1131 |
Otimização e análise do desempenho de sistemas frigoríficos utilizando o método de superfície de resposta, o planejamento de experimentos e ensaios de protótipos / Optimization and analysis of the performance of refrigeration systems using response surface methodology, experimental design and prototype experimentsSidnei José de Oliveira 20 June 2001 (has links)
Os métodos de superfície de resposta e planejamento de experimentos foram utilizados no processo de análise e otimização de sistemas frigoríficos. Foram determinadas as dimensões do tubo capilar juntamente com a carga de refrigerante que proporcionaram as melhores condições de funcionamento a um protótipo. O comportamento de oito variáveis resposta foram estudadas, que são: Capacidade Frigorífica, Coeficiente de Eficácia, Temperatura de Descarga, Super Aquecimento, Sub resfriamento, Vazão de Refrigerante, Temperatura de Evaporação e Temperatura de Condensação. Superfícies de Resposta e Curvas de nível foram levantadas em diversas situações de interesse, visando revelar o comportamento e a sensibilidade do sistema. Alguns fatores revelaram níveis que propiciaram uma reduzida variabilidade para certas variáveis resposta demonstrando o conceito de sistema robusto. O método mostrou-se bastante adequado, contribuindo com resultados de grande valia para a otimização e análise do comportamento de sistemas frigoríficos, além de poder ter sua aplicabilidade ampliada para sistemas térmicos em geral. / The Response Surface Methodology and the Design of Experiments were applied on the analysis and optimization process of refrigeration systems. The dimensions of a capillary tube and refrigerant charge that provided the best working conditions to a prototype were determined. The behavior of the Refrigeration Capacity, Coeficient of Performance, Discharge Temperature, Super Heating, Sub Cooling, Mass Flow Rate, Evaporation Temperature and Condensing Temperature were studied in detail. Surface Response and Contour plots were constructed on many situations in order to reveal the system behavior and sensitivity. Some factor levels provided a small variability to certain responses, demonstrating the concept of robust system. The methodology contribuited properly with valuable results to the optimization and analysis of refrigeration system behavior; besides, its applicability can be easily generalised to thermal systems.
|
1132 |
Um estudo experimental da ebulição convectiva de refrigerantes no interior de tubos lisos e internamente ranhurados / An experimental study of convective flow boiling of refrigerants inside smooth and microfin tubesEnio Pedone Bandarra Filho 29 April 2002 (has links)
A presente pesquisa trata de um estudo experimental da transferência de calor e da perda de carga de fluidos refrigerantes puros e suas misturas em mudança de fase convectiva no interior de tubos lisos e aqueles dotados de ranhuras internas. Para tanto, foi desenvolvido um equipamento experimental cujo componente básico é composto por um tubo horizontal, aquecido por intermédio de uma resistência elétrica do tipo fita, aderida à superfície externa do tubo. As condições de ensaio variaram numa ampla faixa, permitindo cobrir as condições verificadas na maioria das instalações frigoríficas. Os resultados experimentais foram agrupados em duas faixas de velocidades mássicas: elevadas (G > ou = 200 kg/s.m2), onde prepondera o padrão anular de escoamento, e reduzidas (G < 200 kg/s.m2), predominando o padrão estratificado. Os principais parâmetros que afetam o coeficiente de transferência de calor, tais como, velocidade mássica, fluxo de calor, tipo de refrigerante, temperatura de evaporação e diâmetro do tubo foram analisados. O desempenho termo-hidráulico, relativo ao efeito combinado da transferência de calor e da perda de carga dos tubos ranhurados, foi sensivelmente superior quando comparados aos tubos lisos. A análise dos resultados experimentais permitiu a proposição de correlações para a perda da carga, avaliada através do multiplicador bifásico, φL, e para coeficiente de transferência de calor, em tubos lisos e ranhurados. As correlações propostas se mostraram adequadas para aplicações práticas, proporcionando desvios reduzidos em relação aos resultados experimentais. Destacam-se as correlações obtidas para o multiplicador bifásico para tubos microaletados e para o coeficiente de transferência de calor para vazões reduzidas em tubos lisos. Diversos registros fotográficos dos principais padrões de escoamento foram levantados, tendo sido importante na análise e entendimento da mudança de fase. / Present research deals with an experimental study of the heat transfer and pressure drop of pure and mixtures of refrigerants undergoing convective boiling inside horizontal smooth and microfin tubes. An experimental apparatus has been developed and constructed whose main component is a horizontal tube electrically heated. Experimental results have been grouped into two mass velocity ranges: the one corresponding to mass velocities lower than 200 kg/s.m2, where the stratified flow pattern is dominant, and that for mass velocities higher than 200 kg/s.m2, where typically the annular flow pattern can be found. Effects over the heat transfer coefficient of physical parameters such as mass velocity, heat flux, diameter, saturation temperature, and refrigerant have been investigated and analyzed. It has been found out that the thermo-hydraulic performance of microfin tubes is better than that of the smooth ones. Empirical correlations have been proposed for both the two-phase flow multiplier and the heat transfer coefficient for different ranges of operating conditions as well as for smooth and microfin tubes. Results from the proposed correlations can be deemed adequate for practical applications given the limited dispersion obtained with respect to their experimental counterpart. Noteworthy are the results obtained from correlations for both the two phase flow multiplier for microfin tubes and the heat transfer coefficient for the lower range of mass velocities in smooth tubes. Finally, worth mentioning is the photographic essay developed in present research involving the flow patterns that occur under convective boiling of refrigerants in horizontal tubes.
