431 |
Efeitos da deleção do gene Cx43 sobre o desenvolvimento fetal de camundongos de diferentes backgrounds genéticos: ênfase na osteogênese / Effects of Cx43 gene deletion on mouse fetal development in different genetics backgrounds: Emphasis in osteogenesisChaible, Lucas Martins 03 April 2009 (has links)
Conexinas são proteínas que compõem as junções comunicantes do tipo gap, e a diminuição na sua expressão tem sido relacionada com diversas alterações fisiológicas, entre elas algumas síndromes, malformações genéticas, o aumento da proliferação celular e a carcinogênese. Dentre as isoformas das conexinas presentes nos tecidos animais, a Cx43 é a mais abundante e a mais estudada, tendo a sua importância relatada in vivo em camundongos que tiveram um dos alelos de Cx43 deletado (Cx43+/-), devido a morte desses animais logo após o nascimento devido a malformações cardíacas. Considerando o fato de esse gene ser expresso em dezenas de tipos celulares, tivemos como objetivo avaliar os outros tecidos em busca de anomalias ocorridas durante o desenvolvimento, e a possível interferência do background gentético. Para isso acompanhamos dia-a-dia o último terço gestacional de camundongos de background C57BL/6 e CD1, avaliando histologica e morfologicamente os fetos em busca de anomalias nos animais Cx43+/- e Cx43-/- em relação aos animais Cx43+/+. Exceto pelo tecido ósseo, não encontramos alterações nos órgãos que expressam esse gene, bem como alterações causadas pelo refluxo de sangue causado pela malformação da válvula tricúspide. Durante a osteogênese, por meio da avaliação das costelas e tíbia, percebemos um retardo no desenvolvimento, que se agrava conforme a deficiência do gene Cx43. Percebemos nitidamente que o processo de diferenciação celular ocorre de maneira menos eficiente, atrasando processos como deposição de colágeno e de matriz óssea. Conclui-se que a Cx43 é importante para o desenvolvimento ósseo na fase fetal em camundongos. / Connexins are proteins that compose the gap junctions, and the reduction in its expression has been related with diverse physiological alterations, like some syndromes, malformations, the increase of the cellular proliferation and carcinogenesis. Among isoforms of the connexins in animal cells, the Cx43 is the most abundant and studied, having its importance been shown up in alive mice that had one allele of Cx43 (Cx43+/-) deleted. REAUME et al. related that Cx43-/- mice presented cardiac malformation and died immediately after birth. Considering the fact that this gene is expressed in many cell types, we evaluate the possibility of other tissues also to present alterations during the fetal development. Due to this, we studied the mouse development initiating in 12.5 to 19.5 DE (embryologic day) and evaluated the histology of C57BL/6 and CD1 mice searching for anomalies of Cx43+/- and Cx43-/- mice in relation to the Cx43+/+ animals. We did not find alterations in the main organs that express Cx43, nor alterations due to blood out flow related to cardiac malformations. We only found significant difference was the bones; through the evaluation of the ribs and tibia. It has been observed a delay in the development, that was more important in Cx43 knockout mice. We observed clearly that the process of cellular differentiation occurs in less efficient way, delaying processes as deposition of collagen and bone matrix. In conclusion, this study showed that Cx43 is important for bone development in mice.
|
432 |
Transformação genética de maracujazeiro azedo para resistência ao vírus do endurecimento dos frutos (Cowpea aphid-borne mosaic virus - CABMV) / Genetic transformation of yellow passionfruit for resistance to woodiness virus (Cowpea aphid-borne mosaic virus CABMV)Hara, Alessandra Cristina Boffino de Almeida Monteiro 26 March 2010 (has links)
A cultura do maracujazeiro é afetada pela virose causada pelo Cowpea aphid-borne mosaic virus (CABMV), provocando a redução da qualidade e produtividade dos frutos e, em alguns casos, pode inviabilizar o cultivo comercial desta espécie. Uma alternativa para o controle de doenças viróticas é o desenvolvimento de plantas resistentes pela transformação genética. O objetivo deste trabalho foi a obtenção de plantas transgênicas de maracujazeiro (Passiflora edulis f. flavicarpa), utilizando 2 construções gênicas contendo a região codificadora do gene da proteína capsidial do CABMV. A construção pCABMV-asCP, que contém um fragmento na orientação antisenso e a construção pCABMV-dsCP, que contém fragmentos senso e antisenso do gene da proteína capsidial, separados por um íntron, uma construção hairpin. Para os experimentos de transformação genética, via Agrobacterium tumefaciens, foram utilizados os explantes de segmentos de hipocótilo e discos de folhas jovens das variedades FB-100, IAC-275 e IAC-277. Após 2 - 3 dias de co-cultivo em meio de cultura MS (MURASHIGE; SKOOG, 1962) contendo acetosseringona (100 mM), os explantes foram transferidos para meio de cultura de seleção e regeneração constituído de sais minerais e vitaminas de MS, suplementado com canamicina (100 mg/L) + cefotaxima (500 mg/L) + nitrato de prata (4,0 mg/L), pH 5,8 e os reguladores BAP, TDZ e combinação de BAP e TDZ. Após 4 - 6 semanas, as gemas adventícias desenvolvidas foram transferidas para meio de cultura de alongamento MSM + GA3 (1,0 mg/L) + cefotaxima (500 mg/L) + nitrato de prata (4,0 mg/L). As plantas desenvolvidas foram aclimatizadas e analisadas por PCR, utilizando-se primers específicos para a detecção dos transgenes. Foram identificadas 30 plantas transgênicas PCR positivas para do gene nptII, sendo 11 positivas para o fragmento antisenso da proteína capsidial do CABMV e 2 positivas para o fragmento da construção gênica hairpin. Até o momento, a integração dos transgenes foi confirmada por Southern blot em 4 plantas. Paralelo aos experimentos de transformação genética, foram avaliadas plantas de maracujazeiro das variedades IAC-275 e IAC-277, obtidas em experimentos anteriores, com a construção gênica pCABMV-CP, que contém o gene da proteína capsidial do CABMV. A análise de Southern blot de 14 plantas destes experimentos, confirmou a integração do transgene em 13 plantas, as quais foram propagadas e inoculadas mecanicamente com 3 isolados do CABMV (SP, RJ, CE). A linhagem T16 foi resistente as 3 inoculações, com os 3 isolados testados. Clones desta linhagem foram analisados por RT-PCR, comprovando a transcrição do transgene / The yellow passionfruit is affected by Cowpea aphid-borne mosaic virus (CABMV), which causes a decrease in fruit quality and productivity and in some cases making it unpractical for commercial cultivation of this species. Ann alternative for the control of virus diseases is the development of resistant plants through genetic transformation techniques. The objective of this work was to obtain passion