761 |
An experimental study on elliptical concrete filled columns under axial compression.Jamaluddin, N., Lam, Dennis, Dai, Xianghe, Ye, J. January 2013 (has links)
This paper presents the experimental results and observation of elliptical concrete filled tube (CFT) columns subjected to axial compressive load. A total of twenty-six elliptical CFT specimens including both stub and slender composite columns are tested to failure to investigate the axial compressive behaviour. Various column lengths, sectional sizes and infill concrete strength are used to quantify the influence of member geometry and constituent material properties on the structural behaviour of elliptical CFT columns. As there is no design guidance currently available in any Code of Practice, this study provides a review of the current design rules for concrete filled circular hollow sections in Eurocode 4 (EC4). New equations based on the Eurocode 4 provisions for concrete filled circular hollow sections were proposed and used to predict the capacities of elliptical CFT columns.
|
762 |
Experiments on special-shaped CFST stub columns under axial compressionRen, Q-X., Han, L-H., Lam, Dennis, Hou, C. January 2014 (has links)
This paper is an attempt to study the behavior of axially loaded concrete filled steel tubular (CFST) stub columns with special-shaped cross-sections, i.e. triangular, fan-shaped, D-shaped, 1/4 circular and semi-circular. A total of forty-four specimens including CFST stub columns and reference hollow steel tubular stub columns were tested. The effects of the changing steel tube wall thickness and the infill of concrete on the behavior of the composite columns were investigated. The results showed that the tested special-shaped CFST stub columns behaved in a ductile manner, and the composite columns showed an outward local buckling model near the middle section. Generally, the failure modes of these five kinds of special-shaped specimens were similar to those of the square CFST stub columns. Finally, simplified model for predicting the cross-sectional strength of the special-shaped CFST sections was discussed and proposed.
|
763 |
Two-Dimensional Analysis of Four Types of Water-Filled Geomembrane Tubes as Temporary Flood-Fighting DevicesKim, Meeok 17 March 2003 (has links)
Two-dimensional analysis of four types of water-filled tube dams is carried out: an apron-tube dam, a single baffle tube dam, a sleeved tube dam, and a stacked tube dam. Since the analysis of the water-filled tube dam involves highly nonlinear geometric deformations and interactions with soil, fluid, and structure, it is solved numerically with the explicit finite difference program FLAC.
The tube is numerically modeled with beam elements. The predicted contact regions are modeled with interface elements. The Mohr-Coulomb constitutive model is used for the soil. Water inside and outside of the tube is modeled as hydrostatic pressure and the pressures are continuously updated as the configuration of the tube is changed. The change of the internal water pressure head (IWPH) for maintaining a constant tube area during the deformation is simulated. The simulation is achieved by two iterative procedures, the secant method and the factored secant method.
The numerical analysis results show good agreement with the experimental results overall: the deformation of the tube(s), the IWPH changes, and the critical external water heights. From the numerical simulation of the experiments and the parametric studies, the behavior of each type of water-filled tube dam is clarified. Also, the failure modes of the tube dams are examined. The failure mode of a tube dam depends on the configuration and IWPH of the tube dam and the characteristics of the soil surface. / Ph. D.
|
764 |
Modeling and Testing of Fast Response, Fiber-Optic Temperature SensorsTonks, Michael James 09 February 2006 (has links)
The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided.
For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data.
An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values.
Inverse heat transfer methods were used to determine the total temperature of the flow from the measured data. Both the total temperature and the film coefficient were determined simultaneously during this process. It was found that for short testing times, there were many possible solutions. In order to obtain ultimate success with this method, the uncertainty of the demodulation system must be improved and/or the simple analytical thermal model used to predict the response of the sensor needs to match the physical sensor. Whenever possible, longer testing times should be employed. Promising suggestions for extending this approach are provided. / Ph. D.
|
765 |
Effects of Louver Length and Vortex Generators to Augment Tube Wall Heat Transfer in Louvered Fin Heat ExchangersSanders, Paul Alan 21 October 2005 (has links)
There are several different types of compact heat exchangers used in applications where small size and weight are required. One particular type of compact heat exchanger, the louvered fin heat exchanger, has been used heavily in the automotive and air conditioning industries. Over the last several decades, the majority of the work towards improving louvered fin exchanger efficiency has focused on designing more efficient fins by optimizing fin parameters like louver angle, fin pitch, louver pitch, and louver length. At this point in time, many improvements to standard louver geometry have been made, so other surfaces and methods of enhancing exchanger performance need to be studied if any significant future efficiency gains are to be expected.
