• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An Analysis Of The Pan-european Transport Network

Dogan, Torgay 01 September 2005 (has links) (PDF)
This thesis analyses the process of the creation of the Pan-European Transport Network connecting the European Union with the neighbouring regions and Caucasus and Central Asia in the long run. The thesis focuses on the incentives in establishing a continental transport network stemming from the nature of the capitalist relations between market and national and supranational forces in the margins of the global economy. In this context, the parallel processes of the acceleration of the European integration and the establishment of the Pan-European Transport Network are explored. Furthermore, in the thesis, the components of the Pan-European Transport Network, namely the Trans-European Transport Networks (TEN-T), the Pan-European Transport Corridors and Areas (including Turkey), and the Eurasian transport routes are analysed. The thesis seeks to show that the Pan-European Transport Network has been planned to ensure the economic and political cohesion of the European Union and regulate the trade relations between Europe and Asia, including the transportation of the energy resources. The lack of specific analyses on the main problem of the thesis and the incrementalism in the processes of the European integration and development of the Pan-European Transport Network induce the interpretation of the raw and first hand information, such as technical reports, intergovernmental declarations, official documents, speeches and press releases.
12

Periodic Data Structures for Bandwidth-intensive Applications

Albanese, Ilijc 12 January 2015 (has links)
Current telecommunication infrastructure is undergoing significant changes. Such changes involve the type of traffic traveling through the network as well as the requirements imposed by the new traffic mix (e.g. strict delay control and low end-to-end delay). In this new networking scenario, the current infrastructure, which remained almost unchanged for the last several decades, is struggling to adapt, and its limitations in terms of power consumption, scalability, and economical viability have become more evident. In this dissertation we explore the potential advantages of using periodic data structures to handle efficiently bandwidth-intensive transactions, which constitute a significant portion of today's network traffic. We start by implementing an approach that can work as a standalone system aiming to provide the same advantages promised by all-optical approaches such as OBS and OFS. We show that our approach is able to provide similar advantages (e.g. energy efficiency, link utilization, and low computational load for the network hardware) while avoiding the drawbacks (e.g. use of optical buffers, inefficient resource utilization, and costly deployment), using commercially available hardware. Aware of the issues of large scale hardware redeployment, we adapt our approach to work within the current transport network architecture, reusing most of the hardware and protocols that are already in place, offering a more gradual evolutionary path, while retaining the advantages of our standalone system. We then apply our approach to Data Center Networks (DCNs), showing its ability to achieve significant improvements in terms of network performance stability, predictability, performance isolation, agility, and goodput with respect to popular DCN approaches. We also show our approach is able to work in concert with many proposed and deployed DCN architectures, providing DCNs with a simple, efficient, and versatile protocol to handle bandwidth-intensive applications within the DCs. / Graduate
13

Integrating public transport networks and built environment. : The case of Addis Ababa and experiences from Stockholm.

Tesfaye Demdime, Fantahun January 2012 (has links)
No description available.
14

Reinforcement in Biology : Stochastic models of group formation and network construction

Ma, Qi January 2012 (has links)
Empirical studies show that similar patterns emerge from a large number of different biological systems. For example, the group size distributions of several fish species and house sparrows all follow power law distributions with an exponential truncation. Networks built by ant colonies, slime mold and those are designed by engineers resemble each other in terms of structure and transportation efficiency. Based on the investigation of experimental data, we propose a variety of simple stochastic models to unravel the underlying mechanisms which lead to the collective phenomena in different systems. All the mechanisms employed in these models are rooted in the concept of selective reinforcement. In some systems the reinforcement can build optimal solutions for biological problem solving. This thesis consists of five papers. In the first three papers, I collaborate with biologists to look into group formation in house sparrows  and the movement decisions of damsel fish.  In the last two articles, I look at how shortest paths and networks are  constructed by slime molds and pheromone laying ants, as well as studying  speed-accuracy tradeoffs in slime molds' decision making. The general goal of the study is to better understand how macro level patterns and behaviors emerges from micro level interactions in both spatial and non-spatial biological systems. With the combination of mathematical modeling and experimentation, we are able to reproduce the macro level patterns in the studied biological systems and predict behaviors of the systems using minimum number of parameters.
15

Současné trendy multimodální dopravy se zaměřením na EU / Current trends in multimodal transport with a focus on EU