fruit (Passiflora edulis f. flavicarpa) transgenic plants with two different gene constructs derived from the CABMV coat protein coding region. pCABMV-asCP contains the gene fragment in an antisense direction and pCABMV-dsCP contains a sense and antisense coat protein gene fragments, separated by intron, a hairpin construct. The genetic transformation experiments with Agrobacterium tumefaciens, were done in hypocotyl segments and young leaf disks explants from varieties FB-100, IAC-275 and IAC-277. After two to three days in co-culture in MS culture medium (MURASHIGE; SKOOG, 1962) supplemented with acetoseringone (100 mM) the explants were subcultured to medium for selection and regeneration, composed of MS minerals and vitamins, supplemented with kanamycin (100 mg/L), cefotaxime (500 mg/L) and silver nitrate (4.0 mg/L), at pH 5.8, and the growth regulators BAP, TDZ and combination of BAP and TDZ. After four to six weeks, the adventitious buds developed were transferred to an elongating medium composed of MSM salts supplemented with GA3 (1.0 mg/L), cefotaxime (500 mg/L) and silver nitrate (4.0 mg/L). Plants were acclimatized and analyzed by PCR, with specific primers for the transgenes detection. Thirty transgenic plants were identified as PCR positive for the nptII gene, with 11 being positive for the antisense fragment of the CABMV coat protein gene and two positive for the hairpin gene construct fragment. Currently, the transgene integration was confirmed by Southern blot analysis in four plants. Simultaneously to the genetic transformation experiments, passionfruit plants, varieties IAC-275 e IAC-277, obtained from previous experiments with pCABMV-CP, which contains CABMV coat protein gene, were analized. The Southern blot analysis of 14 plants from these experiments confirmed the transgene integration in 13 plants, which were propagated and mecanically inoculated with three CABMV isolates (SP, RJ, CE). Line T16 was resistant to three inoculations with all three isolates tested. Clones from this line were analyzed by RT-PCR which confirmed the transgene transcription
|
433 |
Using transgenic plants as bioreactors to produce high-valued proteins.January 2001 (has links)
Cheung Ming-yan. / Thesis submitted in 2000. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 169-185). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgement --- p.vi / General abbreviations --- p.viii / Abbreviations of chemicals --- p.x / List of figures --- p.xii / List of tables --- p.xv / Table of Contents --- p.xvii / Chapter Chapter 1 --- General Introduction - Using transgenic plants as bioreactor --- p.1 / Chapter 1.1 --- Plant as Bioreactor --- p.1 / Chapter 1.1.1 --- Plant transformation historical milestones --- p.1 / Chapter 1.1.2 --- Applications of transgenic plants --- p.5 / Chapter 1.1.2.1 --- Examples of in situ Application --- p.5 / Chapter 1.1.2.2 --- Examples of ex situ application of transgenic plant --- p.9 / Chapter 1.2 --- Plant Hosts for Transformation: Arabidopsis thaliana and Glycine max --- p.18 / Chapter 1.2.1 --- Essential components for plant transformation --- p.18 / Chapter 1.2.1.1 --- Marker genes --- p.18 / Chapter 1.2.1.2 --- Promoters --- p.18 / Chapter 1.2.2 --- Arabidopsis thaliana --- p.20 / Chapter 1.2.2.1 --- Agrobacterium-mediated transformation --- p.20 / Chapter 1.2.2.2 --- Transformation methods for A. thaliana --- p.21 / Chapter 1.2.3 --- Glycine max (soybean) --- p.22 / Chapter 1.2.3.1 --- Soybean cultivars for transformation --- p.23 / Chapter 1.2.3.2 --- Soybean regeneration systems --- p.24 / Chapter 1.2.3.3 --- Soybean transformation systems --- p.26 / Chapter 1.3 --- Target Pharmaceutical and Agricultural Proteins: Lymphocytic choriomeningitis virus and Goldfish Growth hormones I and II --- p.29 / Chapter 1.3.1 --- Production of pharmaceutical proteins --- p.29 / Chapter 1.3.1.1 --- Lymphocytic choriomeningitis virus --- p.30 / Chapter 1.3.1.2 --- Nucleoprotein of LCMV --- p.33 / Chapter 1.3.2 --- Agricultural protein category --- p.34 / Chapter 1.3.2.1 --- Carassius auratus --- p.34 / Chapter 1.3.2.2 --- Growth hormones I and II --- p.35 / Chapter 1.4 --- Hypothesis and Objectives --- p.37 / Chapter Chapter 2 --- Materials and Methods --- p.38 / Chapter 2.1 --- Materials --- p.38 / Chapter 2.1.1 --- "Plants, bacterial strains and vectors" --- p.38 / Chapter 2.1.2 --- Chemicals and Regents --- p.43 / Chapter 2.1.3 --- Commercial kits --- p.44 / Chapter 2.1.4 --- Primers and Adaptors --- p.45 / Chapter 2.1.5 --- Equipments and Facilities used --- p.47 / Chapter 2.1.6 --- "Buffer, solution and medium" --- p.47 / Chapter 2.2 --- Methods --- p.48 / Chapter 2.2.1 --- Molecular Techniques --- p.48 / Chapter 2.2.1.1 --- Bacterial cultures for recombinant DNA and plant transformation --- p.48 / Chapter 2.2.1.2 --- Recombinant DNA techniques --- p.48 / Chapter 2.2.1.3 --- "Preparation and transformation of DH5a, DE3 and Agrobacterium competent cells" --- p.49 / Chapter 2.2.1.4 --- Gel electrophoresis --- p.52 / Chapter 2.2.1.5 --- "DNA, RNA and protein extractions" --- p.53 / Chapter 2.2.1.6 --- Generation of cRNA probes for Southern and Northern blot analyses --- p.56 / Chapter 2.2.1.7 --- Southern blot analysis --- p.56 / Chapter 2.2.1.8 --- Northern blot analysis --- p.57 / Chapter 2.2.1.9 --- Expression of Lymphocytic choriomeningitis virus nucleoprotein (LCMV NP) in bacterial system --- p.58 / Chapter 2.2.1.10 --- Western blot analysis for LCMV NP --- p.59 / Chapter 2.2.1.11 --- Protein dot blot for detecting the presence of recombinant LCMV-NP generated from transgenic plants --- p.62 / Chapter 2.2.1.12 --- PCR techniques --- p.62 / Chapter 2.2.1.13 --- Sequencing --- p.63 / Chapter 2.2.2 --- Plant tissue culture and transformation --- p.64 / Chapter 2.2.2.1 --- Arabidopsis thaliana --- p.64 / Chapter 2.2.2.2 --- Soybean --- p.65 / Chapter 2.2.3 --- In vitro transcription and translation of target genes in rabbit reticulocyte and wheat germ systems --- p.68 / Chapter 2.2.3.1 --- In vitro transcription of target genes with with Ribomix large scale RNA production systems-T7 and SP6 (Promega) --- p.68 / Chapter 2.2.3.2 --- In vitro translation with rabbit reticulocyte lysate and wheat germ extract --- p.69 / Chapter Chapter 3 --- Results --- p.71 / Chapter 3.1 --- Expression of Lymphocytic choriomeningitis virus nucleoprotein (LCMV NP) and goldfish growth hormones I and II (GHI and GHII) in transgenic Arabidopsis thaliana --- p.71 / Chapter 3.1.1 --- Expression of LCMV-NP in transgenic Arabidopsis thaliana --- p.71 / Chapter 3.1.1.1 --- Cloning of the gene encoding LCMV NP into the binary vector system W104 --- p.71 / Chapter 3.1.1.2 --- Transformation of W104-LCMV-NP into the Agrobacterium GV3101/pMP90 --- p.78 / Chapter 3.1.1.3 --- Transformation of LCMV-NP cDNA into Arabidopsis thaliana --- p.80 / Chapter 3.1.1.4 --- Southern