeing throughout the lifespan. However, disuse through reduced physical activity (e.g., sedentarism), immobilisation, bed rest or microgravity has significant adverse effects on skeletal muscle health. Conversely, resistance exercise training (RET) induces positive muscle mass and strength adaptations. Several studies have employed microarray technology to understand the transcriptional basis of muscle atrophy and hypertrophy after disuse and RET, respectively, to devise fully effective therapeutic interventions. More recently, rapidly falling costs have seen RNA-sequencing (RNA-seq) increasingly applied in exploring muscle adaptations to RET and disuse. The aim of this review is to summarise the transcriptional responses to RET or disuse measured via RNA-seq in young and older adults. We also highlight analytical considerations to maximise the utility of RNA-seq in the context of skeletal muscle research. The limited number of muscle transcriptional signatures obtained thus far with RNA-seq are generally consistent with those obtained with microarrays. However, RNA-seq may provide additional molecular insight, particularly when combined with data-driven approaches such as correlation network analyses. In this context, it is essential to consider the most appropriate study design parameters as well as bioinformatic and statistical approaches. This will facilitate the use of RNA-seq to better understand the transcriptional regulators of skeletal muscle plasticity in response to increased or decreased use.
103

Adaptability to eccentric exercise training is diminished with age in female mice

Baumann, C.W., Deane, C.S., Etheridge, T., Szewczyk, N.J., Willis, Craig R.G., Lowe, D.A. 22 November 2023 (has links)
Yes / The ability of skeletal muscle to adapt to eccentric contractions has been suggested to be blunted in older muscle. If eccentric exercise is to be a safe and efficient training mode for older adults, preclinical studies need to establish if older muscle can effectively adapt and if not, determine the molecular signatures that are causing this impairment. The purpose of this study was to quantify the extent age impacts functional adaptations of muscle and identify genetic signatures associated with adaptation (or lack thereof). The anterior crural muscles of young (4 mo) and older (28 mo) female mice performed repeated bouts of eccentric contractions in vivo (50 contractions/wk for 5 wk) and isometric torque was measured across the initial and final bouts. Transcriptomics was completed by RNA-sequencing 1 wk following the fifth bout to identify common and differentially regulated genes. When torques post eccentric contractions were compared after the first and fifth bouts, young muscle exhibited a robust ability to adapt, increasing isometric torque 20%-36%, whereas isometric torque of older muscle decreased up to 18% (P ≤ 0.047). Using differential gene expression, young and older muscles shared some common transcriptional changes in response to eccentric exercise training, whereas other transcripts appeared to be age dependent. That is, the ability to express particular genes after repeated bouts of eccentric contractions was not the same between ages. These molecular signatures may reveal, in part, why older muscles do not appear to be as adaptive to exercise training as young muscles.NEW & NOTEWORTHY The ability to adapt to exercise training may help prevent and combat sarcopenia. Here, we demonstrate young mouse muscles get stronger whereas older mouse muscles become weaker after repeated bouts of eccentric contractions, and that numerous genes were differentially expressed between age groups following training. These results highlight that molecular and functional plasticity is not fixed in skeletal muscle with advancing age, and the ability to handle or cope with physical stress may be impaired. / The full-text of this article will be released for public view at the end of the publisher embargo on 1 Nov 2024.
104

RNA Sequencing of Mechanically Modulated A549 Cells

Hessami, Ala 07 1900 (has links)
Mechanical stiffening of the interstitial space in the lung – the protein-rich extracellular space between the alveoli and capillaries – plays an important role in modulating epithelial cell behaviors that contribute to cancer and idiopathic pulmonary fibrosis (IPF) disease etiologies. However, the effects of substrate stiffness and breathing-like stretch are not well understood in the context of cancer. In this thesis project, we utilize RNA sequencing to understand how the mechanical properties of extracellular environments modulate cancer related cells. To accomplish this goal, we examined the behavior of lung cancer derived A549 cells, cells that have epithelial lineages, on a biomimetic lung-on-a-chip devices. Importantly, our biomimetic devices allow us to modulate the stiffness of the interstitial space to have soft properties similar to those observed in healthy lung and stiff properties mimicking fibrotic tissues. After growing A549 cells on our biomimetic devices and plastic plate controls, we extracted and purified RNA for mRNA sequencing to examine differential gene expression. Subsequent gene ontology analysis found that differentially expressed genes are involved in cell cycle, metabolism, and cell migration. Connecting these pathways using KEGG analysis we identified pathways of downregulated or upregulated genes related to cancer and metastasis. Based on these results, changes in the interstitial stiffness surrounding A549 cells can change their behaviors and lead to activation of cancer pathways.
105

