• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combustion en boucle chimique : Etude des performances d'un transporteur d'oxygène et estimation de la contribution du liant / Chemical Looping combustion : Study of an oxygen carrier performances and estimation of the binder's contribution

Blas Montesinos, Lucia 23 September 2014 (has links)
La réduction des émissions anthropiques de CO2 constitue actuellement un enjeu majeur. Parmi les technologies destinées à la production d'énergie, le Chemical Looping Combustion (CLC) présente un potentiel intéressant avec un faible coût de capture de CO2. Le CLC consiste à produire de l'énergie à partir de combustibles fossiles, en présence d’un transporteur d’oxygène solide qui fournit l’oxygène nécessaire à la combustion. Le matériau est ensuite régénéré sous air dans un deuxième réacteur. En sortie du réacteur de combustion, seuls les gaz CO2 et H2O sont émis et ainsi, après la condensation de l’eau, du CO2 quasiment pur est obtenu. La viabilité du procédé CLC à échelle industrielle dépend des performances et de la durée de vie des transporteurs d’oxygène utilisés. Au cours de cette thèse, les performances et le vieillissement d’un transporteur d'oxygène modèle (NiO/NiAl2O4), vis-à-vis de l’oxydation de CO ont été étudiées. Pour cela, des cycles d'oxydation-réduction dans un réacteur à lit fixe traversé ont été réalisés. Au cours de l’étude de l'influence des conditions de fonctionnement sur les performances du transporteur, il a été observé que la réactivité du transporteur augmente avec la température. De plus, le liant (NiAl2O4) participe également à la réaction d’oxydation du CO. Une évolution de la structure cristalline du liant au cours des cycles à haute température, a été mise en évidence à l’aide des techniques de caractérisation du solide (DRX, MEB-EDX, TPR,...). En parallèle à ces travaux, un outil numérique de simulation du lit fixe traversé a été développé afin de modéliser la réaction de réduction du transporteur d'oxygène avec le combustible CO. / Nowadays, the reduction of anthropogenic greenhouse gas emissions (especially CO2) constitutes an important challenge. Among the different technologies currently studied for the CO2 capture during energy production, the Chemical Looping Combustion (CLC) shows an interesting potential with a low cost of capture. CLC consists of producing energy from fossil fuels or biomass combustion, in the presence of an oxygen carrier (generally a metal oxide) which provides the required oxygen for combustion. The material is then reoxidized with air in a different reactor. At the combustion reactor outlet only H2O and CO2 gases are emitted, therefore after condensation almost pure CO2 can be obtained. The success of a large scale CLC application depends on finding suitable oxygen carriers with good performances and long lifetime. The objective of this work is to study the performances and the ageing of a model oxygen carrier (NiO/NiAl2O4) with CO as fuel. For this, oxidation/reduction cycles have been carried out in a fixed bed reactor. The influence of the operating conditions on its performances is also investigated. From these studies, it is observed that the reactivity of the oxygen carrier increases with temperature. Moreover, the binder used in the oxygen carrier (NiAl2O4) reacts also with the fuel CO to produce CO2. An evolution on the support’s structure during cycles at high temperature is demonstrated using solid characterization techniques (DRX, MEB-EDX and TPR). After these experimental studies, a numerical model has been developed to simulate the reduction reaction of the oxygen carrier with CO in a fixed bed reactor.
2

Impact de l'oxygénation active et d'un transporteur d'oxygène durant la conservation des greffons rénaux sur machine de perfusion avant transplantation / Impact of active oxygenation and oxygen carrier during the kidney transplant preservation in machine perfusion before transplantation

