1 |
Vers l’universalité des représentations visuelle et multimodales / On The Universality of Visual and Multimodal RepresentationsTamaazousti, Youssef 01 June 2018 (has links)
En raison de ses enjeux sociétaux, économiques et culturels, l’intelligence artificielle (dénotée IA) est aujourd’hui un sujet d’actualité très populaire. L’un de ses principaux objectifs est de développer des systèmes qui facilitent la vie quotidienne de l’homme, par le biais d’applications telles que les robots domestiques, les robots industriels, les véhicules autonomes et bien plus encore. La montée en popularité de l’IA est fortement due à l’émergence d’outils basés sur des réseaux de neurones profonds qui permettent d’apprendre simultanément, la représentation des données (qui était traditionnellement conçue à la main), et la tâche à résoudre (qui était traditionnellement apprise à l’aide de modèles d’apprentissage automatique). Ceci résulte de la conjonction des avancées théoriques, de la capacité de calcul croissante ainsi que de la disponibilité de nombreuses données annotées. Un objectif de longue date de l’IA est de concevoir des machines inspirées des humains, capables de percevoir le monde, d’interagir avec les humains, et tout ceci de manière évolutive (c’est `a dire en améliorant constamment la capacité de perception du monde et d’interaction avec les humains). Bien que l’IA soit un domaine beaucoup plus vaste, nous nous intéressons dans cette thèse, uniquement à l’IA basée apprentissage (qui est l’une des plus performante, à ce jour). Celle-ci consiste `a l’apprentissage d’un modèle qui une fois appris résoud une certaine tâche, et est généralement composée de deux sous-modules, l’un représentant la donnée (nommé ”représentation”) et l’autre prenant des décisions (nommé ”résolution de tâche”). Nous catégorisons, dans cette thèse, les travaux autour de l’IA, dans les deux approches d’apprentissage suivantes : (i) Spécialisation : apprendre des représentations à partir de quelques tâches spécifiques dans le but de pouvoir effectuer des tâches très spécifiques (spécialisées dans un certain domaine) avec un très bon niveau de performance; ii) Universalité : apprendre des représentations à partir de plusieurs tâches générales dans le but d’accomplir autant de tâches que possible dansdifférents contextes. Alors que la spécialisation a été largement explorée par la communauté de l’apprentissage profond, seules quelques tentatives implicites ont été réalisée vers la seconde catégorie, à savoir, l’universalité. Ainsi, le but de cette thèse est d’aborder explicitement le problème de l’amélioration de l’universalité des représentations avec des méthodes d’apprentissage profond, pour les données d’image et de texte. [...] / Because of its key societal, economic and cultural stakes, Artificial Intelligence (AI) is a hot topic. One of its main goal, is to develop systems that facilitates the daily life of humans, with applications such as household robots, industrial robots, autonomous vehicle and much more. The rise of AI is highly due to the emergence of tools based on deep neural-networks which make it possible to simultaneously learn, the representation of the data (which were traditionally hand-crafted), and the task to solve (traditionally learned with statistical models). This resulted from the conjunction of theoretical advances, the growing computational capacity as well as the availability of many annotated data. A long standing goal of AI is to design machines inspired humans, capable of perceiving the world, interacting with humans, in an evolutionary way. We categorize, in this Thesis, the works around AI, in the two following learning-approaches: (i) Specialization: learn representations from few specific tasks with the goal to be able to carry out very specific tasks (specialized in a certain field) with a very good level of performance; (ii) Universality: learn representations from several general tasks with the goal to perform as many tasks as possible in different contexts. While specialization was extensively explored by the deep-learning community, only a few implicit attempts were made towards universality. Thus, the goal of this Thesis is to explicitly address the problem of improving universality with deep-learning methods, for image and text data. We have addressed this topic of universality in two different forms: through the implementation of methods to improve universality (“universalizing methods”); and through the establishment of a protocol to quantify its universality. Concerning universalizing methods, we proposed three technical contributions: (i) in a context of large semantic representations, we proposed a method to reduce redundancy between the detectors through, an adaptive thresholding and the relations between concepts; (ii) in the context of neural-network representations, we proposed an approach that increases the number of detectors without increasing the amount of annotated data; (iii) in a context of multimodal representations, we proposed a method to preserve the semantics of unimodal representations in multimodal ones. Regarding the quantification of universality, we proposed to evaluate universalizing methods in a Transferlearning scheme. Indeed, this technical scheme is relevant to assess the universal ability of representations. This also led us to propose a new framework as well as new quantitative evaluation criteria for universalizing methods.