This thesis presents a detailed experimental study that has two major foci relative to the performance of the louvered fin compact heat exchanger. The first is to determine the effect of louver length on pressure drop and tube wall heat transfer, which is the primary heat transfer surface in the heat exchanger. The second is to augment tube wall heat transfer with the use of delta winglets placed on the fins near the tube wall. These studies were completed on a 20X scale model of a louvered fin exchanger with a fin pitch to louver pitch ratio of 0.76 and a louver angle of 27°, over a Reynolds number range based on louver pitch of 230 < ReLp < 1016. The three louver lengths evaluated were 100%, 82%, and 70% of the fin height and delta winglet experiments were performed for louver length to fin pitch ratios of 100% and 70%. Heat transfer results for the louver length tests show that decreasing louver length leads to increases in tube wall heat transfer of 0% to 50% depending on Reynolds number. Also, delta winglets placed on the fins near the tube wall have been shown to produce average tube wall heat transfer augmentations of up to 52%. / Master of Science
|
766 |
Analysis of the Impact of Solar Thermal Water Heaters on the Electrical Distribution LoadJesudhason Maria Therasammal, Terry Bruno 07 October 2011 (has links)
In this research, the impact of solar thermal water heaters on the electric water heating load curve in a residential distribution circuit is analyzed with realistic hot water draw profiles. For this purpose, the electric and solar thermal water heater models are developed in MATLAB and validated with results from GridLAB-D and TRNSYS respectively. The solar thermal water heater model is developed for two types of collectors namely the flat plate and evacuated glass tube collector. Simulations are performed with the climate data from two cities - Madison, WI and Tampa, FL - which belong to two very different climate zones in the United States. Minute-by-minute electric energy consumptions in all three configurations of water heaters are modeled for a single water heater as well as a residential distribution circuit with 100 water heaters for daily as well as monthly time frames.
The research findings include:
The electric energy saving potential of a solar thermal water heater powered by auxiliary electric element is in the range of 40-80% as compared to an all-electric water heater depending on the site conditions such as ambient temperature, sunshine and wind speed. The simulation results indicate that the energy saving potential of a solar thermal water heater is in the range of 40-70% during winter and 60-80% during summer.
Solar thermal water heaters aid in reducing the peak demand for electric water heating in a distribution feeder during sunshine hours when ambient temperatures are higher. The simulation results indicate that the peak reduction potential of solar thermal water heaters in a residential distribution feeder is in the range of 25-40% during winter and 40-60% during summer.
The evacuated glass tube collectors save an additional 7-10% electric energy compared to the flat plate collectors with one glass pane during winter and around 10-15% during summer. The additional savings result from the capability of glass tube collectors to absorb ground reflected radiation and diffuse as well as direct beam radiation for a wider range of incidence angles. Also, the evacuated glass tube structure helps in reducing wind convective losses.
From the simulations performed for Madison, WI and Tampa, FL, it is observed that Tampa, FL experiences more energy savings in winter than Madison, WI, while the energy savings are almost the same in summer. This is due to the fact that Tampa, FL has warmer winters with higher ambient temperatures and longer sunshine hours during the day compared to Madison, WI while the summer temperatures and sunshine hours are almost the same for the two cities.
As expected, the simulation results prove the fact that lowering the hot water temperature set point will result in the reduction of electricity consumption. For a temperature reduction from 120 deg. F to 110 deg. F, electric water heaters save about 25-35% electric energy whereas solar thermal water heaters save about 30-40% auxiliary electric energy for the same temperature reduction.
