• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transcriptomic and Cell-Specific Translatomic Aanalysis in Early Iron Deficiency Response in Arabidopsis

Ruijie Han (7046801) 13 August 2019 (has links)
<p>Iron is an essential micronutrient for plant growth, development and productivity. Although it is abundant in soil, the bio-availability of iron is often low for plants in many areas of the world. The insufficient quantity of usable iron in plants causes reduction in chlorophyll synthesis, reduced photosynthesis rate and decreased growth and yield. Two major strategies, Strategy I and II, have been discovered to be involved in response to low iron and a complex network of biochemical and molecular pathways participate in the processes. </p> <p> </p> <p>Cellular transcriptional regulation is associated with iron deficiency responses. Multiple genes and pathways involved in iron-deficiency responses have been identified in plants in the past decade. Here, we measured different physiological parameters and used RNA-Seq to elucidate the physiological and molecular responses in early stage of iron deficiency in the whole leaf of model plant species Arabidopsis thaliana. In this study, Arabidopsis showed reduced chlorophyll content, increased ferric reductase activity and reduced antioxidant enzyme activities when stressed by iron deficiency. In addition, we have identified multiple pathways that may play promising roles in the response to iron deficiency, e.g., 1) we found that the auxin biosynthesis under iron deficiency is preferentially depended on the TAA-YUC pathway rather than the CYP79 pathways; 2) TCA cycle is involved in mediating the acclimation process to the stress condition; 3) glucosinolate synthesis could be a limiting factor for iron deficiency response due to its negative relationship with hormone and energy metabolism.</p> <p> </p> Systemic signals generated from leaves are critical for triggering iron deficiency responses in roots. Due to the physiological characteristic and cellular ultrastructure of companion cells (CCs), we hypothesize that the CCs located in phloem play essential roles in regulating systemic nutrient signaling. In this study, by using a cell-specific TRAP-Seq, we discovered that not only CCs respond more drastically than the other cells in leaf, the altered molecular pathways in the CCs are also more diverse during early iron deficiency response. In particular, we found that auxin and sucrose transport and metabolism in the CCs may be two of the key regulatory processes that plants use to exert the shoot-to-root signaling process. Our discoveries have collectively suggested that CCs may function as the central machinery in the systemic signaling in response to iron deficiency. A comparison between whole leaf transcriptome and translatome also suggested that translatomic analysis is a more sensitive method for gene profiling than conventional transcriptomic analysis.
2

Translational reprogramming promotes survival to hypertonic stress

Jobava, Raul 21 June 2021 (has links)
No description available.
3

New Tools to Understand Mechanisms of Nutrient Transfer from Plants to Biotrophic Pathogens

Dinkeloo, Kasia 12 October 2018 (has links)
The interaction between Arabidopsis and its natural downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa), provides a model for understanding how oomycetes colonize plants. Hpa is a model organism for many highly destructive oomycete pathogens and transcriptomics of this interaction have been well-documented. However, the material in these studies has been derived from infected leaves that contain a mix of pathogen-proximal and pathogen-distal plant cells. The most direct interactions between Arabidopsis and Hyaloperonospora arabidopsidis occur in haustoriated cells- where the pathogen can secrete effectors and acquire nutrients needed for successful colonization and reproduction. These cells are difficult to isolate due to their limited number and ephemeral nature. I have developed a method to isolate the translatome (i.e., mRNAs associated with ribosomes) of pathogen-proximal cells. This method utilizes translating ribosome immuno-purification technology (TRAP), regulated by both pathogen-responsive and tissue-specific promoters, to isolate mRNAs that are being translated in pathogen-proximal cells. Compared to "bulk" transcriptomics of material isolated from homogenized leaves, this method will enrich for transcripts that are differentially expressed, and translated, in pathogen-proximal cells. From this method, RNA was isolated in amount and quality sufficient for sequencing. This sequencing data will enable the discovery of plant genes that may be manipulated by the pathogen to suppress defense responses and extract nutrients. / Ph. D. / The interactions between plants and the pathogens that feed on them are complex and at times difficult to study. Among the many different types of plant pathogens, oomycetes (a class of fungus-like organisms) are especially destructive. Using Arabidopsis and its natural downy mildew pathogen, Hyaloperonospora arabidopsidis (Hpa) as model for understanding how oomycetes colonize plants, I hope to learn more about plant-pathogen interactions. Hpa is a model organism for many highly destructive oomycete pathogens and several aspects of this interaction have been well-documented. However, the material in these studies has been derived from infected leaves that contain a mix of plant cells that are both in direct contact with the pathogen, or from uninfected areas of the plant. The most direct interactions between Arabidopsis and Hpa occur in cells that have been invaginated with a pathogen feeding structure called a haustorium. These cells are difficult to isolate due to their limited number and ephemeral nature. I have developed a method to isolate the translatome (i.e., mRNAs that are being translated by and are associated with ribosomes) of pathogen-proximal cells. This method utilizes translating ribosome immuno-purification technology (TRAP), regulated by both pathogen-responsive and tissue-specific promoters, to isolate mRNAs that are being translated in pathogen-proximal cells. Compared to “bulk” transcriptomics of material isolated from homogenized leaves, this method will enrich for transcripts that are differentially expressed, and translated, in pathogen-proximal cells. From this method, RNA was isolated in amount and quality sufficient for sequencing. This sequencing data will enable the discovery of plant genes that may be manipulated by the pathogen to suppress defense responses and extract nutrients.
4