|
2 |
Apprentissage de représentations pour la reconnaissance visuelle / Learning representations for visual recognitionSaxena, Shreyas 12 December 2016 (has links)
Dans cette dissertation, nous proposons des méthodes d’apprentissage automa-tique aptes à bénéficier de la récente explosion des volumes de données digitales.Premièrement nous considérons l’amélioration de l’efficacité des méthodes derécupération d’image. Nous proposons une approche d’apprentissage de métriques locales coordonnées (Coordinated Local Metric Learning, CLML) qui apprends des métriques locales de Mahalanobis, puis les intègre dans une représentation globale où la distance l2 peut être utilisée. Ceci permet de visualiser les données avec une unique représentation 2D, et l’utilisation de méthodes de récupération efficaces basées sur la distance l2. Notre approche peut être interprétée comme l’apprentissage d’une projection linéaire de descripteurs donnés par une méthode a noyaux de grande dimension définie explictement. Cette interprétation permet d’appliquer des outils existants pour l’apprentissage de métriques de Mahalanobis à l’apprentissage de métriques locales coordonnées. Nos expériences montrent que la CLML amé-liore les résultats en matière de récupération de visage obtenues par les approches classiques d’apprentissage de métriques locales et globales.Deuxièmement, nous présentons une approche exploitant les modèles de ré-seaux neuronaux convolutionnels (CNN) pour la reconnaissance faciale dans lespectre visible. L’objectif est l’amélioration de la reconnaissance faciale hétérogène, c’est à dire la reconnaissance faciale à partir d’images infra-rouges avec des images d’entraînement dans le spectre visible. Nous explorerons différentes stratégies d’apprentissage de métriques locales à partir des couches intermédiaires d’un CNN, afin de faire le rapprochement entre des images de sources différentes. Dans nos expériences, la profondeur de la couche optimale pour une tâche donnée est positivement corrélée avec le changement entre le domaine source (données d’entraînement du CNN) et le domaine cible. Les résultats montrent que nous pouvons utiliser des CNN entraînés sur des images du spectre visible pour obtenir des résultats meilleurs que l’état de l’art pour la reconnaissance faciale hétérogène (images et dessins quasi-infrarouges).Troisièmement, nous présentons les "tissus de neurones convolutionnels" (Convolutional Neural Fabrics) permettant l’exploration de l’espace discret et exponentiellement large des architectures possibles de réseaux neuronaux, de manière efficiente et systématique. Au lieu de chercher à sélectionner une seule architecture optimale, nous proposons d’utiliser un "tissu" d’architectures combinant un nombre exponentiel d’architectures en une seule. Le tissu est une représentation 3D connectant les sorties de CNNs à différentes couches, échelles et canaux avec un motif de connectivité locale, homogène et creux. Les seuls hyper-paramètres du tissu (le nombre de canaux et de couches) ne sont pas critiques pour la performance. La nature acyclique du tissu nous permet d’utiliser la rétro-propagation du gradient durant la phase d’apprentissage. De manière automatique, nous pouvons donc configurer le tissu de manière à implémenter l’ensemble de toutes les architectures possibles (un nombre exponentiel) et, plus généralement, des ensembles (combinaisons) de ces modèles. La complexité de calcul et de taille mémoire du tissu évoluent de manière linéaire alors qu’il permet d’exploiter un nombre exponentiel d’architectures en parallèle, en partageant les paramètres entre architectures. Nous présentons des résultats à l’état de l’art pour la classification d’images sur le jeu de données MNIST et CIFAR10, et pour la segmentation sémantique sur le jeu de données Part Labels. / In this dissertation, we propose methods and data driven machine learning solutions which address and benefit from the recent overwhelming growth of digital media content.First, we consider the problem of improving the efficiency of image retrieval. We propose a coordinated local metric learning (CLML) approach which learns local Mahalanobis metrics, and integrates them in a global representation where the l2 distance can be used. This allows for data visualization in a single view, and use of efficient ` 2 -based retrieval methods. Our approach can be interpreted as learning a linear projection on top of an explicit high-dimensional embedding of a kernel. This interpretation allows for the use of existing frameworks for Mahalanobis metric learning for learning local metrics in a coordinated manner. Our experiments show that CLML improves over previous global and local metric learning approaches for the task of face retrieval.Second, we present an approach