blot and Northern blot analyses of transgenic plant containing the LCMV-NP cDNA --- p.83 / Chapter 3.1.1.5 --- Production of recombinant LCMV-NP protein in DE3 cells --- p.90 / Chapter 3.1.1.6 --- Detection of recombinant LCMV-NP protein in transgenic A.thaliana --- p.98 / Chapter 3.1.2 --- Expression of goldfish growth hormones I and II (GHI and GHII) in transgenic Arabidopsis thaliana --- p.105 / Chapter 3.1.2.1 --- "Screening of homozygous lines of goldfish, Carassius auratus, growth hormones transgenic Arabidopsis thaliana" --- p.105 / Chapter 3.1.2.2 --- Southern blot and Northern blot analyses of transgenic plant containing the LCMV-NP cDNA --- p.109 / Chapter 3.1.2.3 --- Detection of recombinant GHI and GHII from transgenic plant --- p.112 / Chapter 3.2 --- In vitro transcription and translation of target genes in rabbit reticulocyte and wheat germ systems --- p.117 / Chapter 3.2.1 --- Subcloning of target genes in pGEM-3Zf(+) vector --- p.117 / Chapter 3.2.1.1 --- Subcloning of LCMV-NP fragment into pGEM-3Zf(+) vector --- p.117 / Chapter 3.2.1.2 --- Subcloning of goldfish GHI and GHII fragments into pGEM-3Zf(+) vector --- p.120 / Chapter 3.2.2 --- In vitro transcription of target genes with Ribomix large scale RNA production systems-T7 and SP6 --- p.125 / Chapter 3.2.3 --- In vitro translation with rabbit reticulocyte lysate and wheat germ extract systems --- p.128 / Chapter 3.3 --- Establishment of Glycine max regeneration and transformation systems --- p.130 / Chapter 3.3.1 --- The Establishment of soybean regeneration system --- p.130 / Chapter 3.3.2 --- Establishment of soybean transformation system --- p.133 / Chapter 3.3.2.1 --- Definition of transformation efficiency --- p.133 / Chapter 3.3.2.2 --- Effects of plant hosts --- p.136 / Chapter 3.3.2.3 --- Effects of Agrobacterium strains --- p.138 / Chapter 3.3.2.4 --- The application of vacuum infiltration --- p.139 / Chapter 3.3.2.5 --- Effect of kanamycin --- p.140 / Chapter 3.3.2.6 --- Effect of cocultivation duration and light/ dark treatment during germination --- p.141 / Chapter 3.3.2.7 --- Application of the detergent Silwet-77 --- p.142 / Chapter 3.3.3 --- Verification of transformation results by PCR screening --- p.143 / Chapter Chapter 4 --- Discussion --- p.147 / Chapter 4.1 --- "Expression of LCMV-NP, GHI and GHII in A. thaliana" --- p.148 / Chapter 4.2 --- Establishing a soybean transformation system --- p.157 / Chapter 4.2.1 --- Plant hosts and explants --- p.158 / Chapter 4.2.2 --- Regeneration of explants --- p.159 / Chapter 4.2.3 --- Agrobacterium strains --- p.161 / Chapter 4.2.4 --- Bacteria-plant interaction --- p.161 / Chapter 4.2.5 --- Transient versus stable transformation --- p.165 / Chapter 4.3 --- Conclusion and perspective --- p.167 / References --- p.169 / Appendix --- p.186
|
434 |
Sementes transgênicas no brasil: neutralidades, dependências e emancipações tecnológicasAraújo, Aline 18 August 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-28T11:19:59Z
No. of bitstreams: 1
Aline Araújo_.pdf: 1060885 bytes, checksum: 5a01e85cd1cd9d98230a5125feb74b58 (MD5) / Made available in DSpace on 2015-10-28T11:19:59Z (GMT). No. of bitstreams: 1
Aline Araújo_.pdf: 1060885 bytes, checksum: 5a01e85cd1cd9d98230a5125feb74b58 (MD5)
Previous issue date: 2015-08-18 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho analisa os significados e os efeitos das estratégias de adesão ou de resistência ao uso de sementes transgênicas no Brasil. Considera, para tanto, os distintos modelos, convencionais e alternativos, de produção de sementes em curso no país e suas implicações na economia, na preservação da agrobiodiversidade e dos conhecimentos tradicionais associados, bem como na segurança alimentar e nutricional dos povos e na soberania alimentar nacional. A identificação das condições de gênese e de desenvolvimento de experiências alternativas à produção de sementes transgênicas realizou-se a partir da coleta e sistematização de dados secundários e a partir da utilização do método de estudo de caso único, aplicado à Rede de Produção de Sementes Agroecológicas BioNatur. Foram sistematizadas e analisadas, ademais, informações constantes de bases de dados do governo federal, de institutos de pesquisa agropecuários e dos sistemas de extensão rural, além da legislação em vigor. A revisão bibliográfica acerca do tema teve como principais referencias teóricos a economia ecológica, a agroecologia, a sociologia rural e a economia solidária. A partir da utilização dessas abordagens e das atividades de pesquisa realizadas, foi possível evidenciar que o modelo de produção agrícola baseado no uso de sementes transgênicas tem efeitos socioambientais e econômicos deletérios, não considerados quando da aferição do desempenho da economia agrícola nacional. De outra parte, da análise das experiências de enfrentamento ao modelo industrial de produção de sementes, foi possível depreender que, ao contrário do que afirma a ideologia dominante, a racionalidade produtiva capitalista não é a única possível ou viável para a produção de alimentos. / This paper analyzes the meanings and the effects of the adherence or resistance strategies to the use of transgenic seeds in Brazil. Therefore, it considers the different models, standard and alternative, of the seed production in course in the country and its implications to the economy, to the preservation of agricultural biodiversity and its associated traditional knowledge as well as on food and nutrition security and on the national food sovereignty. The identification of the genesis and the development conditions of the alternative experiences to the production of the transgenic seeds was held from the collection and systematization of secondary data and from the use of the single case study method, applied to the Rede de Sementes Agroecológicas Bionatur. Besides, it was analyzed and systematized informations from the federal government database, from institutes of agricultural research and from agricultural extension systems, as well as legislation in place. The literature review on the subject had as its main theoretical references the ecological economics, the agroecology, the rural sociology and the social economy. Through the application of these approaches and these research activities, it was possible to point out that the agricultural production model based on the use of transgenic seeds has deleterious effects on the environmental and on the economic system that are not considered when the measurement of the performance of the national agriculture economy. On the other hand, from the analysis of the confrontation experiences to the industrial model of seed production, it was possible to conclude that the capitalist rationality of production is not the only possible or feasible for the food production, contrary to what the dominant ideology preaches.