Sekan, Martin January 2011 (has links)
The aim of this diploma thesis is to analyze the current situation of multimodal transport with a focus on the European Union, to describe the current concept of the Common Transport Policy and its main objectives and priorities for the future development. Further, to analyze the progress of the project Trans-European transport network with a focus on priority projects supporting the development of multimodal transport in the EU. One of the aims of this thesis is to outline the potential of the continental combined transport as an alternative option to multimodal transport and to focus on its current problems hampering the future prosperity of this new mode of transport.
16

Characterization, Analysis and Modeling of Complex Flow Networks in Mammalian Organs

Kramer, Felix 15 June 2022 (has links)
Das Studium von Transportmechanismen in komplexen Organismen stellt eine zentrale Herausforderung dar, nicht nur in medizinischen und biologischen Disziplinen, sondern auch zunehmend in der Physik und Netzwerktheorie. Insbesondere sind bionisch inspirierte Designprinzipien zunehmend relevant, da sie zuverlässige Lösungsansätze zu verschiedenen theoretischen und technischen Problemen bieten. Herausstechend sind dabei vaskuläre Netzwerke in Säugetieren, deren Entwicklung auffällig stark auf Selbstorganisation beruhen und die korrekte Verteilung von Sauerstoff, Wasser, Blut oder Ähnlichem erlaubt. Dies wird erreicht durch ein komplexes biochemisches Signalsystem, welches an makroskopische Stimulationen, wie z. B. Reibung und Stress, gekoppelt ist. Die Morphogenese solcher Flussnetzwerke ist allerdings noch anderen Restriktionen unterworfen, da diese räumlich eingebettete Objekte darstellen. Sie sind als solche signifikant beschränkter in ihrer Skalierbarkeitund Dynamik. Diese Dissertation addressiert daher relevante Fragestellungen zur Charakterisierung von Netzwerken und der Morphogenesesimulationen von drei-dimensional eingebetteten Netzwerken Die Schlüsselmechanismen auf die wir uns hier konzentrieren sind Flussfluktuationen, Interaktionen zwischen Paarstrukturen und die Aufnahme von Nährstoffen. Zu Beginn zeigen wir, wie sich konventionelle Ansätze zu Flussfluktuationen als allgemeine Einparametermodelle darstellen lassen. Wir demonstrieren damit den kontinuierlichen Übergang zu zunehmend vernetzten Strukturen und indizieren Topologieabhängigkeiten der Plexus in Anbetracht dieses Übergangs. Darauf aufbauend formulieren wir ein neues Adaptationsmodell für ineinander verwobene Gefäßnetzwerke wie sie auch in der Leber, Bauchspeicheldrüse oder Niere vorkommen. Wir diskutieren anhand dieser Strukturen lokale Wechselwirkungen von dreidimensionalen Netzwerken. Dadurch können wir zeigen, dass repulsiv gekoppelte Netzwerke fluktuationsinduzierte Vernetzungen auflösen und attraktive Kopplungen einen neuen Mechanismus zur Erzeugung eben jener darstellen. Als nächstes verallgemeinern wir die Murray Regel für solch komplexe Wechselwirkungen und Fluktuationen. Die daraus abgeleiteten Relationen nutzen wir zur Regression der Modellparameter und testen diese an den Gefäßnetzwerken der Leber. Weiterhin verallgemeinern wir konventionelle Transportmodelle für die Nährstoffaufnahme in beliebigem Gewebe und testen diese in Morphogenesemodellen gegen die bekannten Ansätze zur Dissipationsminimierung. Hier zeigen sich komplexe Übergänge zwischen vernetzten Strukturen und unkonventionelles Phasenverhalten. Allerdings indizieren die Ergebnisse Widersprüche zu echten Kapillargefäßen und wir vermuten Adaptationsmethoden ohne Gefäßgrößenänderung als wahrscheinlicheren Mechanismus. Im Ausblick schlagen wir auf unseren Ergebnissen aufbauende Folgemodelle vor, welche die Modellierung komplexer Transportprozesse zwischen verschränkten Gefäßnetzwerken zum Ziel haben.:Introduction 1 1.1 Complex networks in biology . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Flow networks in mammals . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Network morphogenesis . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Modelling flow network adaptation . . . . . . . . . . . . . . . . 8 1.2.2 Metrics for biological flow networks . . . . . . . . . . . . . . . . 11 Scaling in spatial networks . . . . . . . . . . . . . . . . . . . . . 12 Redundancy of flow networks . . . . . . . . . . . . . . . . . . . 13 1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Spatial embedding in metabolic costs models . . . . . . . . . . . 