Régulations traductionnelles de l'embryon précoce d'oursin : recrutement des ARNm dans les polysomes à la fécondation / Translational regulations in early sea urchin embryo : mRNA recruitment into polysomes at fertilization

Chassé, Héloïse 08 December 2015 (has links)
La synthèse protéique est une étape importante de la régulation de l'expression des gènes. Dans beaucoup d'espèces animales, les premières étapes du développement embryonnaire sont majoritairement ou exclusivement basées sur l'utilisation des messagers maternels stockés dans l'ovocyte. L'embryon d'oursin est un modèle avantageux pour l'étude du contrôle traductionnel de l'expression des gènes lors du développement précoce. La fécondation provoque l'activation de la machinerie traductionnelle conduisant à une augmentation de synthèse protéique nécessaire à la reprise des cycles mitotiques et au départ du développement embryonnaire. Les modifications touchant la machinerie traductionnelle qui ont lieu à la fécondation sont à l'origine du recrutement polysomal des messagers stockés. Ainsi, l'ensemble des ARNm maternels est-il globalement traduit, ou existe-t-il une sélection des ARNm qui vont être traduits précocement ? Et s'il y en a, quels sont les modes de sélection ? Au cours de ce travail de thèse, nous avons obtenu le répertoire complet des ARNm traductionnellement régulés à la fécondation, et montré que seule une sous-partie du stock de messager est traduite en réponse à la fécondation, avec un enrichissement de messagers codant pour des protéines régulatrices. Enfin, de manière originale, ce travail a permis la mise en évidence de la diversité et de la complexité des voies de signalisation en amont de la régulation traductionnelle, qui concourent à la sélectivité de la traduction. / Protein synthesis is a crucial step for gene expression regulation. In many animal species, the early steps of development are based on translation of stored maternal mRNAs. Sea urchin embryo is a powerful model to study translational control during early development. Fertilization triggers the activation of translational machinery, leading to the increase of protein synthesis which is necessary to cell cycle entry and early embryonic development. Translational machinery modifications are responsible for the polysomal recruitment of the stored maternal mRNAs. Thus, are all the stored maternal mRNAs translated, or is there any selection of the translated mRNAs? If so, what are the mechanisms driving this selectivity? Over this work, we obtained the entire subset of the translationally regulated mRNAs, and demonstrated that only a part of the stored maternal mRNAs is actively translated at sea urchin fertilization, with an important enrichment of mRNAs coding for regulatory proteins. Finally, this work highlighted the diversity and the complexity of the signaling network upstream the selective polysomal recruitment.
5