|
435 |
L2PB1 cell depletion with diphtheria toxin in PD-L2 KIKO miceLee, Rebecca Arwyn 08 April 2016 (has links)
As we learn more about immune cell subpopulations, we find an increasingly complex system of cells with diverse functions. L2pB1 cells are a PD-L2 positive B1a B lymphocyte subpopulation that has unusual properties and characteristics that are not fully understood by many. By creating and implementing a transgenic mouse model that allows for targeted depletion of this specific group of cells, we can further elucidate their physiological functions and roles in both healthy and diseased states.
Here we demonstrate the depletion of L2pB1 cells utilizing a transgenic mouse model expressing Diphtheria Toxin Receptors on their surface. After a course of 4 injections of 25ng of Diphtheria Toxin per gram bodyweight, we observed a successful depletion of L2pB1 cell population. Further studies are underway investigating the effects of a high fat diet on these L2pB1 depleted mice. / 2017-04-01T00:00:00Z
|
436 |
Avaliação da qualidade do lenho de árvores de Eucalytpus geneticamente modificadas / Evaluation of wood quality of genetically modified Eucalyptus treesVire, Nayara Marcon 29 July 2016 (has links)
Este estudo tem como objetivo analisar a qualidade do lenho das árvores de eucalipto geneticamente modificadas e seus respectivos controles (clones convencionais). Foram selecionadas 70 árvores de eucalipto, ao 12º mês de 14 tratamentos (10 eventos modificados e 4 clones convencionais) representando 5 árvores/tratamento. As amostras do lenho foram coletadas do tronco das árvores com sonda de Pressler para análise das suas características anatômicas, densidade aparente do lenho (microdensitometria dos raios X) e propriedades químicas (espectroscopia no infravermelho próximo). As propriedades anatômicas e a densidade aparente do lenho indicaram poucas diferenças significativas entre as árvores dos tratamentos. Nas análises da espectroscopia no infravermelho próximo (NIR) foram encontrados modelos satisfatórios para a densidade aparente do lenho, a fração parede e para o teor de celulose. O lenho das árvores dos eventos modificados e dos clones convencionais mostrou pequenas diferenças nas características anatômicas e físicas, sendo caracterizado como lenho juvenil; assim as árvores devem ser analisadas em idades mais avançadas, com lenho de transição e adulto. Os resultados constituem-se parte da análise das árvores de eucalipto geneticamente modificadas, subsidiando os estudos genéticos visando obter altos níveis de produtividade. / This study aims to analyze the quality of the wood of genetically modified eucalyptus trees and their respective controls (conventional clones). 70 eucalyptus trees were selected at 12 months of 14 treatments (10 modified events and 4 conventional clones) representing 5 trees / treatment. The wood samples were collected of the trunk of the eucalyptus trees with Pressler increment borer for the analysis of their anatomical features, density of wood (microdensitometry of X-rays) and chemical properties (near infrared spectroscopy). The anatomical properties and wood density of eucalypts trees showed few significant differences between treatments. In the analysis of near infrared spectroscopy (NIR) have been found satisfactory models for the apparent density of the wood, the wall portion and the cellulose content. The wood from the trees of the modified events and conventional clones showed small differences in the anatomical and physical characteristics, being characterized as juvenile wood; so the trees must be analyzed at older ages, with wood transition and adult. The results are a part of the analysis of genetically modified eucalyptus trees, supporting genetic studies to obtain high levels of productivity.
|
437 |
Construction and characterization of transgenic Arabidopsis thaliana with altered sink-source relationship.January 2003 (has links)
Piu Wong. / Thesis submitted in: July 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 126-146). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgement --- p.viii / General abbreviations --- p.xi / Abbreviations of chemicals --- p.xiii / List of figures --- p.xv / List of Tables --- p.xvii / Table of contents --- p.xviii / Chapter 1 --- Literature review / Chapter 1.1 --- Overviews --- p.1 / Chapter 1.1.1 --- Nutritional and economical significance of aspartate family amino acidsin human and animal nutrition --- p.1 / Chapter 1.1.2 --- Synthesis of aspartate family amino acids in plants --- p.2 / Chapter 1.2 --- Regulation of aspartate family amino acids between sink and source organs --- p.6 / Chapter 1.2.1 --- Co-ordination of genes/enzymes involved in amide amino acid metabolism to channel aspartate for aspartate family amino acid synthesis --- p.6 / Chapter 1.2.2 --- Sink-source regulation as a general mechanism in plants --- p.9 / Chapter 1.3 --- Source regulation at free amino acid level --- p.11 / Chapter 1.3.1 --- Regulation of free methionine synthesis --- p.11 / Chapter 1.3.1.1 --- Competition for OPHS between TS and CGS --- p.11 / Chapter 1.3.1.2 --- Turnover of CGS mRNA --- p.12 / Chapter 1.3.1.3 --- Post-translational regulation of CGS enzyme --- p.13 / Chapter 1.3.2 --- Regulation of lysine synthesis and catabolism --- p.15 / Chapter 1.3.2.1 --- Feedback regulation loop --- p.15 / Chapter 1.3.2.2 --- Possible intracellular compartmentalization of enzymes and metabolitesin regulating lysine level --- p.21 / Chapter 1.3.2.3 --- Co-ordination of gene/enzyme in aspartate kinase pathway in regulating flux to Lys --- p.21 / Chapter 1.3.3 --- Significance of lysine catabolism in mammals and plants --- p.24 / Chapter 1.3.3.1 --- Complex developmental regulation and stress response of LKR/SDH gene expression --- p.28 / Chapter 1.3.3.2 --- Regulation through a novel composite locus LKR-SDH --- p.28 / Chapter 1.3.3.3 --- Post-translational control of LKR-SDH activity --- p.31 / Chapter 1.3.3.4 --- Implication of