16 1.3.2 Characterizing three-dimensional reticulated networks . . . . . . 17 1.3.3 Optimal design for metabolite uptake . . . . . . . . . . . . . . . 20 2 Theory and Methods 23 2.1 Basic principles and mathematics . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . 23 Linear equation systems . . . . . . . . . . . . . . . . . . . . . 23 Dynamical systems and optimization . . . . . . . . . . . . . . 25 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.2 Basic hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 30 Momentum and mass balance . . . . . . . . . . . . . . . . . . . 30 Diffusion-Advection . . . . . . . . . . . . . . . . . . . . . . . . . 31 Flow in a thin channel . . . . . . . . . . . . . . . . . . . . . . . 32 2.1.3 Kirchhoff networks . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Complex transport problems . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 Taylor dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.2 Flow-driven pruning . . . . . . . . . . . . . . . . . . . . . . . . 38 Metabolic cost functions . . . . . . . . . . . . . . . . . . . . . . 38 Adaptation and topological transitions . . . . . . . . . . . . . . 40 3 Results 43 3.1 On single network adaptation with fluctuating flow patterns . . . . . . 43 3.1.1 Incorporating flow fluctuations: Noisy, uncorrelated sink patterns 44 3.1.2 Fluctuation induced nullity transitions . . . . . . . . . . . . . . 48 3.1.3 Finite size effects and topological saturation limits . . . . . . . 52 3.2 On geometric coupling between intertwined networks . . . . . . . . . . 55 3.2.1 Power law model of interacting multilayer networks . . . . . . . 55 3.2.2 Adaptation dynamics of intertwined vessel systems . . . . . . . 57 x 3.2.3 Repulsive coupling induced nullity breakdown . . . . . . . . . . 59 3.2.4 Attractive coupling induced nullity onset . . . . . . . . . . . . 66 3.3 On generalizing and applying geometric laws to complex transport networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3.1 Generalizing Murray’s law for complex flow networks . . . . . . 73 Murray’s law for fluctuating flows . . . . . . . . . . . . . . . . . 74 Murray’s Law for extended metabolic costs models . . . . . . . 77 3.3.2 Interpolating model parameters for intertwined networks . . . . 78 Testing ideal Kirchhoff networks . . . . . . . . . . . . . . . . . . 79 3.3.3 Identifying geometrical fingerprints in the liver lobule . . . . . . 85 3.4 On the optimization of metabolite uptake in complex flow networks . . 91 3.4.1 Metabolite transport in thin channel systems . . . . . . . . . . . 91 On single channel solutions . . . . . . . . . . . . . . . . . . . . 91 On detailed absorption rate models . . . . . . . . . . . . . . . . 93 On linear network solutions . . . . . . . . . . . . . . . . . . . . 96 On the uptake in spanning tree and reticulated networks . . . . 97 3.4.2 Optimizing metabolite uptake in shear-stress driven systems . . 100 Link-wise supply-demand model . . . . . . . . . . . . . . . . . . 101 Volume-wise supply-demand model . . . . . . . . . . . . . . . . 110 4 Discussion and Outlook 119 4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3.1 Metabolite transport in the liver lobule . . . . . . . . . . . . . . 124 Expansion of the Ostrenko model . . . . . . . . . . . . . . . . . 124 Complex multi transport probems in biology . . . . . . . . . . . 127 4.3.2 Absorption rate optimization and microscopic elimination models 128 Appendix A More on coupled intertwined networks 131 A.1 Coupling of Diamond lattices . . . . . . . . . . . . . . . . . . . . . . . 131 A.1.1 Repulsive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 131 A.1.2 Attractive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.2 Coupling of Laves Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.2.1 Repulsive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.2.2 Attractive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 136 B More on metabolite uptake adaptation 139 B.1 Deriving dynamical systems from demand-supply relationships . . . . . 139 B.2 Microscopic uptake models . . . . . . . . . . . . . . . . . . . . . . . . . 142 B.2.1 Detailed uptake estimation in single layer systems . . . . . . . . 142 B.2.2 Detailed uptake estimation in liver sinusoids . . . . . . . . . . . 143 B.3 Metabolite uptake in three-dimensional plexi . . . . . . . . . . . . . . . 