For the flat plate collectors, glass panes play an important role in auxiliary electric energy consumption. Flat plate collectors with two glass panes save about 10-15% auxiliary electric energy compared to those with no glass panes and about 3-5% energy saving compared to collectors with one glass pane. This is because there are reduced wind convective losses with glass panes. However, there are also transmittance losses from glass panes and there are upper limits on how many glass panes can be used.
Results and findings from this research provide valuable insight into the benefits of solar thermal water heaters in a residential distribution feeder, which include the energy savings and peak demand reduction. / Master of Science
|
767 |
Design of One-Story Hollow Structural Section (HSS) Columns Subjected to Large Seismic DriftKong, Hye-Eun 24 September 2019 (has links)
During an earthquake, columns in a one-story building must support vertical gravity loads while undergoing large lateral drifts associated with deflections of the vertical seismic force resisting system and deflections of the flexible roof diaphragm. Analyzing the behavior of these gravity columns is complex since not only is there an interaction between compression and bending, but also the boundary conditions are not perfectly pinned or fixed. In this research, the behavior of steel columns that are square hollow structural sections (HSS) is investigated for stability using three design methods: elastic design, plastic hinge design, and pinned base design. First, for elastic design, the compression and flexural strength of the HSS columns are calculated according to the AISC specifications, and the story drift ratio that causes the interaction equation to be violated for varying axial force demands is examined. Then, a simplified design procedure is proposed; this procedure includes a modified interaction equation applicable to HSS column design based on a parameter, Pnh/Mn, and a set of design charts are provided. Second, a plastic hinge design is grounded in the concept that a stable plastic hinge makes the column continue to resist the gravity load while undergoing large drifts. Based on the available test data and the analytical results from finite element models, three limits on the width to thickness ratios are developed for steel square HSS columns. Lastly, for pinned base design, the detailing of a column base connection is schematically described. Using FE modeling, it is shown that it is possible to create rotational stiffness below a limit such that negligible moment develops at the column base. All the design methods are demonstrated with a design example / Master of Science / One-story buildings are one of the most economical types of structures built for industrial, commercial, or recreational use. During an earthquake, columns in a one-story building must support vertical gravity loads while undergoing large lateral displacements, referred to as story drift. Vertical loads cause compression forces, and lateral drifts produce bending moments. The interaction between these forces makes it more complex to analyze the behavior of these gravity columns. Moreover, since the column base is not perfectly fixed to the ground, there are many boundary conditions applicable to the column base depending on the fixity condition. For these reasons, the design for columns subjected to lateral drifts while supporting axial compressive forces has been a growing interest of researchers in the field. However, many researchers have focused more on wide-flange section (I-shape) steel columns rather than on tube section columns, known as hollow structural section (HSS) steel columns. In this research, the behavior of steel square tube section columns is investigated for stability using three design methods: elastic design, plastic hinge design, and pinned base design. First, for elastic design, the compression and flexural strength of the HSS columns are calculated according to current code equations, and the story drift that causes failure for varying axial force demands is examined. Then, a simplified design procedure is proposed including design charts. Second, a plastic hinge design is grounded in the concept that controlled yielding at the column base makes the column continue to resist the gravity load while undergoing large drifts. Based on the available test data and results from computational models, three limits on the width to thickness ratios of the tubes are developed. Lastly, for pinned base design, concepts for detailing a column base connection with negligible bending resistance is schematically described. Using a computational model, it is shown that the column base can be detailed to be sufficiently flexible to allow rotation. All the design methods are demonstrated with a design example.
|
768 |
Development of a Miniature, Fiber-optic Temperature Compensated Pressure SensorAl-Mamun, Mohammad Shah 11 December 2014 (has links)
Since the invention of Laser (in 1960) and low loss optical fiber (in 1966) [1], extensive research in fiber-optic sensing technology has made it a well-defined and matured field [1]. The measurement of physical parameters (such as temperature and pressure) in extremely harsh environment is one of the most intriguing challenges of this field, and is highly valued in the automobile industry, aerospace research, industrial process monitoring, etc. [2]. Although the semiconductor based sensors can operate at around 500oC, sapphire fiber sensors were demonstrated at even higher temperatures [3].