two metabolic flux in Lys catabolism --- p.34 / Chapter 1.4 --- Source (free lysine) enhancement in transgenic plants --- p.36 / Chapter 1.4.1 --- Expression of feedback insensitive enzyme in transgenic plants to enhance free lysine supply in transgenic plant --- p.36 / Chapter 1.4.2 --- Reducing or eliminating lysine catabolism to enhance free lysine poolin transgenic plants --- p.40 / Chapter 1.5 --- Sink regulation --- p.41 / Chapter 1.5.1 --- Engineering transgenic plants through expression of seed storage protein (sink) --- p.41 / Chapter 1.5.2 --- "Dynamic relationship between sink protein, nitrogen metabolism and sulphur metabolism" --- p.45 / Chapter 1.6 --- Transgenic plants with improved source or enhanced sinks related to aspartate family amino acids available for our research --- p.47 / Chapter 1.6.1 --- Enhanced source: ASN1 over-expressers --- p.47 / Chapter 1.6.2 --- Enhanced source: metL transgenic plants --- p.47 / Chapter 1.6.3 --- Altered source: RNAi line --- p.47 / Chapter 1.6.4 --- Effective sink: LRP transgenic plants --- p.48 / Chapter 1.7 --- Overall concept of this study --- p.48 / Chapter 2 --- Materials and methods --- p.50 / Chapter 2.1 --- Materials and growth conditions --- p.50 / Chapter 2.1.1 --- "Plants, bacterial strains and vectors" --- p.50 / Chapter 2.1.2 --- Chemicals and reagents used --- p.53 / Chapter 2.1.3 --- Solutions used --- p.53 / Chapter 2.1.4 --- Commercial kits used --- p.53 / Chapter 2.1.5 --- Equipment and facilities used --- p.53 / Chapter 2.1.6 --- Growth condition --- p.53 / Chapter 2.1.7 --- Tagging of A. thaliana siliques of different developmental stage --- p.54 / Chapter 2.2 --- Methods --- p.55 / Chapter 2.2.1 --- Expression pattern analysis --- p.55 / Chapter 2.2.1.1 --- RNA extraction --- p.55 / Chapter 2.2.1.2 --- Generation of single-stranded DIG-labelled ASN1 DNA probes --- p.55 / Chapter 2.2.1.3 --- Testing the concentration of DIG-labelled probes --- p.56 / Chapter 2.2.1.4 --- Northern blot --- p.57 / Chapter 2.2.1.5 --- Hybridization --- p.58 / Chapter 2.2.1.6 --- Stringency washes --- p.58 / Chapter 2.2.1.7 --- Chemiluminescent detection --- p.58 / Chapter 2.2.2 --- Amino acid analysis and nitrogen determination --- p.60 / Chapter 2.2.2.1 --- Free amino acids in A. thaliana --- p.60 / Chapter 2.2.2.2 --- Phloem exudates collection from A. thaliana --- p.60 / Chapter 2.2.2.3 --- Soluble Protein quantitation --- p.61 / Chapter 2.2.2.4 --- Extraction of salt and water soluble protein from A. thaliana seeds --- p.61 / Chapter 2.2.2.5 --- Purification and amino acid analysis of protein extracts from A. thaliana seeds --- p.62 / Chapter 2.2.2.6 --- Total amino acid determination in mature dry seeds --- p.63 / Chapter 2.2.3 --- Generation of crossing progenies --- p.64 / Chapter 2.2.3.1 --- Artificial crossing of A. thaliana --- p.64 / Chapter 2.2.3.2 --- CTAB extraction of genomic DNA --- p.64 / Chapter 2.2.3.3 --- PCR screening for successful crossing --- p.65 / Chapter 2.2.4 --- Generation of transgenic plants --- p.67 / Chapter 2.2.4.1 --- Cloning of E.coli dapA gene --- p.67 / Chapter 2.2.4.2 --- Preparation of recombinant plasmid --- p.68 / Chapter 2.2.4.3 --- Gene sequencing --- p.68 / Chapter 2.2.4.4 --- Homology search of differentially expressed genes --- p.69 / Chapter 2.2.4.5 --- Construction of chimeric dapA genes (TP-Phas-dapA) --- p.69 / Chapter 2.2.4.6 --- Transformation of electro-competent Agrobacterium cell --- p.73 / Chapter 2.2.4.7 --- Transformation of A. thaliana through vacuum infiltration --- p.73 / Chapter 2.2.4.8 --- Selection of hemizygous and homozygous transgenic plants --- p.74 / Chapter 2.2.4.9 --- Expression analysis of homozygous LRP/dapA transgenic plants --- p.75 / Chapter 3 --- Results --- p.77 / Chapter 3.1 --- Characterization of ASN1 over-expressers --- p.77 / Chapter 3.1.1 --- Overexpression of the ASN1 gene enhances the sink-source relationship of asparagine transport under regular daylight cycle --- p.88 / Chapter 3.1.2 --- Spatial distribution of total free amino acids under normal daylight cycle --- p.88 / Chapter 3.1.3 --- Over-expression of the ASN1 gene affects free amino acid level quantitatively under normal daylight cycle --- p.89 / Chapter 3.1.4 --- Over-expression of the ASN1 gene affects composition of total amino acid under normal daylight cycle --- p.89 / Chapter 3.2 --- Construction of dapA transgenic Arabidopsis --- p.91 / Chapter 3.2.1 --- Construction of chimeric gene for expression of the dapA gene --- p.91 / Chapter 3.2.2 --- Transformation of p1300/Phas-dapA into Arabidopsis and selection of homozygous progenies --- p.91 / Chapter 3.3 --- Generation of transgenic plants with altered sink-source relationship through crossing and in-planta transformation --- p.96 / Chapter 3.3.1 --- Rationale in methods for generating transgenic plants with different combination of sources and sinks --- p.96 / Chapter 3.3.2 --- Screening for double homozygous progenies through crossing --- p.98 / Chapter 3.3.3 --- Screening for F1 progenies of successful crossing --- p.100 / Chapter 3.3.4 --- Selection of homozygous crossing progenies --- p.102 / Chapter 3.3.5 --- Screening for homozygous dapA/LRP transgenic plants --- p.104 / Chapter 3.4 --- Amino acid composition analysis --- p.109 / Chapter 3.4.1 --- The change of aspartate family amino acids in mature seeds of transgenic plants with altered sources --- p.113 / Chapter 3.4.2 --- The change of aspartate family amino acids in mature seeds of transgenic plants with improved sink --- p.114 / Chapter 3.4.3 --- The change of aspartate family amino acids in mature seeds of transgenic plants with improved sink --- p.115 / Chapter 4. --- Discussion / Chapter 4.1 --- Characterization of ASN1 over-expressers --- p.116 / Chapter 4.1.1 --- Possible regulation of ASN1 mRNA stability through level of asparagine --- p.117 / Chapter 4.1.2 --- Over-expression of ASN1 gene may improve nitrogen remobilisation from source to sink tissues --- p.118 / Chapter 4.1.3 --- Over-expression of ASN1 gene has modified the composition of amino acidsin sink organs --- p.119 / Chapter 4.2 --- ASN1 RNAi transgenic plants increases the relative contents of lysine in the seeds --- p.122 / Chapter 4.2.1 --- Role of ASN1 in supplying or competing aspartate in developing seeds --- p.122 / Chapter 4.2.2 --- Possible role of glutamate receptor --- p.123 / Chapter 4.3 --- Lysine catabolism may strictly control the level of lysine --- p.123 / Chapter 4.3.1 --- Possible role of lysine-tRNA in protein synthesis --- p.124 / Chapter 5. --- Conclusion and prospective --- p.125 / References --- p.126 / Appendix --- p.147