145 B.3.1 Link-wise demand adaptation . . . . . . . . . . . . . . . . . . . 145 B.3.2 Volume-wise demand adaptation . . . . . . . . . . . . . . . . . . 150 Bibliography 155 / Understanding the transport of fluid in complex organisms has proven to be a key challenge not only in the medical and biological sciences, but in physics and network theory as well. This is even more so as biologically-inspired design principles have been increasing in popularity, reliably generating solutions to common theoretical and technical problems. On that note, vascular networks in mammalian organs display a magnificent level of self-organization, allowing them to develop and mature, yet miraculously orchestrate the correct transport of oxygen, water, blood etc. This is achieved by a dedicated biochemical feedback system, which is coupled to macroscopic stimuli, such as mechanical stresses. Another important constraint for the morphogenesis of flow networks is their environment, as these networks are spatially embedded. They are therefore exposed to significant constraints with regards to their scalability and dynamical behavior, which are not yet well understood. This thesis addresses the current challenges of network characterization and morphogenesis modeling for three-dimensional embedded networks. In order to derive proper maturation mechanisms, we propose a set of toy models for the creation of non-planar, entangled and reticulated networks. The key mechanisms we focus on in this thesis are flow fluctuation, coupling of pairing structures and metabolite uptake. We show that in accordance with previous theoretical approaches, fluctuation induced nullity can be formulated as a single parameter problem. We demonstrate that the reticulation transition follows a logarithmic law and find plexi with certain topologies to have limited nullity transitions, rendering such plexi intrinsically wasteful in terms of fluctuation generated reticulation. Moreover, we formulate a new coupling model for entangled adapting networks as an approach for vasculature found in the liver lobules, pancreas, kidneys etc. We discuss a model based on local, distance-dependent interactions between pairs of three-dimensional network skeletons. In doing so we find unprecedented delay and breakdown of the fluctuation induced nullity transition for repulsive interactions. In addition we find a new nullity transition emerging for attractive coupling. Next, we study how flow fluctuations and complex metabolic costs can be incorporated into Murray’s Law. Utilizing this law for interpolation, we are able to derive order of magnitude estimation for the parameters in liver networks, suggesting fluctuation driven adaptation to be the dominant factor. We also conclude that attractive coupling is a reasonable mechanism to account for the maintenance of entangled structures. We test optimal metabolite uptake in Kirchhoff networks by evaluating the impact of solute uptake driven dynamics relative to wall-shear stress driven adaptation. Here, we find that a nullity transition emerges in case of a dominant metabolite uptake machinery. In addition to that, we find re-entrant behavior in case of high absorption rates and discover a complex interaction between shear-stress generation and feedback. Nevertheless, we conclude that metabolite uptake optimization is not likely to occur due to radial adaptation alone. We suggest areas for further studies, which should consider absorption rate variation in order to account for realistic uptake profiles. In our outlook, we suggest a complex morphogenesis model for intertwined networks based on the results of this thesis.:Introduction 1 1.1 Complex networks in biology . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Flow networks in mammals . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Network morphogenesis . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Modelling flow network adaptation . . . . . . . . . . . . . . . . 8 1.2.2 Metrics for biological flow networks . . . . . . . . . . . . . . . . 11 Scaling in spatial networks . . . . . . . . . . . . . . . . . . . . . 12 Redundancy of flow networks . . . . . . . . . . . . . . . . . . . 13 1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Spatial embedding in metabolic costs models . . . . . . . . . . . 16 1.3.2 Characterizing three-dimensional reticulated networks . . . . . . 17 1.3.3 Optimal design for metabolite uptake . . . . . . . . . . . . . . . 