to leverage the success of CNN models forvisible spectrum face recognition to improve heterogeneous face recognition, e.g., recognition of near-infrared images from visible spectrum training images. We explore different metric learning strategies over features from the intermediate layers of the networks, to reduce the discrepancies between the different modalities. In our experiments we found that the depth of the optimal features for a given modality, is positively correlated with the domain shift between the source domain (CNN training data) and the target domain. Experimental results show the that we can use CNNs trained on visible spectrum images to obtain results that improve over the state-of-the art for heterogeneous face recognition with near-infrared images and sketches.Third, we present convolutional neural fabrics for exploring the discrete andexponentially large CNN architecture space in an efficient and systematic manner. Instead of aiming to select a single optimal architecture, we propose a “fabric” that embeds an exponentially large number of architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local connectivity pattern. The only hyperparameters of the fabric (the number of channels and layers) are not critical for performance. The acyclic nature of the fabric allows us to use backpropagation for learning. Learning can thus efficiently configure the fabric to implement each one of exponentially many architectures and, more generally, ensembles of all of them. While scaling linearly in terms of computation and memory requirements, the fabric leverages exponentially many chain-structured architectures in parallel by massively sharing weights between them. We present benchmark results competitive with the state of the art for image classification on MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset
|
3 |
Weakly supervised learning of deformable part models and convolutional neural networks for object detection / Détection d'objets faiblement supervisée par modèles de pièces déformables et réseaux de neurones convolutionnelsTang, Yuxing 14 December 2016 (has links)
Dans cette thèse, nous nous intéressons au problème de la détection d’objets faiblement supervisée. Le but est de reconnaître et de localiser des objets dans les images, n’ayant à notre disposition durant la phase d’apprentissage que des images partiellement annotées au niveau des objets. Pour cela, nous avons proposé deux méthodes basées sur des modèles différents. Pour la première méthode, nous avons proposé une amélioration de l’approche ”Deformable Part-based Models” (DPM) faiblement supervisée, en insistant sur l’importance de la position et de la taille du filtre racine initial spécifique à la classe. Tout d’abord, un ensemble de candidats est calculé, ceux-ci représentant les positions possibles de l’objet pour le filtre racine initial, en se basant sur une mesure générique d’objectness (par region proposals) pour combiner les régions les plus saillantes et potentiellement de bonne qualité. Ensuite, nous avons proposé l’apprentissage du label des classes latentes de chaque candidat comme un problème de classification binaire, en entrainant des classifieurs spécifiques pour chaque catégorie afin de prédire si les candidats sont potentiellement des objets cible ou non. De plus, nous avons amélioré la détection en incorporant l’information contextuelle à partir des scores de classification de l’image. Enfin, nous avons élaboré une procédure de post-traitement permettant d’élargir et de contracter les régions fournies par le DPM afin de les adapter efficacement à la taille de l’objet, augmentant ainsi la précision finale de la détection. Pour la seconde approche, nous avons étudié dans quelle mesure l’information tirée des objets similaires d’un point de vue visuel et sémantique pouvait être utilisée pour transformer un classifieur d’images en détecteur d’objets d’une manière semi-supervisée sur un large ensemble de données, pour lequel seul un sous-ensemble des catégories d’objets est annoté avec des boîtes englobantes nécessaires pour l’apprentissage des détecteurs. Nous avons proposé de transformer des classifieurs d’images basés sur des réseaux convolutionnels profonds (Deep CNN) en détecteurs d’objets en modélisant les différences entre les deux en considérant des catégories disposant à la fois de l’annotation au niveau de l’image globale et l’annotation au niveau des boîtes englobantes. Cette information de différence est ensuite transférée aux catégories sans annotation au niveau des boîtes englobantes, permettant ainsi la conversion de classifieurs d’images en détecteurs d’objets. Nos approches ont été évaluées sur plusieurs jeux de données tels que PASCAL VOC, ImageNet ILSVRC et Microsoft COCO. Ces