|
438 |
Promoter analysis and expression of the tomato purple acid phosphatase (TPAP1) in tobacco.January 2004 (has links)
Suen Pui Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 154-168). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / List of Figures --- p.vii / List of Tables --- p.ix / List of Abbreviations --- p.x / Chapter Chapter 1: --- Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.3 / Chapter 2.1 --- Phosphorus and Plants --- p.3 / Chapter 2.1.1 --- Importance of phosphorus --- p.3 / Chapter 2.1.2 --- Phosphorus is a limiting nutrient --- p.3 / Chapter 2.2 --- Responses of Plants to Phosphate Deficiency --- p.4 / Chapter 2.2.1 --- Morphological changes of plants during phosphate deficiency --- p.5 / Chapter 2.2.1.1 --- Modification of the root system --- p.5 / Chapter 2.2.1.2 --- Symbiotic association of roots with mycorrhiza --- p.6 / Chapter 2.2.2 --- Maintenance of phosphate levels in plants during phosphate deficiency --- p.7 / Chapter 2.2.2.1 --- Phosphate homeostasis in plants --- p.7 / Chapter 2.2.2.2 --- "Enhancement of Pi scavenging, recycling and uptake" --- p.9 / Chapter 2.2.2.3 --- Pi-limited metabolism --- p.11 / Chapter 2.2.3 --- Hormones and phosphate starvation responses --- p.12 / Chapter 2.2.4 --- Regulation of gene expression during phosphate starvation --- p.14 / Chapter 2.2.4.1 --- The pho regulon in bacteria and yeast --- p.14 / Chapter 2.2.4.2 --- The coordination of phosphate starvation induced genes in plants --- p.19 / Chapter 2.2.4.3 --- Signaling phosphate starvation --- p.19 / Chapter 2.2.4.4 --- Phosphite and phosphate starvation --- p.21 / Chapter 2.2.4.5 --- Transcriptional regulation during phosphate starvation --- p.22 / Chapter 2.3 --- Acid Phosphatases in Higher Plants --- p.26 / Chapter 2.3.1 --- Enzymatic properties of acid phosphatases --- p.26 / Chapter 2.3.2 --- Localization and function of acid phosphatases --- p.27 / Chapter 2.3.3 --- Expression of acid phosphatases --- p.28 / Chapter 2.4 --- Purple Acid Phosphatases --- p.29 / Chapter 2.4.1 --- Properties of purple acid phosphatases --- p.29 / Chapter 2.4.2 --- Regulation and expression of plant purple acid phosphatase --- p.32 / Chapter 2.5 --- Tomato Purple Acid Phosphatases --- p.33 / Chapter 2.6 --- Promoter Analysis --- p.35 / Chapter 2.6.1 --- Structure of an eukaryotic promoter --- p.35 / Chapter 2.6.2 --- Promoter analysis by deletion mapping --- p.37 / Chapter 2.6.3 --- The computational approaches in promoter analysis --- p.38 / Chapter 2.6.4 --- Transient expression assay and transgenic expression assay --- p.39 / Chapter 2.7 --- Transcriptional Regulation of Tomato Purple Acid Phosphatase Expression --- p.40 / Chapter 2.8 --- Hypothesis --- p.41 / Chapter Chapter 3: --- Materials and Methods --- p.43 / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Materials --- p.44 / Chapter 3.2.1 --- Chemicals --- p.44 / Chapter 3.2.2 --- Plant materials --- p.44 / Chapter 3.2.3 --- Plasmid vectors and bacterial strains --- p.44 / Chapter 3.2.4 --- Primers design --- p.45 / Chapter 3.2.5 --- Confirmation of sequence fidelity --- p.46 / Chapter 3.3 --- Cloning of the TPAP1 Promoter Fragments --- p.46 / Chapter 3.3.1 --- Genomic DNA extraction --- p.46 / Chapter 3.3.1.1 --- Materials --- p.46 / Chapter 3.3.1.2 --- Procedures --- p.47 / Chapter 3.3.2 --- Cloning strategy of TPAP1 promoter --- p.47 / Chapter 3.3.3 --- TPAP1 promoter cloning --- p.48 / Chapter 3.3.3.1 --- Long-distance PCR --- p.48 / Chapter 3.3.4 --- Chimeric gene constructs --- p.48 / Chapter 3.3.4.1 --- Chimeric gene construction for particle bombardment --- p.51 / Chapter 3.3.4.2 --- Chimeric gene construction for tobacco transformation --- p.51 / Chapter 3.4 --- Transient Expression Assay of the TPAP1 Promoter Fragments --- p.54 / Chapter 3.4.1 --- TPAP1 promoter activity assay --- p.54 / Chapter 3.4.2 --- Preparation of MS culture medium --- p.54 / Chapter 3.4.3 --- Growing tomato seedlings in MS liquid medium --- p.56 / Chapter 3.4.4 --- Biolistic bombardment --- p.56 / Chapter 3.4.5 --- GUS histochemcial staining --- p.57 / Chapter 3.4.5.1 --- Materials --- p.57 / Chapter 3.4.5.2 --- Procedures --- p.57 / Chapter 3.5 --- Transgenic Assay of the TPAP1 Promoter Fragments --- p.58 / Chapter 3.5.1 --- Materials for tobacco transformation --- p.58 / Chapter 3.5.2 --- Agrobacterium tumefaciens preparation --- p.58 / Chapter 3.5.3 --- Tobacco transformation and regeneration --- p.59 / Chapter 3.5.4 --- Promoter activity analysis --- p.60 / Chapter 3.5.4.1 --- Materials --- p.60 / Chapter 3.5.4.2 --- Procedures --- p.60 / Chapter 3.5.5 --- Southern blot analysis --- p.61 / Chapter 3.5.6 --- RNA isolation --- p.61 / Chapter 3.5.6.1 --- Materials --- p.61 / Chapter 3.5.6.2 --- Procedures --- p.61 / Chapter 3.5.7 --- Northern blot analysis --- p.62 / Chapter 3.6 --- Biochemical Analysis of Acid Phosphatase Activities --- p.63 / Chapter 3.6.1 --- Excretion of acid phosphatase into the environment --- p.63 / Chapter 3.6.2 --- Growing tomato seedlings in MS medium --- p.63 / Chapter 3.6.3 --- Acid phosphatase activity assay by p-nitrophenyl phosphate --- p.64 / Chapter 3.6.4 --- Activity-gel detection --- p.65 / Chapter 3.6.4.1 --- Materials --- p.65 / Chapter 3.6.4.2 --- Procedures --- p.65 / Chapter 3.7 --- "Sequence Analysis of the TPAP1 gene, cDNA and promoter" --- p.66 / Chapter 