Kasil, Abdelsalam 10 December 2018 (has links)
Il est prouvé que la conservation des greffons rénaux marginaux en machine de perfusion (MP) est bénéfique. Cependant, cette méthode nécessite des améliorations afin de minimiser les lésions d’ischémie-reperfusion (I/R), par l’ajout d’oxygène et/ou d’un transporteur d’oxygène. Nous avons cherché à évaluer les effets de l’oxygénation et de l’ajout d’une hémoglobine de ver marin (HbAm, M101) durant la perfusion rénale hypothermique avant transplantation. Nos critères de jugement étaient basés sur la reprise de fonction du greffon et sur les lésions tardives de dysfonction rénale. Nous avons utilisé un modèle porcin : les reins ont été exposés à 1h d’ischémie chaude, puis perfusés dans une MP WAVES® pendant 23h à 4°C avant autotransplantation. Quatre groupes ont étudié : W (MP-21% O2), W-O2 (MP-100% O2), W-M101 (MP-21% O2 + 2g/L HbAm), W-O2+M101 (100% O2 + 2g/L HbAm), (n=6 per groupe). Les reins du groupe W-M101 ont montré un débit de perfusion plus élevé et une résistance rénale plus faible comparé aux autres groupes. Pendant la première semaine post-transplantation, les groupes W-O2 et W-M101 ont montré une créatininémie significativement plus faible et un meilleur taux de filtration glomérulaire (GFR). Les niveaux circulants de KIM-1 et IL-18 étaient plus faibles dans le groupe W-M101, tandis que les niveaux de NGAL et d’ASAT étaient plus faibles dans les groupes d’oxygénation active. Trois mois post-transplantation, la fraction excrétée de sodium et le ratio protéinurie/créatininurie étaient plus élevé dans le groupe W. La créatininémie était plus faible dans le groupe W-M101. La fibrose interstitielle a évalué à 3 mois post-transplantation étaient plus faible dans les groupes W-M101 et W-O2+M101. Nous avons révélé histologiquement que l’infiltration de mastocytes était significativement élevée dans le groupe W comparé aux autres groupes. Nous avons montré que la combinaison de 21% O2 + hémoglobine améliorent la reprise de fonction du greffon rénale. / Introduction: It is proved that preservation of marginal kidney graft in machine perfusion (MP) is beneficial. However, this method requires improvement to minimize the ischemia-reperfusion injuries (IRI), as addition of oxygen and/or an oxygen carrier. We aimed to evaluate the effects of oxygenation (100% or 21%) and the addition of marine worm hemoglobin (HbAm, M101) during hypothermic renal perfusion before transplantation. Our endpoints were based on graft function recovery and late renal dysfunction. Method and materials: We use a porcine model where kidneys were submitted to 1h warm ischemia, followed by WAVES® MP preservation for 23h before auto-transplantation. Four groups were studied: W (MP-21% O2), W-O2 (MP-100% O2), W-M101 (MP-21% O2 + 2g/L HbAm), W-O2+M101 (100% O2 + 2g/L HbAm), (n=6 per group). Results: Kidneys preserved in W-M101 group showed a higher perfusion flow and lower renal resistance, compared to other groups. During the first week post-transplantation, W-O2 or W-M101 groups showed lower blood creatinine and better glomerular filtration rate. Blood levels of KIM-1 and IL-18 were lower in W-M101 group, while blood levels of AST and NGAL were lower in groups with 100% O2. Three months after transplantation, the fractional excretion of sodium and the proteinuria/ creatininuria ratio were higher in W group. Blood creatinine was lower in W-M101 group. Interstitial fibrosis evaluated at 3 months was lower in groups W-M101 and W-O2+M101. We showed that the combination 21% O2 + hemoglobin improves the kidney graft outcome.Conclusion: We showed that the combination of 21% O2 + hemoglobin improved the kidney graft outcome.
3

Modeling and numerical simulation of coupled reactive fluidized beds in a Chemical Looping Combustion system / Modélisation et simulation numérique de lits fluidisés couplés dans un système de combustion en boucle chimique

Hamidouche, Ziad 21 February 2017 (has links)
Dans cette thèse, des simulations numériques tridimensionnelles instationnaires d'une installation expérimentale de combustion en boucle chimique sont réalisées. Le pilote expérimental, d'une puissance de 120 kWth, utilise un matériau perovskite, à base de Ca-Mn, comme transporteur d'oxygène. Les simulations numériques sont réalisées par le code NEPTUNE_CFD, selon une approche Euler-Euler pour les deux phases (solide et gazeuse), avec des modèles de fermeture spécifiques pour modéliser les transferts de masse, de mouvement et d'énergie. Les réactions hétérogènes (i.e. réactions gaz-solide) de réduction et d'oxydation sont décrites au moyen d'un modèle à cœur rétrécissant dans le grain, qui prend en compte les mécanismes compétitifs dans le processus global de réaction gaz-solide: réaction chimique à la surface interne des particules,diffusion à travers la couche de produits et transfert externe autour des particules. Les résultats des simulations numériques sont validées avec des mesures expérimentales et analysées afin de mieux comprendre le comportement local/instationnaire de l'écoulement gaz-particules réactif dans ce système de combustion en boucle chimique. L'outil théorique/numérique développé dans ce travail sera utilisé pour le dimensionnement d'une unité pilote à l’échelle des installations industrielles. / In this work, reactive unsteady three-dimensional numerical simulations of a Chemical Looping Combustion (CLC) plant are performed. The plant is a 120 kWth pilot working with Ca-Mn-based material as selected oxygen carrier. Numerical simulations are performed by NEPTUNE_CFD code using an Euler-Euler approach which computes both the gas and the solid phases in an Eulerian fashion accounting for specific closures in order to model interphase mass, momentum and energy transfers. Reduction and oxidation heterogeneous (i.e. gas-solid) reactions are modeled by means of a grain model (shrinking core model in the grain) accounting for both the competing mechanisms of chemical reaction at the particle internal surface and gaseous diffusion through the product layer. Results from numerical simulations are validated against experimental measurements and analyzed in order to gain insight in the local behaviour of the reactive gas-particle flow in the CLC system. The theoretical/numerical tool developed in this work will be used for design upgrade recommendation in the stage of scaling-up from pilot to industrial facilities.

Page generated in 0.0603 seconds