Pleiotropy and epistasis in auxin signaling networks

Ferreira Neres, Deisiany 13 September 2024 (has links)
Plant hormones and their gene regulatory networks orchestrate a diverse array of metabolic and physiological changes crucial for growth, development, and environmental responses. Targeting the engineering of hormone signaling networks holds promise for enhancing plant health, crop productivity, and vigor. However, these networks are intricate, featuring negative feedback loops, extensive interconnections between pathways, pleiotropy, and overlapping gene expression. These complexities pose challenges in identifying candidate genes and parsing apart their isolated functions that could be strategically engineered to achieve desired plant phenotypes. Integration of comparative evolution, synthetic biology, and expression analysis facilitates the deconstruction of these networks. Through systems biology approaches data dimensionality can be reduced, enabling the attribution of specific phenotypes to associated genes. Here, I reviewed how the employment of these above-mentioned approaches can aid in the identification of candidate genes involved the regulation of growth and development within specific tissues, and how through synthetic biology we can explore the sequence-function space of candidate genes and their pathway modules. Candidate genes identified through this process can be evaluated through comparative evolutionary approaches, and efficiently tested in synthetic systems for engineering of their molecular functionalities in a high-throughput manner. Here, as a case study, I employ a systems biology approach to identify tissue-specific candidate genes within the auxin regulatory network in soybean shoot development. This method aims to minimize pleiotropy and off-target effects by utilizing expression analysis tissue-specificity score and principal component analysis. I primarily, focused on three pivotal components of the nuclear auxin signaling pathway: Aux/IAA transcriptional repressors, ARF transcription factors, and TIR1/AFB auxin receptors. These components collectively modulate auxin signaling, influencing various growth and environmental responses. I identified genes within the three pivotal components of auxin signaling involved in early shoot architecture development, which has advantages from weed suppression to yield in soybean cultivation. I used a yeast chassis to investigate the function of pleiotropic auxin receptors, which primarily regulate Aux/IAA levels and orchestrate transcriptional changes in response to auxin. I explored whether these receptors modulate auxin response in a concerted fashion, as they are generally not tissue specific. Here, I reported that auxin receptors interact in an epistatic manner to modulate auxin response. This case of study serves as a foundation in engineering plant genotype-phenotype via auxin signaling. / Doctor of Philosophy / Plant hormones are essential for controlling various processes that drive plant growth, development, and responses to the environment. Scientists are exploring ways to engineer the networks that regulate these hormones to improve plant health, boost crop yields, and enhance plant strength. However, these networks are complex, with many interacting parts, making it difficult to identify which genes to modify to achieve specific outcomes in plants. To tackle this challenge, researchers use a combination of approaches, including studying how these networks have evolved, analyzing large amounts of biological data, and using synthetic biology to test and refine their findings. By breaking down the complexity of these networks, they can link specific genes to particular plant traits. Once these genes–trait links are identified, they can be further tested and engineered to optimize plant characteristics. In this study, I focused on the auxin hormone, which plays a key role in numerous aspects of plant growth including soybean shoot development and Arabidopsis root development. I looked at three main components of the auxin regulatory network: Aux/IAA proteins (which act as repressors), ARF transcription factors (which control gene expression), and TIR1/AFB receptors (which detect auxin levels). These components work together to regulate how plants grow and respond to their environment. I identified key genes within these main auxin components that are important for early development of soybean shoots and minimizes off-target effects. This can help improve soybean farming by enhancing weed control and enhancing crop yields Using a synthetic biology yeast system, I studied the function of TIR1/AFB auxin receptors and how this family of receptors interact to perceive auxin and control the levels of Aux/IAA proteins, consequently controlling the plant's growth in response to auxin. I found that auxin receptors work in concert in a way that reduces their overall effect on the plants response to auxin. This research lays the groundwork for future efforts to engineer plant traits by modifying the auxin signaling pathway, which could lead to improved crop performance and resilience.
106