20 2 Theory and Methods 23 2.1 Basic principles and mathematics . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . 23 Linear equation systems . . . . . . . . . . . . . . . . . . . . . 23 Dynamical systems and optimization . . . . . . . . . . . . . . 25 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.2 Basic hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 30 Momentum and mass balance . . . . . . . . . . . . . . . . . . . 30 Diffusion-Advection . . . . . . . . . . . . . . . . . . . . . . . . . 31 Flow in a thin channel . . . . . . . . . . . . . . . . . . . . . . . 32 2.1.3 Kirchhoff networks . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Complex transport problems . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.1 Taylor dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.2.2 Flow-driven pruning . . . . . . . . . . . . . . . . . . . . . . . . 38 Metabolic cost functions . . . . . . . . . . . . . . . . . . . . . . 38 Adaptation and topological transitions . . . . . . . . . . . . . . 40 3 Results 43 3.1 On single network adaptation with fluctuating flow patterns . . . . . . 43 3.1.1 Incorporating flow fluctuations: Noisy, uncorrelated sink patterns 44 3.1.2 Fluctuation induced nullity transitions . . . . . . . . . . . . . . 48 3.1.3 Finite size effects and topological saturation limits . . . . . . . 52 3.2 On geometric coupling between intertwined networks . . . . . . . . . . 55 3.2.1 Power law model of interacting multilayer networks . . . . . . . 55 3.2.2 Adaptation dynamics of intertwined vessel systems . . . . . . . 57 x 3.2.3 Repulsive coupling induced nullity breakdown . . . . . . . . . . 59 3.2.4 Attractive coupling induced nullity onset . . . . . . . . . . . . 66 3.3 On generalizing and applying geometric laws to complex transport networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3.1 Generalizing Murray’s law for complex flow networks . . . . . . 73 Murray’s law for fluctuating flows . . . . . . . . . . . . . . . . . 74 Murray’s Law for extended metabolic costs models . . . . . . . 77 3.3.2 Interpolating model parameters for intertwined networks . . . . 78 Testing ideal Kirchhoff networks . . . . . . . . . . . . . . . . . . 79 3.3.3 Identifying geometrical fingerprints in the liver lobule . . . . . . 85 3.4 On the optimization of metabolite uptake in complex flow networks . . 91 3.4.1 Metabolite transport in thin channel systems . . . . . . . . . . . 91 On single channel solutions . . . . . . . . . . . . . . . . . . . . 91 On detailed absorption rate models . . . . . . . . . . . . . . . . 93 On linear network solutions . . . . . . . . . . . . . . . . . . . . 96 On the uptake in spanning tree and reticulated networks . . . . 97 3.4.2 Optimizing metabolite uptake in shear-stress driven systems . . 100 Link-wise supply-demand model . . . . . . . . . . . . . . . . . . 101 Volume-wise supply-demand model . . . . . . . . . . . . . . . . 110 4 Discussion and Outlook 119 4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3.1 Metabolite transport in the liver lobule . . . . . . . . . . . . . . 124 Expansion of the Ostrenko model . . . . . . . . . . . . . . . . . 124 Complex multi transport probems in biology . . . . . . . . . . . 127 4.3.2 Absorption rate optimization and microscopic elimination models 128 Appendix A More on coupled intertwined networks 131 A.1 Coupling of Diamond lattices . . . . . . . . . . . . . . . . . . . . . . . 131 A.1.1 Repulsive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 131 A.1.2 Attractive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.2 Coupling of Laves Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.2.1 Repulsive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.2.2 Attractive coupling . . . . . . . . . . . . . . . . . . . . . . . . . 136 B More on metabolite uptake adaptation 139 B.1 Deriving dynamical systems from demand-supply relationships . . . . . 139 B.2 Microscopic uptake models . . . . . . . . . . . . . . . . . . . . . . . . . 142 B.2.1 Detailed uptake estimation in single layer systems . . . . . . . . 142 B.2.2 Detailed uptake estimation in liver sinusoids . . . . . . . . . . . 143 B.3 Metabolite uptake in three-dimensional plexi . . . . . . . . . . . . . . . 145 B.3.1 Link-wise demand adaptation . . . . . . . . . . . . . . . . . . . 145 B.3.2 Volume-wise demand adaptation . . . . . . . . . . . . . . . . . . 150 Bibliography 155
17