3.7.1 --- Isolation of TPAPl cDNA --- p.66 / Chapter 3.7.1.1 --- Rapid amplification of cDNA ends (RACE) --- p.66 / Chapter 3.7.1.2 --- RT-PCR --- p.67 / Chapter 3.7.2 --- Isolation of TPAP1 gene --- p.67 / Chapter 3.7.2.1 --- PCR amplification of the TPAP1 gene --- p.67 / Chapter 3.7.2.2 --- TPAP1 gene sequence determination --- p.68 / Chapter 3.7.3 --- Sequence analysis --- p.69 / Chapter 3.8 --- Statistical analysis --- p.70 / Chapter Chapter 4: --- Results --- p.72 / Chapter 4.1 --- "Cloning of the TPAP1 Promoter Fragments, Gene and cDNA" --- p.72 / Chapter 4.1.1 --- TPAP1 promoter fragment constructs --- p.72 / Chapter 4.1.2 --- TPAP1 cDNA cloning --- p.72 / Chapter 4.1.3 --- TPAP1 gene cloning --- p.72 / Chapter 4.2 --- "Sequence analysis of the TPAP1 promoter, gene, cDNA and predicted amino acid sequence" --- p.76 / Chapter 4.2.1 --- "The DNA sequence of the TPAP1 promoter, gene and cDNA" --- p.76 / Chapter 4.2.2 --- Properties of TPAP1 cDNA and protein --- p.83 / Chapter 4.2.3 --- Identification of potential metal ligating residues on TPAP1 --- p.85 / Chapter 4.2.4 --- Phylogenetic relationship of TPAPl to other plant PAPs --- p.86 / Chapter 4.2.5 --- Sequence comparison of 5'UTR ofTPAPl and NtPAP12 --- p.89 / Chapter 4.3 --- APase Activity Assay --- p.90 / Chapter 4.3.1 --- p-NPP APase activity assay --- p.90 / Chapter 4.3.2 --- Activity-gel detection --- p.90 / Chapter 4.4 --- "Comparison of TPAP 1, IAP,SAP 1 and SAP2" --- p.96 / Chapter 4.5 --- Potential Cis-acting Regulatory Elements (CAREs) on the TPAP1 Promoter --- p.100 / Chapter 4.5.1 --- Search for potential CAREs --- p.100 / Chapter 4.5.2 --- Functions of CAREs --- p.100 / Chapter 4.6 --- Transient Expression Analysis --- p.102 / Chapter 4.6.1 --- Biolistic bombardment of TPAP1 promoter fragments into tomato roots --- p.102 / Chapter 4.7 --- Transgenic Expression Analysis --- p.104 / Chapter 4.7.1 --- Transformation of tobacco --- p.104 / Chapter 4.7.2 --- Northern and RT-PCR analysis of GUS expression --- p.110 / Chapter 4.7.3 --- GUS activity analysis --- p.114 / Chapter 4.7.4 --- Histochemical staining of GUS --- p.123 / Chapter Chapter 5: --- Discussions --- p.135 / Chapter 5.1 --- Properties ofTPAPl --- p.135 / Chapter 5.1.1 --- "Structure of the TPAP1 promoter, gene and cDNA" --- p.135 / Chapter 5.1.2 --- Potential flmction(s) ofTPAPl --- p.135 / Chapter 5.1.3 --- The potential relationship between TPAP1 and NtPAP12 --- p.137 / Chapter 5.2 --- Induction of Secretory APases during Pi Starvation --- p.137 / Chapter 5.3 --- Putative Protein Encode by theTPAP 1 cDNA --- p.138 / Chapter 5.4 --- Promoter Analysis of TPAP1 --- p.140 / Chapter 5.4.1 --- Construct preparation --- p.140 / Chapter 5.4.2 --- Potential CAREs located on the TPAP1 promoter --- p.141 / Chapter 5.4.3 --- Transient expression analysis --- p.142 / Chapter 5.4.4 --- Transgenic expression analysis --- p.143 / Chapter 5.4.4.1 --- Northern analysis and RT-PCR analysis of GUS expression --- p.143 / Chapter 5.4.4.2 --- GUS activity analysis --- p.143 / Chapter 5.4.4.3 --- Histochemical staining of GUS --- p.145 / Chapter 5.5 --- Hypothetical Model for TPAP1 Promoter Activities --- p.146 / Chapter 5.5.1 --- Model for expression level --- p.146 / Chapter 5.5.2 --- Models for spatial expressions --- p.148 / Chapter 5.6 --- Future Perspectives --- p.150 / Chapter Chapter 6: --- Conclusions --- p.152 / References --- p.154
|
439 |
Desempenho de cultivares transgênicas de soja em sucessão a culturas de inverno em semeadura diretaGazola, Eduardo [UNESP] 28 July 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-07-28Bitstream added on 2014-06-13T19:07:33Z : No. of bitstreams: 1
gazola_e_me_botfca.pdf: 515907 bytes, checksum: 147c1f8c1d57f0773041fffb27a91fd1 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo do trabalho foi avaliar o desempenho de cultivares transgênicas de soja (Glycine max (L.) Merrill) em sucessão a culturas de inverno na implantação do sistema de semeadura direta. O experimento foi conduzido na área experimental do Departamento de Produção Vegetal, na Faculdade de Ciências Agronômicas/UNESP, Campus de Botucatu-SP, durante o ano agrícola 2006/07. O delineamento experimental utilizado foi o de blocos casualizados, em esquema de parcelas subdivididas, com quatro repetições. As parcelas foram representadas por cinco espécies cultivadas no inverno, aveia branca (Avena sativa L.), nabo forrageiro (Raphanus sativus L.), cevada (Hordeum vulgare L.), trigo (Triticum aestivum L.) e ervilha forrageira (Pisum sativum L.) e área de pousio (vegetação espontânea). As subparcelas foram constituídas por seis cultivares de soja (BRS 243 RR, BRS 245 RR, BRS 247 RR, BRS 255 RR, BRS 256 RR e BRS 244 RR), cedidas pela Embrapa SNT-EN.LDB, totalizando 36 tratamentos. Foram avaliadas, nas espécies de inverno, a massa da matéria seca da parte aérea e a produtividade de grãos, enquanto na soja as características agronômicas como florescimento, ciclo, alturas de plantas e de inserção da primeira vagem, população final de plantas, grau de acamamento, número de vagens chochas, número de nódulos por planta, massa da matéria seca dos nódulos por planta, além dos componentes da produção número de vagens por planta, número de grãos por vagem, massa de 100 grãos e a produtividade. Foi avaliado, também, o teor foliar dos macronutrientes N, P, K, Ca, Mg e S das plantas de soja por meio da diagnose foliar.A cevada, entre as culturas de inverno, foi a que apresentou os maiores valores de produtividade de grãos e de massa de matéria seca, não diferindo, na ultima avaliação da aveia, da ervilha forrageira e do nabo forrageiro. As características... / The objective of this research was to evaluate crop yield and some characteristics and yield components of transgenic soybean cultivars sown after different winter cover crops in the first year under no tillage system. The present work was carried out on the experimental area of the “Departamento de Ciências Agronômicas”, “Faculdade de Ciências