Atypische pleiotrope Zytostatikaresistenz (Multidrug-Resistenz) humaner Tumorzellen

Lage, Hermann 04 December 2001 (has links)
Resistenzen von Tumoren gegenüber der Behandlung mit Chemotherapeutika stellen ein wesentliches Hindernis für eine erfolgreiche Therapie in der onkologischen Klinik dar. Ein Verständnis der biologischen Mechanismen auf molekularer Ebene, die zu diesen Resistenzphänomenen führen, ist daher von entscheidender Bedeutung, um Strategien zu entwickeln, die darauf zielen, eine Therapieresistenz zu überwinden. Um diesem Ziel näher zu kommen, wurden im Verlaufe dieser Arbeit verschiedene Modelle aus unterschiedlichen Tumoren entwickelt und analysiert, die im Zellkultursystem Chemoresistenzen von neoplastischen Geweben simulieren. In einem ersten Schritt wurden diese in vitro Systeme zellbiologisch hinsichtlich dem Vorhandensein von verschiedenen, aus der wissenschaftlichen Literatur bekannten Resistenzmechanismen, charakterisiert. Hierbei konnte neben der verstärkten Expression von ABC-Transportern, wie P-Glykoprotein (P-Gp), "Breast Cancer Resistance Protein" (BCRP) sowie "canalicular Multispecific Organic Anion Transporter" (cMOAT), eine intrazelluläre Kompartimentierung von Zytostatika, Modulation der Aktivität von DNA-Topoisomerasen II (Topo II) sowie Veränderungen in der Aktivität von DNA-Reparatursystemen, wie z.B. dem DNA-Mismatch Repair System (DMM) oder der O6-Methyguanin-Methytransferase (MGMT) in resistenten Zellen wiedergefunden werden. Die Aktivierung dieser Mechanismen reichte jedoch nicht aus, das komplexe Geschehen von unterschiedlichen Kreuzresistenzen in den Zellen zu erklären. Es wurde daher gezielt nach neuen Resistenzmechanismen gesucht. Dafür wurden zwei unterschiedliche Strategien verfolgt: 1. Suche nach neuen Resistenz-assoziierten Faktoren auf Ebene der zellulären mRNA Expressionsprofile ("Transcriptomics"), sowie 2. Suche nach neuen Resistenz-assoziierten Faktoren auf Ebene der zellulären Proteinexpression ("Proteomics"). Mittels beider experimentellen Ansätze konnten mehrere Faktoren identifiziert werden, die potentiell neue Resistenzmechanismen in Tumorzellen vermitteln können. Für die Faktoren Glypican-3 (GPC3), DFNA5 und "Transporter associated with Antigen Presentation" (TAP) konnten funktionelle Analysen nachweisen, daß diese am Resistenzgeschehen beteiligt sind. Zur Überwindung von Chemoresistenzen, wurde neben dem Einsatz konventioneller chemischer Substanzen, eine gentherapeutische Strategie, die Ribozymtechnologie, gewählt. In dieser Arbeit wurden Ribozyme gegen GPC3 sowie die ABC-Transporter BCRP und cMOAT entwickelt. / Resistance to antitumor chemotherapy is a common problem in patients with cancer and a major obstacle to effective treatment of disseminated neoplasms. An understanding of the molecular mechanisms leading to these resistance phenomena is of vital interest to develop strategies to overcome therapy resistance in clinics. In order to gain further insides into the biological mechanisms mediating drug resistance, in this study various cell culture models derived from different origins were established and analyzed in detail. At first, these in vitro models were investigated concerning the activity of drug resistance mechanisms that were described in the scientific literature previously. By this approach the enhanced expression of the ABC-transporters P-glycoprotein (P-gp), "breast cancer resistance protein" (BCRP) and "canalicular multispecific organic anion transporter" (cMOAT) could be observed. In addition, an intracellular compartmentalization of the antineoplastic agents, a modulation of the activities of DNA-topoisomerases II (Topo II), and altered activities of DNA-repair systems, such as the DNA-mismatch repair system (DMM) or O6-methyguanine methyltransferase (MGMT) were detected. However, since the activation of these mechanisms do not explain all of the cross resistance pattern observed in these cell systems, other additional mechanisms must be operating in the drug-resistant cells. In order to identify potential new molecular mechanisms involved in drug resistance, in this study two different experimental strategies were performed: 1. Search of new resistance-associated factors on the level of the cellular mRNA expression profiles ("transcriptomics"), and 2. Search of new resistance-associated factors on the level of cellular protein expression ("proteomics"). By applying both experimental strategies, several cellular factors could be identified that potential play a role in drug resistance of tumor cells. Functional evidence was provided for glypican-3 (GPC3), DFNA5 and "transporter associated with antigen presentation" (TAP) to be involved in drug-resistant phenotypes. To overcome drug resistance, a gene therapeutic approach, a hammerhead ribozyme-based technology, was developed. In this study various ribozymes directed against GPC3 and the ABC-transporters BCRP and cMOAT were constructed.
107