Massive Exchange of mRNA between a Parasitic Plant and its Hosts

Kim, Gunjune 16 September 2014 (has links)
Cuscuta pentagona is an obligate parasitic plant that hinders production of crops throughout the world. Parasitic plants have unique morphological and physiological features, the most prominent being the haustorium, a specialized organ that functions to connect them with their host's vascular system. The Cuscuta haustorium is remarkable in that it enables mRNA movement to occur between hosts and parasite, but little is known about the mechanisms regulating cross-species mRNA transfer or its biological significance to the parasite. These questions were addressed with genomics approaches that used high throughput sequencing to assess the presence of host mRNAs in the parasite as well as parasite mRNAs in the host. For the main experiment Cuscuta was grown on stems of Arabidopsis thaliana and tomato (Solanum lycopersicon) hosts because the completely sequenced genomes of these plants facilitates identification of host and parasite transcripts in mixed mRNA samples. Tissues sequenced included the Cuscuta stem alone, the region of Cuscuta-host attachment, and the host stem adjacent to the attachment site. The sequences generated from each tissue were mapped to host reference genes to distinguish host sequences, and the remaining sequences were used in a de novo assembly of a Cuscuta transcriptome. This analysis revealed that thousands of different Arabidopsis transcripts, representing nearly half of the expressed transcriptome of Arabidopsis, were represented in the attached Cuscuta. RNA movement was also found to be bidirectional, with a substantial proportion of expressed Cuscuta transcripts found in host tissue. The mechanism underlying the exchange remains unknown, as well as the function of mobile RNAs in either the parasite or host. An approach was developed to assay potential translation of host mRNAs by detecting them in the Cuscuta translatome as revealed by sequencing polysomal RNA and ribosome-protected RNA. This work highlights RNA trafficking as a potentially important new form of interaction between hosts and Cuscuta. / Ph. D.
6

Identifier des gènes nucléaires liés au maintien de l’ADN mitochondrial chez le champignon filamenteux Podospora anserina / Identify nuclear genes related to mitochondrial DNA maintenance in the filamentous fungus Podospora anserina

Nguyen, Tan-Trung 27 January 2014 (has links)
Les mitochondries jouent un rôle majeur dans le métabolisme de l'ATP des cellules eucaryotes. Le maintien de l'ADN mitochondrial (ADNmt) est fondamental pour la production d'énergie chez les organismes aérobie stricte. De grandes délétions de ADNmt sont à l'origine d'anomalies mitochondriales entrainant des maladies chez l'homme. Plusieurs gènes nucléaires impliqués dans le métabolisme de l’ADNmt ont été identifiés et caractérisés chez l'homme. Cependant, l’ensemble des facteurs et leurs activités requis pour le maintien de l'ADNmt reste largement inconnu. L'identification de ces facteurs et la détermination de leurs activités dans des systèmes modèles simples peuvent contribuer à l’étude du maintien de l'ADNmt et à la compréhension des mécanismes induisant des délétions de l’ADNmt chez l'homme. Le champignon filamenteux Podospora anserina est un modèle d'étude du maintien de l’ADNmt. Chez P. anserina, l’accumulation de délétions région-spécifiques de l’ADNmt (Δmt) est corrélée à la présence de la mutation AS1-4 dans le gène nucléaire codant la protéine cytosolique ribosomale S15. L'altération de la protéine S15 pourrait modifier la traduction de transcrits codant des protéines impliquées dans le maintien de l'ADNmt et indirectement causer l'accumulation des Δmt. Par une approche globale (translatome), nous avons analysé l’ensemble des transcrits associés aux ribosomes AS1-4 en cours de traduction. A partir des données obtenues, deux gènes candidats, PaIML2 et PaYHM2 potentiellement impliqués dans le maintien de l'ADNmt, ont été identifiés et étudiés. L'analyse fonctionnelle a été principalement développée pour PaYHM2. La protéine PaYHM2 partage 68% d’identité avec la protéine mitochondriale bi-fonctionnelle Yhm2 de levure, impliquée dans le transport de métabolites dans la mitochondrie et possèdant un domaine de liaison à l'ADN. J'ai démontré que le gène PaYHM2 est essentiel pour P. anserina, un organisme aérobie stricte et que la protéine PaYHM2 est mitochondriale. Par mutagénèse, j'ai montré que c'est la fonction de transport qui est essentielle à la survie du champignon et non pas la putative capacité à se lier à l'ADN. Les résultats obtenus suggèrent également que PaYHM2 participe au métabolisme de l'acétyl-CoA chez P. anserina. / Mitochondria play main role as adenosine triphosphate (ATP)-energy factories of the eukaryotic cells. To ensure energy production, mitochondrial DNA (mtDNA) maintenance is essential for all obligate-aerobe eukaryotic organisms. Large-scale mtDNA deletions are major causes of mitochondrial dysfunction in human diseases. Several nuclear genes implicated in mtDNA metabolism were identified and characterized in human. Nuclear-encoded factors and their activities required for mtDNA maintenance are, however largely unknown. Identification of these factors and discovery of their activities in simple model systems can contribute to the comprehension of mtDNA maintenance and of the mechanisms leading to mtDNA deletions in human. The filamentous fungus Podospora anserina is a useful model system for studying mtDNA maintenance. An S15 cytosolic ribosomal protein mutant in P. anserina, named AS1-4 mutant, shows a positive correlation with the accumulation of specific large mtDNA deletion (Δmt) at the time of death. Alteration of S15 protein might modify translation of transcripts encoding proteins related to mtDNA maintenance and indirectly cause Δmt accumulation. Polysome profiling (called translatome), a global approach giving genome-wide informations about modified transcripts on translation, was performed on AS1-4 mutant. From the data of this translatome, two candidate genes potentially related to mitochondrial DNA maintenance, the PaIML2 gene and PaYHM2 gene has been identified and functionally analyzed. The function of the PaYHM2 gene has been especially characterized in this project. This gene encodes a protein sharing 68% of identity with yeast Yhm2, a bi-functional protein as a mitochondrial carrier and as a protein with DNA-binding activity. I demonstrated that the PaYHM2 gene is essential for P. anserina, an obligate-aerobe organism and that the PaYHM2 protein localizes to mitochondria. Through mutagenesis approach, I showed that the transport function decides the essentiality of mitochondrial carrier PaYHM2 while the putative DNA binding activity of PaYHM2 protein is important for P. anserina. Furthermore, I found that the function of PaYHM2 probably participates in the cytosolic acetyl-CoA metabolism.
7