Un système d’aide à la régulation d’un réseau de transport multimodal perturbé : réponse au problème de congestion / A support system for the regulation of a multimodal transportation network disruption : response to the problem of congestion

Mejri, Hinda 22 June 2012 (has links)
Les réseaux de transport se sont amplifiés par l’accroissement du nombre des véhicules et des stations ainsi que l’apparition de nouvelles notions essentiellement la multimodalité et l’intermodalité. Ainsi, la tâche de gestion des réseaux de transport collectif est devenue très complexe et difficile pour les régulateurs. Pour faire face à ces difficultés, on note le développement des systèmes d’aide à la décision comme solution efficace de régulation de la circulation. Ils permettent de transmettre en temps réel les informations concernant le trafic sur les réseaux de transport.Notre travail se base sur la conception d’un système de régulation des réseaux de transport multimodal. Il peut se révéler comme un outil primordial pour apporter des solutions efficaces et en temps réel à la problématique de la congestion routière. Il peut communiquer l’information nécessaire à l’usager afin de prendre sa décision de déplacement avec ou sans sa voiture. Le système proposé est une approche hybride entre une modélisation par graphes du réseau et un système multi-agents. Ceci sera appuyé par une approche évolutionniste pour la génération d’une solution de régulation optimale. Ce choix est justifié par le caractère ouvert, distribué et complexe des réseaux de transport multimodal / Transport networks have been amplified by the increasing number of vehicles and stations and the emergence of new concepts essentially multimodal and intermodal. Thus, the task of managing public transport systems has become very complex and difficult for regulators.To cope with these difficulties, there is the development of systems decision support as an effective solution to traffic control. They can transmit real-time traffic information on transport networks. Our work is based on designing a control system of multimodal transport networks. It may be as an essential tool for effective solutions and real-time to the problem of traffic congestion. It can provide the necessary information to the user in making its decision to move with or without his car. The proposed system is a hybrid between a graph modeling the network and a multi-agent system. This will be supported by an evolutionary approach for generating an optimal control solution. This is justified by the open, distributed and complex network of multimodal transport
18