expérimentations ont démontré que nos approches permettent d’obtenir des résultats comparables à ceux de l’état de l’art et qu’une amélioration significative a pu être obtenue par rapport à des méthodes récentes de détection d’objets faiblement supervisées. / In this dissertation we address the problem of weakly supervised object detection, wherein the goal is to recognize and localize objects in weakly-labeled images where object-level annotations are incomplete during training. To this end, we propose two methods which learn two different models for the objects of interest. In our first method, we propose a model enhancing the weakly supervised Deformable Part-based Models (DPMs) by emphasizing the importance of location and size of the initial class-specific root filter. We first compute a candidate pool that represents the potential locations of the object as this root filter estimate, by exploring the generic objectness measurement (region proposals) to combine the most salient regions and “good” region proposals. We then propose learning of the latent class label of each candidate window as a binary classification problem, by training category-specific classifiers used to coarsely classify a candidate window into either a target object or a non-target class. Furthermore, we improve detection by incorporating the contextual information from image classification scores. Finally, we design a flexible enlarging-and-shrinking post-processing procedure to modify the DPMs outputs, which can effectively match the approximate object aspect ratios and further improve final accuracy. Second, we investigate how knowledge about object similarities from both visual and semantic domains can be transferred to adapt an image classifier to an object detector in a semi-supervised setting on a large-scale database, where a subset of object categories are annotated with bounding boxes. We propose to transform deep Convolutional Neural Networks (CNN)-based image-level classifiers into object detectors by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We have evaluated both our approaches extensively on several challenging detection benchmarks, e.g. , PASCAL VOC, ImageNet ILSVRC and Microsoft COCO. Both our approaches compare favorably to the state-of-the-art and show significant improvement over several other recent weakly supervised detection methods.
|
4 |
Apprentissage semi-supervisé pour la détection multi-objets dans des séquences vidéos : Application à l'analyse de flux urbains / Semi-supervised learning for multi-object detection in video sequences : Application to the analysis of urban flowMaâmatou, Houda 05 April 2017 (has links)
Depuis les années 2000, un progrès significatif est enregistré dans les travaux de recherche qui proposent l’apprentissage de détecteurs d’objets sur des grandes bases de données étiquetées manuellement et disponibles publiquement. Cependant, lorsqu’un détecteur générique d’objets est appliqué sur des images issues d’une scène spécifique les performances de détection diminuent considérablement. Cette diminution peut être expliquée par les différences entre les échantillons de test et ceux d’apprentissage au niveau des points de vues prises par la(les) caméra(s), de la résolution, de l’éclairage et du fond des images. De plus, l’évolution de la capacité de stockage des systèmes informatiques, la démocratisation de la "vidéo-surveillance" et le développement d’outils d’analyse automatique des données vidéos encouragent la recherche dans le domaine du trafic routier. Les buts ultimes sont l’évaluation des demandes de gestion du trafic actuelles et futures, le développement des infrastructures routières en se basant sur les besoins réels, l’intervention pour une maintenance à temps et la surveillance des routes en continu. Par ailleurs, l’analyse de trafic est une problématique dans laquelle plusieurs verrous scientifiques restent à lever. Ces derniers sont dus à une grande variété dans la fluidité de trafic, aux différents types d’usagers, ainsi qu’aux multiples conditions météorologiques et lumineuses. Ainsi le développement d’outils automatiques et temps réel pour l’analyse vidéo de trafic routier est devenu indispensable. Ces outils doivent permettre la récupération d’informations riches sur le trafic à partir de la séquence vidéo et doivent être précis et faciles à utiliser. C’est dans ce contexte que s’insèrent nos travaux de thèse qui proposent d’utiliser les connaissances antérieurement acquises et de les combiner avec des informations provenant de la nouvelle scène pour spécialiser un détecteur d’objet aux nouvelles situations de la scène cible. Dans cette thèse, nous proposons de spécialiser automatiquement un classifieur/détecteur générique d’objets à une scène de trafic routier surveillée