Analyse quantitative des régulations de la traduction chez Lactococcus lactis par une approche de biologie des systèmes / Quantitative analysis of translation regulations in Lactococcus lactis by systems biology

Picard, Flora 16 February 2012 (has links)
La régulation de l’expression génique chez les bactéries résulte d’un processus complexe comprenant deux étapes majeures, la transcription des gènes en ARNm et leur traduction en protéines. Les études qui allient les données de transcription et de traduction sont rares et l’importance de chacun de ces deux mécanismes dans un processus global d’adaptation n’est pas encore clairement définie. Or, les faibles corrélations entre les niveaux d’ARNm et de protéines chez les bactéries et, plus particulièrement chez la bactérie modèle Lactococcus lactis, suggèrent l’importance des régulations traductionnelles.Aujourd’hui des exemples de mécanismes de régulation de la traduction à l’échelle moléculaire se multiplient, néanmoins il n’existe que très peu de méthodes systémiques permettant d’étudier ces régulations à l’échelle globale. Dans cette thèse, l’état de traduction de chacun des ARNm de la cellule a été estimé par la mesure du traductome. Ainsi, pour chaque ARNm, le pourcentage de molécules en traduction et sa densité en ribosomes ont été déterminés. Pour la première fois, une image complète de l’état de traduction de la bactérie a été obtenue montrant une grande variabilité traductionnelle au sein de la population des transcrits. De plus, il a été démontré que cet état traductionnel était très régulé. De fait, lors d’une carence nutritionnelle, la machinerie de traduction est globalement diminuée et il est observé une redistribution de l’efficacité de traduction vers des gènes nécessaires à la bactérie pour être adaptée au stress imposé. D’autre part, cette forte variabilité de l’état de traduction au sein des ARNm a pu être reliée à des différences au niveau du mécanisme propre de la traduction. En effet, les coefficients de contrôle des trois grandes étapes de la traduction, estimés par modélisation à partir des données de traductome, dépendent fortement de la nature des gènes. Ainsi un contrôle au niveau de l’étape d’initiation a été démontré comme attendu pour la majorité des gènes. Mais pour un grand nombre de gènes, un contrôle par l’élongation (et pour un nombre plus restreint par la terminaison) a été aussi mis en évidence chez L. lactis. Dans le contrôle global de l’expression génique, il a d’autre part été mis en évidence que les processus de traduction et de dégradation des ARNm étaient impliqués et associés à des régulations coordonnées ou non en fonction des conditions de croissance.En conclusion, ces travaux de thèse ont montré l’importance des régulations de la traduction. Plus largement, ils ont souligné la nécessité de caractériser les différents niveaux de régulations de l’expression génique afin de mieux appréhender la physiologie de la cellule / In bacteria, regulation of gene expression results from a complex program composed of two main steps: transcription of genes into mRNA and their translation into proteins. Few studies integrate both transcription and translation, so their relative importance in the global process of bacterial adaptation is not yet well defined. However, weak correlations between mRNA and protein levels were found in bacteria, in particular in the lactic acid bacteria model Lactococcus lactis, suggesting significant translation regulations in this bacterium.Nowadays, translation regulation mechanisms are mainly investigated at the molecular level since only few systemic methods exist to study these regulations at a genome-wide scale. During this PhD, translation state of all mRNA was estimated by translatome measurement. For each mRNA in the cell, percentage of its molecules in translation and its ribosome density were determined. For the first time in bacteria, a detailed picture of the translation state of all transcripts was obtained. Large variation of translation state was observed within the transcript population demonstrating a high diversity of translational regulations in a given physiological state. In addition, during nutrient starvation, the global translation machinery was decreased and associated with a redistribution of the translation efficiency towards genes required to stress adaptation.Changes in translation state were related to specific kinetics of the three elementary steps of translation. From translatome data, control coefficients of initiation, elongation and termination on the global translation process were modeled. The translation limiting step was strongly dependent on gene function. Although a control by initiation was observed for most of the genes of L. lactis, a large set of genes was elongation limited, and even few genes were limited by termination.In the global control of gene expression, both translation and mRNA decay were involved and led to coupled or uncoupled regulations according to growth conditions.Finally, this work has demonstrated the importance of translation regulations in bacteria. This result strengthens the necessity to include all the different layers of gene expression regulation in order to better understand cell physiology
8