<b>Charactering the impact of traumatic injury on neurodegenerative disease risk using engineered cell and tissue model</b>

Junkai Xie (17130850) 12 October 2023 (has links)
<p dir="ltr">Neurotrauma encompasses a broad category of injuries affecting the central nervous system (CNS), which includes both the traumatic brain injury (TBI) and spinal cord injury (SCI). These injuries can result from various causes, including accidents, falls, sports-related incidents, and other traumatic events, affecting millions of individuals annually. Traumatic injuries are the leading cause of disability, and moreover are associated with elevated risk of developing cognitive impairments and neurodegenerative diseases (ND) such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD). The elevated ND risk arising from neurotrauma poses significant burdens on healthcare systems and affect life quality of affected individuals, emphasizing the critical need for research aimed at understanding the underlying mechanisms conferring ND risk from the lesion center to CNS. The goal of my thesis is to understand persistent molecular changes post SCI associated with ND using a combination of a rat animal model and neuronal cultures derived from human induced pluripotent stem cells.</p><p dir="ltr">I started with Sprague-Dawley rats with T10 spinal cord contusive injury; and assessed immediate and persistent changes in transcriptomic and epigenetic markers via next generation sequencing (NGS) at primary lesion site and distal spinal cord tissue. Along with global changes in chromatin arrangements and DNA methylation, we observed significant transcriptomic changes enriched for pathways of inflammatory responses, and synaptogenesis. These changes were further verified using immunohistochemistry and super resolution microscopy. To further understand the long-term brain abnormality linked to SCI, we investigated persistent alterations in the composition and molecular profiles of both the male and female motor cortex 30 days after injury. Immunohistochemistry revealed that SCI leads to neuronal loss and changes in synaptic density and morphology; and significant alterations in the neuron-astrocyte ratio and astrocyte morphology, in male motor cortex supporting our hypothesis that SCI may increase the risk of neurodegeneration by affecting the motor cortex. Comparison of transcriptomic data collected at a sub-acute stage in male rats, namely 7 days post injury, with 30 days post injury, identified persistent and de novo changes that occur primarily after recovery of spinal cord injury, which are enriched for neuronal and synaptic function related pathways. Interestingly, neuroendocrine-related pathways were prominently implicated at the chronic stage of SCI, with Esr1 identified as a major upstream regulator offering protective effects in females that did not exhibit significant alterations in cellular composition or morphology after SCI. Collectively, our study paved the way towards understanding sexual dimorphism in brains after spinal cord injury and provides a plausible connection between spinal cord injury and neurodegeneration later in life that were further investigated using a humanized culture model.</p><p dir="ltr">We established the feasibility of using hiPSC derived neurons to examine long term neurotoxic mechanism using lead (Pb) as a model chemical with strong associations with elevated AD risks later in life. A similar culture system was then used to assess persistent neurotoxicity of acrolein, a chemical that is known to emerge in brains post traumatic injury. We found that acrolein induced alterations in neuronal network morphology, synaptic density, and excitability. Furthermore, acrolein exposure negatively impacted mitochondrial function and persistently altered neuronal resilience towards a secondary stressor of mitochondria, namely MPP+. Acrolein exposure also alters the expression of tau and tau phosphorylation which collectively result in increased cellular vulnerability toward paired helical filament (PHF-tau) seeding, a known neurotoxin associated with ND. These findings collectively provide molecular insights as to how acrolein can partake alterations in neural function and resilience to stressors; and relay ND risks in neurotrauma patients later in life.</p><p dir="ltr">In conclusion, our comprehensive investigation employing both rat and hiPSC models uncovers plausible molecular pathways connecting SCI to neurodegenerative diseases, providing insights into the enduring consequences of these injuries on affected patients.</p>
108