|
1133 |
Influência do tipo de impelidor sobre o desempenho do reator anaeróbio em batelada seqüencial com biomassa granulada tratando esgoto sintético / Influence of the impeller type on the performance of the anaerobic sequencing batch reactor with granulated biomass treating synthetic wastewaterRogério Michelan 10 February 2006 (has links)
Em um reator de fundo redondo e volume útil de 5 L tratando esgoto sintético com carga orgânica de 800 mgDQO.'L POT.-1' com biomassa granulada a influência do tipo de escoamento e velocidade rotacional foi investigada com o uso de cinco impelidores sendo eles turbina e pá de seis pás planas verticais, turbina e pá de seis pás planas inclinadas 45 graus e hélice, comumente aplicados em processos biológicos. Foi também investigada a viabilidade de implementação de tubo de tiragem ao reator em conjunto com os impelidores tipo hélice e tipo pá de pás planas inclinadas alternadamente, com vistas a melhorar a mistura e conseqüente transferência de massa no meio reacional. Os resultados mostram que a alteração do tipo de impelidor e as variações da velocidade rotacional não exerceram influência significativa sobre a estabilidade e desempenho dos sistemas estudados. Entretanto a análise das constantes do modelo cinético de primeira ordem mostrou que a alteração na velocidade rotacional exerceu influência de aumento dos valores das constantes, demonstrando com isto que o aumento da velocidade rotacional melhora a transferência de massa sólido-líquido no meio reacional. A análise das constantes cinéticas também demonstrou que a promoção de escoamento axial em reatores agitados mecanicamente é preferível ao escoamento radial quando comparados os impelidores tipo pá de pás planas verticais e de pás planas inclinadas. A presença do tubo de tiragem demonstrou incrementar significativamente a transferência de massa, através do aumento dos valores numéricos das constantes utilizadas no ajuste do modelo cinético de primeira ordem aos valores experimentais. A potência consumida foi inferior a 1,6.'10 POT.-3' HP/'M POT.3' com rotações abaixo de 200 rpm e os impelidores axiais consumiram 75% a menos de potência do que os radiais / The effect of flow type and rotor speed were investigated in a round-bottom reactor with 5 L useful volume containing granular biomass and treating synthetic wastewater with organic load of 800 mgCOD.'L POT.-1'. Five impellers have been used to this end, namely: turbine and paddle with six-vertical-flat blade, turbine and paddle with six-45 degrees-inclined-flat-blade and helix, commonly used in biological processes. Utilization of a draft tube together with the helix and six-alternately-inclined-flat-blade impellers was also assessed as a means to improve mixing and consequently mass transfer in the reaction medium. Results showed that altering impeller type and variation in rotor speed did not exert significant effect on the stability and performance of the investigated systems. However, analysis of the first order kinetic model constants showed that alteration in rotor speed resulted in increase in the values of the constants, demonstrating that increase in rotor speed improves solid-liquid mass transfer in the reaction medium. Analysis of the kinetic constants also showed that axial flow in mechanically stirred reactors is preferable over radial flow when the vertical flat blade impeller is compared to the inclined flat blade impeller. The presence of the draft tube showed significant improvement in mass transfer, which could be seen by the increase in the values of the constants used in the fit of the first order kinetic model to the experimental values. The power consumed was less than 1.6.'10 POT.-3' HP/'M POT.3' at rotor frequency below 200 rpm and the axial impellers consumed 75% less power than the radial ones
|
1134 |
Étude des pertes de charge dans un aspirateur de turbine bulbe par simulations numériques instationnaires / Analysis of head losses in a bulb turbine draft tube by means of unsteady numerical simulationsWilhelm, Sylvia 13 January 2017 (has links)
L’aspirateur d’une centrale hydroélectrique est l’organe hydraulique se situant en aval de la roue. Il a une forme divergente afin de récupérer l’énergie cinétique résiduelle en sortie de roue sous forme de pression statique et augmenter ainsi la chute nette de la centrale. Dans le cas des turbines de basse chute de type bulbe, les pertes de charge dans l’aspirateur influencent fortement le rendement global de la centrale. La prédiction correcte de ces pertes de charge au cours du dimensionnement de la turbine représente donc un enjeu majeur. La prédiction numérique des pertes de charge dans l’aspirateur est un réel challenge car l’écoulement dans l’aspirateur est dynamiquement complexe avec des nombres de Reynolds élevés, la présence de swirl et d’un gradient adverse de pression. Ces caractéristiques font que les approches de modélisation classiquement utilisées dans l’industrie sont mises en défaut. L’objectif de ce travail est double : (i) améliorer la prédiction de l’écoulement turbulent dans l’aspirateur en utilisant des approches instationnaires URANS et LES et en portant une attention particulière à la description des conditions d’entrée de l’aspirateur et (ii) réaliser une analyse fine des échanges énergétiques dans l’aspirateur pour mieux comprendre l’origine des pertes de charge. Une condition d’entrée instationnaire représentative de l’écoulement en sortie de roue est élaborée pour ces calculs. Les résultats de simulation sont comparés avec des mesures expérimentales afin d’évaluer