par une caméra fixe. Nous présentons principalement deux contributions. La première est une formalisation originale de transfert d’apprentissage transductif à base d’un filtre séquentiel de type Monte Carlo pour la spécialisation automatique d’un classifieur. Cette formalisation approxime itérativement la distribution cible inconnue au départ, comme étant un ensemble d’échantillons de la base spécialisée à la scène cible. Les échantillons de cette dernière sont sélectionnés à la fois à partir de la base source et de la scène cible moyennant une pondération qui utilise certaines informations a priori sur la scène. La base spécialisée obtenue permet d’entraîner un classifieur spécialisé à la scène cible sans intervention humaine. La deuxième contribution consiste à proposer deux stratégies d’observation pour l’étape mise à jour du filtre SMC. Ces stratégies sont à la base d’un ensemble d’indices spatio-temporels spécifiques à la scène de vidéo-surveillance. Elles sont utilisées pour la pondération des échantillons cibles. Les différentes expérimentations réalisées ont montré que l’approche de spécialisation proposée est performante et générique. Nous avons pu y intégrer de multiples stratégies d’observation. Elle peut être aussi appliquée à tout type de classifieur. De plus, nous avons implémenté dans le logiciel OD SOFT de Logiroad les possibilités de chargement et d’utilisation d’un détecteur fourni par notre approche. Nous avons montré également les avantages des détecteurs spécialisés en comparant leurs résultats avec celui de la méthode Vu-mètre de Logiroad. / Since 2000, a significant progress has been recorded in research work which has proposed to learn object detectors using large manually labeled and publicly available databases. However, when a generic object detector is applied on images of a specific scene, the detection performances will decrease considerably. This decrease may be explained by the differences between the test samples and the learning ones at viewpoints taken by camera(s), resolution, illumination and background images. In addition, the storage capacity evolution of computer systems, the "video surveillance" democratization and the development of automatic video-data analysis tools have encouraged research into the road-traffic domain. The ultimate aims are the management evaluation of current and future trafic requests, the road infrastructures development based on real necessities, the intervention of maintenance task in time and the continuous road surveillance. Moreover, traffic analysis is a problematicness where several scientific locks should be lifted. These latter are due to a great variety of traffic fluidity, various types of users, as well multiple weather and lighting conditions. Thus, developing automatic and real-time tools to analyse road-traffic videos has become an indispensable task. These tools should allow retrieving rich data concerning the traffic from the video sequence and they must be precise and easy to use. This is the context of our thesis work which proposes to use previous knowledges and to combine it with information extracted from the new scene to specialize an object detector to the new situations of the target scene. In this thesis, we propose to automatically specialize a generic object classifier/detector to a road traffic scene surveilled by a fixed camera. We mainly present two contributions. The first one is an original formalization of Transductive Transfer Learning based on a sequential Monte Carlo filter for automatic classifier specialization. This formalization approximates iteratively the previously unknown target distribution as a set of samples composing the specialized dataset of the target scene. The samples of this dataset are selected from both source dataset and target scene further to a weighting step using some prior information on the scene. The obtained specialized dataset allows training a specialized classifier to the target scene without human intervention. The second contribution consists in proposing two observation strategies to be used in the SMC filter’s update step. These strategies are based on a set of specific spatio-temporal cues of the video surveillance scene. They are used to weight the target samples. The different experiments carried out have shown that the proposed specialization approach is efficient and generic. We have been able to integrate multiple observation strategies. It can also be applied to any classifier / detector. In addition, we have implemented into the Logiroad OD SOFT software the loading and utilizing possibilities of a detector provided by our approach. We have also shown the advantages of the specialized detectors by comparing their results to the result of Logiroad’s Vu-meter method.