A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

He, Ruifeng, Salvato, Fernanda, Park, Jeong-Jin, Kim, Min-Jeong, Nelson, William, Balbuena, Tiago, Willer, Mark, Crow, John, May, Greg, Soderlund, Carol, Thelen, Jay, Gang, David January 2014 (has links)
BACKGROUND:The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant.RESULTS:We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease.CONCLUSIONS:A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease.
109

Genetic regulation of Kranz anatomy

Fouracre, Jim P. January 2013 (has links)
The C₄ photosynthetic cycle acts to concentrate CO₂ around the enzyme Rubisco. By doing so, C₄ photosynthesis leads to increased radiation, water and nitrogen use efficiencies. As such, C₄ photosynthesis is the most productive form of photosynthesis known. Because it enables such high levels of productivity there are large international efforts to introduce C₄ photosynthesis into non-C₄ crop species such as rice. Kranz anatomy is a characteristic leaf cellular arrangement of concentric rings of bundle sheath and mesophyll cells around closely spaced veins and is crucial to C₄ photosynthesis in almost all known examples. Despite the fact that Kranz has evolved on over 60 times independently little is known about the genetic regulation of Kranz development, as attempts to elucidate Kranz regulators using conventional mutagenesis screens have provided few insights. However, the advent of next generation DNA sequencing technologies has enabled the interrogation of genetic networks at a previously unprecedented scale. The work in this thesis describes a genome-wide transcriptomic analysis of leaf development in maize, a C₄ species, that develops both Kranz-type and non-Kranz-type leaves. Detailed bioinformatics analyses identified candidate regulators of both Kranz development and additional aspects of maize leaf development. Three of the identified Kranz candidates were functionally characterised in both C₄ and non-C₄ species. Furthermore, expression and phylogenetic analyses of GOLDEN2-LIKE (GLK) genes, a small transcription factor family previously implicated in C₄ development in maize, were extended to determine the generality of GLK function in C₄ evolution.
110

Comparative 'omic' profiling of industrial wine yeast strains

Rossouw, Debra 12 1900 (has links)
Thesis (PhD(Agric) Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2009. / The main goal of this project was to elucidate the underlying genetic factors responsible for the different fermentation phenotypes and physiological adaptations of industrial wine yeast strains. To address this problem an ‘omic’ approach was pursued: Five industrial wine yeast strains, namely VIN13, EC1118, BM45, 285 and DV10, were subjected to transcriptional, proteomic and exometabolomic profiling during alcoholic fermentation in simulated wine-making conditions. The aim was to evaluate and integrate the various layers of data in order to obtain a clearer picture of the genetic regulation and metabolism of wine yeast strains under anaerobic fermentative conditions. The five strains were also characterized in terms of their adhesion/flocculation phenotypes, tolerance to various stresses and survival under conditions of nutrient starvation. Transcriptional profiles for the entire yeast genome were obtained for three crucial stages during fermentation, namely the exponential growth phase (day 2), early stationary phase (day 5) and late stationary phase (day 14). Analysis of changes in gene expression profiles during the course of fermentation provided valuable insights into the genetic changes that occur as the yeast adapt to changing conditions during fermentation. Comparison of differentially expressed transcripts between strains also enabled the identification of genetic factors responsible for differences in the metabolism of these strains, and paved the way for genetic engineering of strains with directed modifications in key areas. In particular, the integration of exo-metabolite profiles and gene expression data for the strains enabled the construction of statistical models with a strong predictive capability which was validated experimentally. Proteomic analysis enabled correlations to be made between relative transcript abundance and protein levels for approximately 450 gene and protein pairs per analysis. The alignment of transcriptome and proteome data was very accurate for interstrain comparisons. For intrastrain comparisons, there was almost no correlation between trends in protein and transcript levels, except in certain functional categories such as metabolism. The data also provide interesting insights into molecular evolutionary mechanisms that underlie the phenotypic diversity of wine yeast strains. Overall, the systems biology approach to the study of yeast metabolism during alcoholic fermentation opened up new avenues for hypothesis-driven research and targeted engineering strategies for the genetic enhancement/ modification of wine yeast for commercial applications.

Page generated in 0.0794 seconds