Le traductome induit par le récepteur FSH et l'implication des B-arrestines dans le contrôle de la traduction des ARNm 5' TOP / Translatome induced by FSH receptor and beta-arrestins implications involved in translation control of 5'Top mRNA

Tréfier, Aurelie 21 December 2017 (has links)
La FSH est une des hormones clés qui régule la reproduction chez les mammifères. Chez le mâle, elle cible les cellules de Sertoli, qui expriment le RFSH. La cellule de Sertoli a un rôle trophique important pour le bon développement de la spermatogenèse. Dans cette thèse, nous avons établi le premier traductome, c’est-à-dire l’ensemble des ARNm en cours de traduction, dépendant du RFSH. La traduction de certains ARNm significativement modulés par la FSH exercerait un rétrocontrôle sur la signalisation FSH-dépendante. L’analyse du protéome nous a permis de valider ce traductome au niveau systémique. Nous avons également démontré l’implication des β-arrestines dans la traduction d’ARNm dépendante de la FSH. Les β-arrestines forment un assemblage moléculaire avec le module de traduction p70S6K/rpS6. Cet assemblage est impliqué dans la traduction des ARNm 5’TOP, qui encodent la machinerie traductionnelle. C’est l’activation FSHdépendante des protéines G qui promeut l’activation de p70S6K au sein du module β-arrestines/ p70S6K/ rpS6. Ce travail constitue une nouvelle avancée sur les mécanismes grâce auxquels la FSH exerce sa fonction biologique de dans ses cellules-cibles naturelles de la gonade mâle. / FSH is one of the key hormones that regulate the reproductive function in mammals. In the male, FSH targets Sertoli cells, which express the FSHR. Sertoli cells play an important trophic role in the development of spermatogenesis. Here, we have provided the first FSHR-induced translatome, that encompasses all the mRNA being actively translated. The translation of some mRNAs significantly modulated by FSH may exert a feedback control on FSH-dependent signaling. The analysis of the proteome has validated the FSHR translatome at the systems level. We also demonstrated the involvement of β-arrestins in the FSH-stimulated translation of mRNA. β-arrestins form a molecular assembly with the p70S6K / rpS6 translation module. This molecular assembly is involved in the translation of 5'TOP mRNA, which encode proteins of the translational machinery. FSH-activated G proteins leads to p70S6K activation within the β-arrestins/ p70S6K/ rpS6 module. This work provides new advance on the mechanisms whereby FSH exerts its biological function in its natural target cells of the male gonad.
9