Agronômicas/UNESP”, Botucatu-SP, in 2006/2007, as a partnership with Embrapa SNT – EN.LDB (Embrapa serviços de negócios para transferência de tecnologia – Escritório de negócios de Londrina). The experimental design was the completely randomized block with split plots and four replications. The main plots consisted of five winter cover crops, white oat (Avena sativa L.), forage turnip (Raphanus sativus L.), barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and ground pea (Pisum sativum L.) and an area under fallow (spontaneous vegetation). The subplots consisted of six soybean cultivars (BRS 243 RR, BRS 245 RR, BRS 247 RR, BRS 255 RR, BRS 256 RR and BRS 244 RR) which were granted by Embrapa SNT-EN.LDB, totaling 36 treatments. Shoot dry matter and grain yield were evaluated for each winter crop. While the experiment had been carried out, some soybean agronomic characteristics were evaluated like flowering, cycle, first pod insertion and plant height, final population, bending, number of nodes per plant, nodes dry matter per plant and grain yield. Yield components, weight of 100 grains, number of pods and aborted grains per plant and grains per pod were evaluated. N, P, K, Ca, Mg and S levels in soybean tissue werealso evaluated through foliar diagnosis. Among all winter crops evaluated, barley was the one that showed higher values for grain yield and dry matter, however, it did not differ from oat, ground pea and forage turnip in the last evaluation. Variance analysis for agronomic characteristics... (Complete abstract click electronic access below)
|
440 |
A study of somatolactin actions by ectopic expression in transgenic zebrafish. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
Preliminary analyses of three kinds of promoter activity showed that a-actin gene promoter was chosen to initiate the hormone transcription for the first consideration. We have fused the cDNAs encoding the intact somatolactins in frame to a zebrafish a-actin gene promoter to generate transgenic zebrafish lines co-injected with a GFP protein driven by the same promoter. The transgenic zebrafish were selected from GFP expression and confirmed by genomic PCR and Southern blot analysis, then maintained as transgenic founders. Measurement of the transgenes' expressions and the expressions of marker genes in different pathways by using real-time PCR provided a general understanding of SLs' actions. The data obtained indicated that the over-expressing of SLalpha and SLbeta in vivo significantly enhance the transcriptions of the insulin-like growth factors, IGF1 (5.46-fold and 6.77-fold), IGF2a (4.38-fold and 4.35-fold) and IGF2b (2.83-fold and 3.94-fold), but down-regulated IGF3 (a novel member found specifically in gonad) in larvae. However, the stimulation by administration of recombinant proteins (SLalpha and SLbeta) only showed a slight induction of the mRNA levels of IGFs (IGF1, IGF2a and IGF2b) on ZFL cells in vitro. / Somatolactin (SL) is a novel member of pituitary polypeptide hormone found only in fish; it shares significant structural homology with prolactin and growth hormone. Since somatolactin receptor (SLR) was first defined as GHR1 and orthologous to the growth hormone receptor GHR2, SL and GH may share similar actions in growth and development. Recently, two SLs have been identified as SLalpha and SLbeta with similar structures, freshwater fish have these two isoforms found in the same species and only one isoform (SLalpha) is found in marine species. The two isoforms of SL may have different functions and physiological actions. To investigate the roles of SLs on vertebrate development and embryogenesis, we generated transgenic fish models with "all zebrafish" elements in origin to study the physiological functions of SLs in zebrafish. / The ectopic expression of somatolactins also results in up-regulating gene expression of insulin, leptin, sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FAS), as well as the expression of vitellogenin and melanocyte-stimulating hormone (MSH) levels while causing reduction of catalase (CAT) and glutathione S-transferase (GST) levels in larvae. The results here represent the similar function between SLalpha and SLbeta and reveal more details in fish of the endocrinology system involvement in growth development, glucose synthesis, lipid metabolism, reproduction, pigmentation and antioxidant defense system through the actions of SLs. / Three different gene promoters of zebrafish have been isolated to initiate the ectopic expression of somatolactins in vivo, which including a constitutional beta-actin gene promoter, a liver specific transferrin gene promoter and a zinc ion inducible metallothionein (MT) gene promoter. The promoter activities were tested in fish cell-line by using luciferase reporter assay. In MT gene promoter, two alleles of a zebrafish metallothionein II gene (zMT-II) promoter (zMT-IIA and zMT-IIB) containing 10 MREs in the 5'-flanking region (1,514 bp) were identified in zebrafish. These putative MREs were confirmed via electrophoretic mobility shift assay (EMSA) to have binding activities from the cellular and nuclear extracts of a zebrafish cell line, ZFL. Transient gene expression studies using zebrafish liver (ZFL) cell lines also confirmed that the most distal cluster of MREs contributed to the maximal induction of zMT-IIA activity by Zn2+ and the Zn 2+ induction was dose-dependent. EMSA also identified transcription factor(s) of two different sizes from the cytoplasmic and nuclear extracts of the ZFL cells that were able to bind with the MREs, but no increase in MRE binding was detected in the extracts of these cells after Zn2+ or Cd2+ treatment, compared with untreated control cells. The mechanisms of MT gene transcription induction via metal ions are discussed herein. / Wan, Guohui. / Adviser: Chan King Ming. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 139-163). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.0555 seconds