Go with the flow : A study exploring public transit performance using a flow network model

Boman, Axel, Nilsson, Erik January 2020 (has links)
As opposed to public transit agencies' well-developed data generation capabilities, their utilization of their data is often overlooked. This study will tap into the potential of using the GTFS data format from an agency stakeholder perspective to assess transit performance. This format holds data for scheduled transit services, including real-time updates and network organization. The broad adaptation of GTFS by transit agencies (1240 transit networks in 672 locations worldwide) has made it a de-facto standard, making products built on top of it inherently scalable and could potentially be deployed in networks all over the world. The purpose of this thesis is two-fold; firstly, to explore how specific vulnerability features of nodes in a public transit network can be assessed using graph mining algorithms. Secondly, to develop a pipeline for aggregating GTFS data and fit it into a flow network model. The results include a data-driven framework for vulnerability characterization, a method for fitting GTFS data in a flow network model, and lastly, a definition for reduced flow capacity in a public transit context. Additionally, the results are presented in the setting of Uppsala's network (UL) and visualized with a web-based tool.
19

Electron Transport in Carbon-Based Networks

Rodemund, Tom 15 July 2021 (has links)
Carbon-based conductors like carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) have many properties, which make them relevant for potential electronic applications. Among them are high conductances and tunable band gap sizes. These properties make CNTs and GNRs useful in many circumstances, e.g. as channel material in transistors or transparent electrodes in solar cells. Plenty of literature can be found on the topic of single linear CNTs/GNRs. Some applications however require a large network of these conductors. In addition, a single conductor has only a small impact on the network conductance, which reduces the need to control the properties of each individual nanotube/-ribbon. This leads to networks being easier to apply. In this work, the conductance of large networks of GNRs is calculated using the quantum-transport formalism (QT). This has not been done before in literature. In order to apply QT to such a large amount of atoms, the recursive Green's function formalism is used. For this the networks are devided into subcells, which are represented by tight-binding matrices. Similar networks are also examined using two different nodal analysis (NA) approaches, where the nanoribbons are treated as ohmic conductors. For NA with one-dimensional conductors, major discrepancies are found in regards to the QT model. However, networks consisting of two-dimensional conductors (NA-2D) have many properties similar to the QT networks. A recipe to approximate the QT results with NA-2D is presented.:1. Introduction 2. Theoretical Principles 2.1 Carbon-based Conductors 2.1.1 Structure and Properties 2.1.2 Networks 2.2 Tight-Binding Model 2.3 Quantum Transport 2.3.1 Introduction 2.3.2 Level Broadening 2.3.3 Current Flow 2.3.4 Transmission 2.4 Nodal Analysis 3. Implementation 3.1 Quantum Tranport 3.1.1 Network Generation 3.1.2 Density-Functional based Tight-Binding Method 3.1.3 Recursive Green's Function Algorithm 3.1.4 Conductance 3.2 Nodal Analysis 3.2.1 One-dimensional Conductors 3.2.2 Two-dimensional Conductors 4. Results 4.1 Quantum Transport 4.1.1 Band Structures and Fermi Energies 4.1.2 Ideal Transmission and Consistency Tests 4.1.3 Percolation 4.1.4 Transmission 4.1.5 Conductance 4.1.6 Power Law Scaling 4.1.7 Size Dependence and Confinement Effects 4.1.8 Calculation Time 4.2 Nodal Analysis 4.2.1 One-dimensional Conductors 4.2.2 Two-dimensional Conductors 4.2.3 Calculation Time 4.3 Approximating QT with NA 4.3.1 Optimal Parameters 4.3.2 Percolation 4.3.3 Conductance 4.3.4 Power Law Scaling 5. Conclusions / Graphenbasierte Leiter wie Kohlenstoff-Nanoröhrchen (engl. 'carbon nanotubes', CNTs) oder Graphen-Nanobänder (engl. 'graphene nanoribbons', GNRs) haben viele Eigenschaften, die sie für potenzielle elektronische Anwendungen interessant machen. Darunter sind hohe Leitfähigkeiten und einstellbare Bandlückengrößen. Dadurch sind CNTs und GNRs in vielen Bereichen nützlich, z.B. als Kanalmaterial in Transistoren oder als transparente Elektroden in Solarzellen. Es gibt viel Literatur über einzelne, lineare CNTs/GNRs. Einige Anwendungen benötigen jedoch ein großes Netzwerk dieser Leiter. Zusätzlich hat ein einzelner Leiter wenig Einfluss auf die Leitfähigkeit des Netzwerks, wodurch die Eigenschaften der einzelnen Nanoröhrchen/-streifen weniger streng kontrolliert werden müssen. Dies führt dazu, dass es einfacher ist Netzwerke zu nutzen. In dieser Arbeit wird die Leitfähigkeit von großen GNR-Netzwerken mittels Quantentransport (QT) berechnet. Dies wurde in der Literatur noch nicht getan. Um QT auf eine so große Menge an Atomen anzuwenden wird der rekursive Greenfunktions-Formalismus benutzt. Dazu werden die Netzwerke in Unterzellen unterteilt, die durch Tight-Binding-Matrizen dargestellt werden. Ähnliche Netzwerke werden auch mit zwei Versionen der Knotenanalyse (engl. 'nodal analysis', NA) untersucht, welche die Nanobänder wie ohmische Leiter behandelt. Die Ergebnisse der NA mit eindimensionalen Leitern weisen deutliche Unterschiede zu den mit QT erzielten Ergebnissen auf. Wenn jedoch zweidimensionale Leiter in NA verwendet werden (NA-2D) gibt es viele parallelen zu den QT Ergebnissen. Zuletzt wird ein Vorgehen präsentiert, mit dem QT Resultate durch NA-2D Rechnungen genähert werden können.:1. Introduction 2. Theoretical Principles 2.1 Carbon-based Conductors 2.1.1 Structure and Properties 2.1.2 Networks 2.2 Tight-Binding Model 2.3 Quantum Transport 2.3.1 Introduction 2.3.2 Level Broadening 2.3.3 Current Flow 2.3.4 Transmission 2.4 Nodal Analysis 3. Implementation 3.1 Quantum Tranport 3.1.1 Network Generation 3.1.2 Density-Functional based Tight-Binding Method 3.1.3 Recursive Green's Function Algorithm 3.1.4 Conductance 3.2 Nodal Analysis 3.2.1 One-dimensional Conductors 3.2.2 Two-dimensional Conductors 4. Results 4.1 Quantum Transport 4.1.1 Band Structures and Fermi Energies 4.1.2 Ideal Transmission and Consistency Tests 4.1.3 Percolation 4.1.4 Transmission 4.1.5 Conductance 4.1.6 Power Law Scaling 4.1.7 Size Dependence and Confinement Effects 4.1.8 Calculation Time 4.2 Nodal Analysis 4.2.1 One-dimensional Conductors 4.2.2 Two-dimensional Conductors 4.2.3 Calculation Time 4.3 Approximating QT with NA 4.3.1 Optimal Parameters 4.3.2 Percolation 4.3.3 Conductance 4.3.4 Power Law Scaling 5. Conclusions
20

Estimating Poolability of Transport Demand Using Shipment Encoding : Designing and building a tool that estimates different poolability types of shipment groups using dimensionality reduction. / Uppskattning av Poolbarhet av Transportefterfrågan med Försändelsekodning : Designa och bygga ett verktyg som uppskattar olika typer av poolbarhetstyper av försändelsegrupper med hjälp av dimensionsreduktion och mätvärden för att mäta poolbarhetsegenskaper.