|
5 |
Representation learning in unsupervised domain translationLavoie-Marchildon, Samuel 12 1900 (has links)
Ce mémoire s'adresse au problème de traduction de domaine non-supervisée. La traduction non-supervisée cherche à traduire un domaine, le domaine source, à un domaine cible sans supervision. Nous étudions d'abord le problème en utilisant le formalisme du transport optimal. Dans un second temps, nous étudions le problème de transfert de sémantique à haut niveau dans les images en utilisant les avancés en apprentissage de représentations et de transfert d'apprentissages développés dans la communauté d'apprentissage profond.
Le premier chapitre est dévoué à couvrir les bases des concepts utilisés dans ce travail. Nous décrivons d'abord l'apprentissage de représentation en incluant la description de réseaux de neurones et de l'apprentissage supervisé et non supervisé. Ensuite, nous introduisons les modèles génératifs et le transport optimal. Nous terminons avec des notions pertinentes sur le transfert d'apprentissages qui seront utiles pour le chapitre 3.
Le deuxième chapitre présente \textit{Neural Wasserstein Flow}. Dans ce travail, nous construisons sur la théorie du transport optimal et démontrons que les réseaux de neurones peuvent être utilisés pour apprendre des barycentres de Wasserstein. De plus, nous montrons que les réseaux de neurones peuvent amortir n'importe quel barycentre, permettant d'apprendre une interpolation continue. Nous montrons aussi comment utiliser ces concepts dans le cadre des modèles génératifs. Finalement, nous montrons que notre approche permet d'interpoler des formes et des couleurs.
Dans le troisième chapitre, nous nous attaquons au problème de transfert de sémantique haut niveau dans les images. Nous montrons que ceci peut être obtenu simplement avec un GAN conditionné sur la représentation apprise par un réseau de neurone. Nous montrons aussi comment ce processus peut être rendu non-supervisé si la représentation apprise est un regroupement. Finalement, nous montrons que notre approche fonctionne sur la tâche de transfert de MNIST à SVHN.
Nous concluons en mettant en relation les deux contributions et proposons des travaux futures dans cette direction. / This thesis is concerned with the problem of unsupervised domain translation. Unsupervised domain translation is the task of transferring one domain, the source domain, to a target domain. We first study this problem using the formalism of optimal transport. Next, we study the problem of high-level semantic image to image translation using advances in representation learning and transfer learning.
The first chapter is devoted to reviewing the background concepts used in this work. We first describe representation learning including a description of neural networks and supervised and unsupervised representation learning. We then introduce generative models and optimal transport. We finish with the relevant notions of transfer learning that will be used in chapter 3.
The second chapter presents Neural Wasserstein Flow. In this work, we build on the theory of optimal transport and show that deep neural networks can be used to learn a Wasserstein barycenter of distributions. We further show how a neural network can amortize any barycenter yielding a continuous interpolation. We also show how this idea can be used in the generative model framework. Finally, we show results on shape interpolation and colour interpolation.