Detection and Analysis of Novel Microproteins in the Human Heart based on Protein Evidence, Conservation, Subcellular Localization, and Interacting Proteins

Schulz, Jana Felicitas 03 March 2023 (has links)
Kürzlich wurde mithilfe von Ribo-seq Experimenten die Translation hunderter Mikroproteine in menschlichen Herzen entdeckt. Diese blieben zuvor aufgrund ihrer geringen Größe (< 100 Aminosäuren) unentdeckt, und ihre physiologische Rolle ist noch weitgehend unbekannt. Ziel dieser Promotionsarbeit ist es, potentielle Funktionen dieser neuartigen Mikroproteine zu entschlüsseln. Dabei sollen insbesondere die Aufklärung ihrer evolutionären Konservierungssignatur, subzellulären Lokalisierung und ihres Proteininteraktoms helfen. Die Konservierungsanalyse ergab, dass fast 90% der Mikroproteine nur in Primaten konserviert ist. Weiterhin konnte ich die Produktion von Mikroproteine in vitro und in vivo nachweisen, die subzelluläre Lokalisierung von 92 Mikroproteinen definieren, und Interaktionspartner für 60 Mikroproteine identifizieren. Dutzende dieser Mikroproteine lokalisieren in Mitochondrien. Dazu gehörte ein im Herzen angereichertes Mikroprotein, das aufgrund der Interaktions- und Lokalisationsdaten einen neuartigen Modulator der mitochondrialen Proteintranslation darstellen könnte. Der Interaktom-Screen zeigte außerdem, dass evolutionär junge Mikroproteine ähnliche Interaktionsfähigkeiten wie konservierte Kandidaten haben. Schließlich wurden kurze Sequenzmotive identifiziert, die Mikroprotein-Protein-Wechselwirkungen vermitteln, wodurch junge Mikroproteine mit zellulären Prozessen – wie z.B. Endozytose und Spleißen – in Verbindung gebracht werden konnten. Zusammenfassend wurde die Produktion vieler kleiner Proteine im menschlichen Herzen bestätigt, von denen die meisten lediglich in Primaten konserviert sind. Zusätzlich verknüpften umfangreiche Lokalisierungs- und Interaktionsdaten mehrere Mikroproteine mit Prozessen wie Spleißen, Endozytose und mitochondrialer Translation. Weitere Untersuchungen dieses zuvor verborgenen Teils des Herzproteoms werden zu einem besseren Verständnis von evolutionär jungen Proteinen und kardiologischen Prozessen beitragen. / Recently, the active translation of hundreds of previously unknown microproteins was detected using ribosome profiling on tissues of human hearts. They had remained undetected due to their small size (< 100 amino acids), and their physiological roles are still largely unknown. This dissertation aims to investigate these novel microproteins and validate their translation by independent methods. Particularly, elucidating their conservation signature, subcellular localization, and protein interactome shall aid in deciphering their potential biological role. Conservation analysis revealed that sequence conservation of almost 90% of microproteins was restricted to primates. I next confirmed microprotein production in vitro and in vivo by in vitro translation assays and mass spectrometry-based approaches, defined the subcellular localization of 92 microproteins, and identified significant interaction partners for 60 candidates. Dozens of these microproteins localized to the mitochondrion. These included a novel cardiac-enriched microprotein that may present a novel modulator of mitochondrial protein translation based on its interaction profile and subcellular localization. The interactome screen further revealed that evolutionarily young microproteins have similar interaction capacities to conserved candidates. Finally, it allowed identifying short linear motifs that may mediate microprotein-protein interactions and implicated several young microproteins in distinct cellular processes such as endocytosis and splicing. I conclude that many novel small proteins are produced in the human heart, most of which exhibit poor sequence conservation. I provide a substantial resource of microprotein localization and interaction data that links several to cellular processes such as splicing, endocytosis, and mitochondrial translation. Further investigation into this hidden part of the cardiac proteome will contribute to our understanding of recently evolved proteins and heart biology.

Page generated in 0.4418 seconds