Kërçini, Marvin January 2023 (has links)
Dedicating less transport resources by grouping goods to be shipped together, or pooling as we name it, has a very crucial role in saving costs in transport networks. Nonetheless, it is not so easy to estimate pooling among different groups of shipments or understand why these groups are poolable. The typical solution would be to consider all shipments of both groups as one and use some Vehicle Routing Problem (VRP) software to estimate costs of the new combined group. However, this brings with it some drawbacks, such as high computational costs and no pooling explainability. On this work we build a tool that estimates the different types of pooling using demand data. This solution includes mapping shipment data to a lower dimension, where each poolability trait corresponds to a latent dimension. We tested different dimensionality reduction techniques and found that the best performing are the autoencoder models based on neural networks. Nevertheless, comparing shipments on the latent space turns out to be more challenging than expected, because distances in these latent dimensions are sometimes uncorrelated to the distances in the real shipment features. Although this limits the use cases of this approach, we still manage to build the full poolability tool that incorporates the autoencoders and uses metrics we designed to measure each poolability trait. This tool is then compared to a VRP software and proves to have close accuracy, while being much faster and explainable. / Att optimera transportresurser genom att gruppera varor som ska skickas tillsammans, även kallat poolning, spelar en avgörande roll för att spara kostnader i transportnätverk. Trots detta är det inte så enkelt att uppskatta poolning mellan olika grupper av försändelser eller förstå varför dessa grupper kan poolas. Den vanliga lösningen skulle vara att betrakta alla försändelser från båda grupperna som en enda enhet och använda mjukvara för att lösa problemet med fordonsschemaläggning (Vehicle Routing Problem, VRP) för att uppskatta kostnaderna för den nya sammanslagna gruppen. Detta medför dock vissa nackdelar, såsom höga beräkningskostnader och bristande förklarbarhet när det kommer till poolning. I detta arbete bygger vi ett verktyg som med hjälp av efterfrågedata uppskattar olika typer av poolning. Lösningen innefattar kartläggning av försändelsedata till en lägre dimension där varje egenskap för poolbarhet motsvarar en dold dimension. Vi testade olika tekniker för att minska dimensionerna och fann att de bäst presterande är autoencoder-modeller baserade på neurala nätverk. Trots detta visade det sig vara mer utmanande än förväntat att jämföra försändelser i det dolda rummet eftersom avstånden i dessa dolda dimensioner ibland inte korrelerar med avstånden i de faktiska försändelseegenskaperna. Trots att detta begränsar användningsområdena för denna metod lyckades vi ändå bygga ett komplett verktyg för poolbarhet som inkluderar autoencoders och använder metriker som vi har utformat för att mäta varje egenskap för poolbarhet. Detta verktyg jämförs sedan med en VRP-mjukvara och visar sig ha liknande noggrannhet samtidigt som det är betydligt snabbare och mer förklarligt. / Dedicare meno risorse di trasporto raggruppando insieme le merci da spedire, o creando un pool come lo chiamiamo noi, svolge un ruolo cruciale nel risparmio dei costi nelle reti di trasporto. Tuttavia, non è facile stimare il grado di aggregazione tra diversi gruppi di spedizioni o comprendere perché tali gruppi siano aggregabili. La soluzione tipica consisterebbe nel considerare tutte le spedizioni di entrambi i gruppi come una sola entità e utilizzare un software di Problema di Routing dei Veicoli (VRP) per stimare i costi del nuovo gruppo combinato. Tuttavia, ciò comporta alcuni svantaggi, come elevati costi computazionali e la mancanza di spiegazioni riguardo all'aggregazione. In questo lavoro abbiamo sviluppato uno strumento che stima i diversi tipi di aggregabilità utilizzando i dati di domanda. Questa soluzione prevede la mappatura dei dati delle spedizioni in una dimensione inferiore, in cui ciascuna caratteristica di aggregabilità corrisponde a una dimensione. Abbiamo testato diverse tecniche di riduzione dimensionale e abbiamo constatato che i modelli autoencoder basati su reti neurali sono i più efficaci. Tuttavia, confrontare le spedizioni nello spazio latente si è rivelato più complesso del previsto, poiché le distanze in queste dimensioni latenti talvolta non sono correlate alle distanze nelle caratteristiche reali delle spedizioni. Sebbene ciò limiti le applicazioni di questo approccio, siamo comunque riusciti a sviluppare uno strumento completo per l'aggregabilità che incorpora gli autoencoder e utilizza metriche da noi progettate per misurare ciascuna caratteristica di aggregabilità. Successivamente, abbiamo confrontato questo strumento con un software VRP e dimostrato che presenta un'accuratezza simile, pur essendo più veloce e fornendo spiegazioni chiare.

Page generated in 0.0516 seconds