In the third chapter, we tackle the task of high level semantic image to image translation. We show that high level semantic image to image translation can be achieved by simply learning a conditional GAN with the representation learned from a neural network. We further show that we can make this process unsupervised if the representation learning is a clustering. Finally, we show that our approach works on the task of MNIST to SVHN.
|
6 |
Neural networks regularization through representation learning / Régularisation des réseaux de neurones via l'apprentissage des représentationsBelharbi, Soufiane 06 July 2018 (has links)
Les modèles de réseaux de neurones et en particulier les modèles profonds sont aujourd'hui l'un des modèles à l'état de l'art en apprentissage automatique et ses applications. Les réseaux de neurones profonds récents possèdent de nombreuses couches cachées ce qui augmente significativement le nombre total de paramètres. L'apprentissage de ce genre de modèles nécessite donc un grand nombre d'exemples étiquetés, qui ne sont pas toujours disponibles en pratique. Le sur-apprentissage est un des problèmes fondamentaux des réseaux de neurones, qui se produit lorsque le modèle apprend par coeur les données d'apprentissage, menant à des difficultés à généraliser sur de nouvelles données. Le problème du sur-apprentissage des réseaux de neurones est le thème principal abordé dans cette thèse. Dans la littérature, plusieurs solutions ont été proposées pour remédier à ce problème, tels que l'augmentation de données, l'arrêt prématuré de l'apprentissage ("early stopping"), ou encore des techniques plus spécifiques aux réseaux de neurones comme le "dropout" ou la "batch normalization". Dans cette thèse, nous abordons le sur-apprentissage des réseaux de neurones profonds sous l'angle de l'apprentissage de représentations, en considérant l'apprentissage avec peu de données. Pour aboutir à cet objectif, nous avons proposé trois différentes contributions. La première contribution, présentée dans le chapitre 2, concerne les problèmes à sorties structurées dans lesquels les variables de sortie sont à grande dimension et sont généralement liées par des relations structurelles. Notre proposition vise à exploiter ces relations structurelles en les apprenant de manière non-supervisée avec des autoencodeurs. Nous avons validé notre approche sur un problème de régression multiple appliquée à la détection de points d'intérêt dans des images de visages. Notre approche a montré une accélération de l'apprentissage des réseaux et une amélioration de leur généralisation. La deuxième contribution, présentée dans le chapitre 3, exploite la connaissance a priori sur les représentations à l'intérieur des couches cachées dans le cadre d'une tâche de classification. Cet à priori est basé sur la simple idée que les exemples d'une même classe doivent avoir la même représentation interne. Nous avons formalisé cet à priori sous la forme d'une pénalité que nous avons rajoutée à la fonction de perte. Des expérimentations empiriques sur la base MNIST et ses variantes ont montré des améliorations dans la généralisation des réseaux de neurones, particulièrement dans le cas où peu de données d'apprentissage sont utilisées. Notre troisième et dernière contribution, présentée dans le chapitre 4, montre l'intérêt du transfert d'apprentissage ("transfer learning") dans des applications dans lesquelles peu de données d'apprentissage sont disponibles. L'idée principale consiste à pré-apprendre les filtres d'un réseau à convolution sur une tâche source avec une grande base de données (ImageNet par exemple), pour les insérer par la suite dans un nouveau réseau sur la tâche cible. Dans le cadre d'une collaboration avec le centre de lutte contre le cancer "Henri Becquerel de Rouen", nous avons construit un système automatique basé sur ce type de transfert d'apprentissage pour une application médicale où l'on dispose d’un faible jeu de données étiquetées. Dans cette application, la tâche consiste à localiser la troisième vertèbre lombaire dans un examen de type scanner. L’utilisation du transfert d’apprentissage ainsi que de prétraitements et de post traitements adaptés a permis d’obtenir des bons résultats, autorisant la mise en oeuvre du modèle en routine clinique. / Neural network models and deep models are one of the leading and state of the art models in machine learning. They have been applied in many different domains. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models requires a large number of training samples which is not always available. One of the fundamental issues in neural networks is overfitting which is the issue tackled in this thesis. Such problem often occurs when the training of large models is performed using few training samples. Many approaches have been proposed to prevent the network from overfitting and improve its generalization performance such as data augmentation, early stopping, parameters sharing, unsupervised learning, dropout, batch normalization, etc. In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications. We propose three contributions. The first one presented in chapter 2 is dedicated to dealing with structured output problems to perform multivariate regression when the output variable y contains structural dependencies between its components. Our proposal aims mainly at exploiting these dependencies by learning them in an unsupervised way. Validated on a facial landmark detection problem, learning the structure of the output data has shown to improve the network generalization and speedup its training. The second contribution described in chapter 3 deals with the classification task where we propose to exploit prior knowledge about the internal representation of the hidden layers in neural networks. This prior is based on the idea that samples within the same class should have the same internal representation. We formulate this prior as a penalty that we add to the training cost to be minimized. Empirical experiments over MNIST and its variants showed an improvement of the network generalization when using only few training samples. Our last contribution presented in chapter 4 showed the interest of transfer learning in applications where only few samples are available. The idea consists in re-using the filters of pre-trained convolutional networks that have been trained on large datasets such as ImageNet. Such pre-trained filters are plugged into a new convolutional network with new dense layers. Then, the whole network is trained over a new task. In this contribution, we provide an automatic system based on such learning scheme with an application to medical domain. In this application, the task consists in localizing the third lumbar vertebra in a 3D CT scan. A pre-processing of the 3D CT scan to obtain a 2D representation and a post-processing to refine the decision are included in the proposed system. This work has been done in collaboration with the clinic "Rouen Henri Becquerel Center" who provided us with data
|
7 |
Utilisation du plongement du domaine pour l’adaptation non supervisée en traduction automatiqueFrenette, Xavier 11 1900 (has links)
L'industrie de la traduction utilise de plus en plus des modèles de traduction automatique. Des modèles dits « universels » sont capables d'obtenir de bonnes performances lorsqu'évalués sur un large ensemble de domaines, mais leurs performances sont souvent limitées lorsqu'ils sont testés sur des domaines précis. Or, les traductions doivent être adaptées au style, au sujet et au vocabulaire des différents domaines, en particulier ceux des nouveaux (pensons aux textes reliés à la COVID-19). Entrainer un nouveau modèle pour chaque domaine demande du temps, des outils technologiques spécialisés et de grands ensembles de données. De telles ressources ne sont généralement pas disponibles. Nous proposons, dans ce mémoire, d'évaluer une nouvelle technique de transfert d'apprentissage pour l'adaptation à un domaine précis. La technique peut s'adapter rapidement à tout nouveau domaine, sans entrainement supplémentaire et de façon non supervisée. À partir d'un échantillon de phrases du nouveau domaine, le modèle lui calcule une représentation vectorielle qu'il utilise ensuite pour guider ses traductions. Pour calculer ce plongement de domaine, nous testons cinq différentes techniques. Nos expériences démontrent qu'un modèle qui utilise un tel plongement réussit à extraire l'information qui s'y trouve pour guider ses traductions. Nous obtenons des résultats globalement supérieurs à un modèle de traduction qui aurait été entrainé sur les mêmes données, mais sans utiliser le plongement. Notre modèle est plus avantageux que d'autres techniques d'adaptation de domaine puisqu'il est non supervisé, qu'il ne requiert aucun entrainement supplémentaire pour s'adapter et qu'il s'adapte très rapidement (en quelques secondes) uniquement à partir d'un petit ensemble de phrases. / Machine translation models usage is increasing in the translation industry. What we could call "universal" models attain good performances when evaluated over a wide set of domains, but their performance is often limited when tested on specific domains. Translations must be adapted to the style, subjects and vocabulary of different domains, especially new ones (the COVID-19 texts, for example). Training a new model on each domain requires time, specialized technological tools and large data sets. Such resources are generally not available. In this master's thesis, we propose to evaluate a novel learning transfer technique for domain adaptation. The technique can adapt quickly to any new domain, without additional training, and in an unsupervised manner. Given a sample of sentences from the new domain, the model computes a vector representation for the domain that is then used to guide its translations. To compute this domain embedding, we test five different techniques. Our experiments show that a model that uses this embedding obtains globally superior performances than a translation model that would have been trained on the same data, but without the embedding. Our model is more advantageous than other domain adaptation techniques since it is unsupervised, requires no additional training to adapt, and adapts very quickly (within seconds) from a small set of sentences only.
|
Page generated in 0.092 seconds