In this research, a novel sensor structure is proposed that can measure both pressure and temperature simultaneously. This work effort consists of design, fabrication, calibration, and laboratory testing of a novel structured temperature compensated pressure sensor. The aim of this research is to demonstrate an accurate temperature measurement, and pressure measurement using a composite Fabry-Perot interferometer. One interferometer measures the temperature and the other accurately measures pressure after temperature compensation using the temperature data from the first sensor. / Master of Science
|
769 |
Geometrical Investigation on Escape Dynamics in the Presence of Dissipative and Gyroscopic ForcesZhong, Jun 18 March 2020 (has links)
This dissertation presents innovative unified approaches to understand and predict the motion between potential wells. The theoretical-computational framework, based on the tube dynamics, will reveal how the dissipative and gyroscopic forces change the phase space structure that governs the escape (or transition) from potential wells.
In higher degree of freedom systems, the motion between potential wells is complicated due to the existence of multiple escape routes usually through an index-1 saddle. Thus, this dissertation firstly studies the local behavior around the index-1 saddle to establish the criteria of escape taking into account the dissipative and gyroscopic forces. In the analysis, an idealized ball rolling on a surface is selected as an example to show the linearized dynamics due to its special interests that the gyroscopic force can be easily introduced by rotating the surface. Based on the linearized dynamics, we find that the boundary of the initial conditions of a given energy for the trajectories that transit from one side of a saddle to the other is a cylinder and ellipsoid in the conservative and dissipative systems, respectively.
Compared to the linear systems, it is much more challenging or sometimes impossible to get analytical solutions in the nonlinear systems. Based on the analysis of linearized dynamics, the second goal of this study is developing a bisection method to compute the transition boundary in the nonlinear system using the dynamic snap-through buckling of a buckled beam as an example. Based on the Euler-Bernoulli beam theory, a two degree of freedom Hamiltonian system can be generated via a two mode-shape truncation. The transition boundary on the Poincar'e section at the well can be obtained by the bisection method. The numerical results prove the efficiency of the bisection method and show that the amount of trajectories that escape from the potential well will be smaller if the damping of the system is increasing.
Finally, we present an alternative idea to compute the transition boundary of the nonlinear system from the perspective of the invariant manifold. For the conservative systems, the transition boundary of a given energy is the invariant manifold of a periodic orbit. The process of obtaining such invariant manifold compromises two parts, including the computation of the periodic orbit by solving a proper boundary-value problem (BVP) and the globalization of the manifold. For the dissipative systems, however, the transition boundary of a given energy becomes the invariant manifold of an index-1 saddle. We present a BVP approach using the small initial sphere in the stable subspace of the linearized system at one end and the energy at the other end as the boundary conditions. By using these algorithms, we obtain the nonlinear transition tube and transition ellipsoid for the conservative and dissipative systems, respectively, which are topologically the same as the linearized dynamics. / Doctor of Philosophy / Transition or escape events are very common in daily life, such as the snap-through of plant leaves and the flipping over of umbrellas on a windy day, the capsize of ships and boats on a rough sea. Some other engineering problems related to escape, such as the collapse of arch bridges subjected to seismic load and moving trucks, and the escape and recapture of the spacecraft, are also widely known. At first glance, these problems seem to be irrelated. However, from the perspective of mechanics, they have the same physical principle which essentially can be considered as the escape from the potential wells. A more specific exemplary representative is a rolling ball on a multi-well surface where the potential energy is from gravity. The purpose of this dissertation is to develop a theoretical-computational framework to understand how a transition event can occur if a certain energy is applied to the system.
For a multi-well system, the potential wells are usually connected by saddle points so that the motion between the wells generally occurs around the saddle. Thus, knowing the local behavior around the saddle plays a vital role in understanding the global motion of the nonlinear system. The first topic aims to study the linearized dynamics around the saddle. In this study, an idealized ball rolling on both stationary and rotating surfaces will be used to reveal the dynamics. The effect of the gyroscopic force induced by the rotation of the surface and the energy dissipation will be considered.
In the second work, the escape dynamics will be extended to the nonlinear system applied to the snap-through of a buckled beam. Due to the nonlinear behavior existing in the system, it is hard to get the analytical solutions so that numerical algorithms are needed. In this study, a bisection method is developed to search the transition boundary. By using such method, the transition boundary on a specific Poincar'e section is obtained for both the conservative and dissipative systems.
Finally, we revisit the escape dynamics in the snap-through buckling from the perspective of the invariant manifold. The treatment for the conservative and dissipative systems is different. In the conservative system, we compute the invariant manifold of a periodic orbit, while in the dissipative system we compute the invariant manifold of a saddle point. The computational process for the conservative system consists of the computation of the periodic orbit and the globalization of the corresponding manifold. In the dissipative system, the invariant manifold can be found by solving a proper boundary-value problem. Based on these algorithms, the nonlinear transition tube and transition ellipsoid in the phase space can be obtained for the conservative and dissipative systems, respectively, which are qualitatively the same as the linearized dynamics.
|
770 |
Blast Performance of Hybrid GFRP and Steel Reinforced Concrete BeamsJohnson, Jalen Gerreld 22 June 2020 (has links)
The threat of terrorist bombings and accidental industrial explosions motivates the need for more economical and efficient blast-resistant construction techniques that offer enhanced levels of protection at reduced component damage levels. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. This thesis presents the results of an experimental and analytical investigation on the effect of hybrid arrangements of glass fiber reinforced polymer (GFRP) and conventional mild steel reinforcement on the blast performance of reinforced concrete beams.
Seven large-scale reinforced concrete beams with different combinations of tensile steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loading generated using the Virginia Tech Shock Tube Research Facility. The effect of hybrid reinforcing on the blast performance of the beams was evaluated based on the global response, failure mode, damage pattern, mid-span displacement, and support reactions of the tested beams. The results demonstrated several benefits in using hybrid arrangements of steel and GFRP reinforcement. Beams with hybrid reinforcing experienced reduced overall residual displacements compared with similar conventionally reinforced concrete members. This was attributed to the elastic nature of GFRP rebar which was found to produce a self-centering behavior that assisted in returning the hybrid members to their original undeformed position. This permitted the hybrid beams to safely experience larger maximum displacements at substantially less damage than all-steel construction. Furthermore, if the GFRP reinforcement did rupture, the presence of steel arrested hazardous component failure and provided additional energy dissipation and redundancy. Accompanying the experimental tests was an inelastic single-degree-of-freedom analysis to predict the displacement time-history response of the beams. Reasonably good predictions of response were obtained when the advanced material models and the effects of accumulated damage due to repeated blast testing were incorporated into the analytical predictions. Finally, a series of protective design recommendations and a new proposed response limit, that describes the level of damage achieved after a blast event, were established to encourage use of hybrid GFRP/steel reinforcement in blast-resistant construction. / Master of Science / The threat of terrorist bombings and accidental industrial explosions motivate the need for new blast resistant construction techniques. Despite having a high strength-to-weight ratio and being chemically inert, fiber reinforced polymer (FRP) reinforcing bars are not currently used in blast-resistant reinforced concrete due to their brittle nature and lack of ductility. However, the innovative use of blended mixtures of FRP and steel rebar as tensile reinforcement promises to address these limitations through self-centering behavior that provides reductions in residual damage and enhancements in flexural performance. Large-scale reinforced concrete beams with different combinations of steel and GFRP rebar were designed, constructed, and tested under progressively increasing blast loads, gen-erated by the Virginia Tech Shock Tube Research Facility. The results demonstrated that beams with hybrid reinforcing experienced reduced overall residual damage in comparison with similar conventionally reinforced concrete members. Additionally, if the GFRP rebar ruptured, the presence of steel prevented a brittle failure and provided additional energy dissipation and redundancy. The inelastic single degree of freedom model developed for this investigation resulted in an adequate prediction of the load-deflection characteristics record-ed from experimental testing. To encourage the use of hybrid FRP/steel reinforcement in blast-resistant construction, a series of protective design recommendations and a proposed response limit, that describes the level of damage achieved after a given blast event, were established.
|
Page generated in 0.2868 seconds