la capacité prédictive de chaque approche de modélisation de la turbulence (URANS et LES). Cette étape de validation met en évidence l’importance d’une définition correcte des trois composantes de la vitesse en entrée d’aspirateur. L’influence des conditions aux limites du domaine de calcul, à savoir la rugosité de la paroi et la condition de sortie de l’aspirateur, sur les résultats de simulation est évaluée, notamment dans le cas d’une résolution LES. Grâce à une analyse détaillée du bilan d’énergie cinétique moyenne dans l’aspirateur, les phénomènes hydrodynamiques responsables des pertes de charge sont identifiés. Ceci permet d'analyser en détail les différences de prédiction de pertes de charge entre les calculs URANS et LES et d’identifier les pistes d’amélioration de la prédiction numérique de ces pertes. Enfin, cette analyse permet de comprendre l’évolution des pertes de charge observée entre plusieurs points de fonctionnement de la turbine. / The draft tube of a hydraulic turbine is the turbine element located downstream of the runner. It has a divergent shape in order to convert the residual kinetic energy leaving the runner into pressure and thus increase the effective head of the turbine. The performances of low head bulb turbines are highly influenced by the head losses in the draft tube. The prediction of these head losses in a design process is thereby a major issue. The numerical prediction of the head losses in the draft tube is a real challenge because the flow in the draft tube is dynamically complex with high Reynolds numbers, a swirl and an adverse pressure gradient. These characteristics render conventional industrial approaches not appropriate. The objective of this work is twofold: (i) to improve the numerical prediction of the turbulent flow in the draft tube by using URANS and LES unsteady approaches and paying special attention to the description of the inlet boundary conditions of the draft tube and (ii) to conduct a detailed analysis of the energy transfers in the draft tube in order to better understand the origin of the head losses. An unsteady inlet boundary condition for the simulations reproducing the flow field at the runner outlet is developed. Numerical results are compared to experimental measurements in order to evaluate the predictive capacity of each turbulence modelling approach (URANS and LES). This validation step highlights the importance of defining properly the three velocity components at the draft tube inlet. The influence on the numerical results of boundary conditions of the calculation domain, such as wall roughness and the outlet boundary condition, is evaluated, in particular in case of LES. Thanks to a detailed analysis of the mean kinetic energy balance in the draft tube, the hydrodynamic phenomena responsible for head losses are identified. The head losses prediction differences between URANS and LES are thus analyzed in detail and possible improvements for the head losses prediction are identified. Finally, this analysis enables to understand the head losses evolution observed between several operating points of the turbine.
|
1135 |
Kvazilokální horizonty / Quasilocal horizonsKlozová, Eliška January 2015 (has links)
In this thesis we discuss drawbacks of the event horizon which is defined glo- bally in spacetime and we introduce a quasilocal definition of black hole boundary foliated by marginally trapped surfaces on which the expansion of the outer null normal congruence becomes zero. List of different types of quasilocal horizons follows, i.e. apparent horizon, trapping horizon and isolated and dynamical hori- zon. Subsequently we calculate and analyse quasilocal horizons in two dynamical spacetimes which are used as inhomogeneous cosmological models. We discover future and past horizon in spherically symmetric Lemaître spacetime and we come to conclusion that both are null and have locally the same geometry as the ho- rizons in the LTB spacetime. Then we study Szekeres-Szafron spacetime with no symmetries, particularly its subfamily with β,z ̸= 0, and we derive the equation of the horizon. However, because of the lack of symmetries the spacetime is not adapted to double-null foliation, therefore we were unsuccessful in our attempts to estimate the equation's solution. Only in a special case when the function Φ does not depend on the coordinate z we found a condition on the existence of the horizon, that is Φ,t Φ > 0. 1
|
1136 |
Characterization and the study of the behavior of transporting cold plasmas in dielectric capillary tubes and their applications / La caractérisation et l'étude du comportement de transport de plasmas froids dans des tubes capillaires diélectriques et leurs applications biomédicalesValinattajomran, Azadeh 27 September 2016 (has links)
Nous avons développé une décharge transportée fonctionnant à la pression atmosphérique. Le générateur fonctionne en mode alternative avec une fréquence d’excitation variant entre 1 et 10kHz. Grace à une forme d'onde en dents de scie, il a été possible de transporter la décharge à l’intérieur d’un tube sur une longueur qui pourrait atteindre 200cm. L’influence des différents paramètres tels que la forme de la tension appliquée, le diamètre du tube et la configuration d’électrode, sur la formation de la décharge a été étudié. La nature des espèces excitées à l’intérieur et extérieur du tube a été identifié par Spectroscopie Optique d’Emission. La propagation de la décharge dans un système multi jets et un jet unique de la même section a été comparée. L’influence de ces deux types de jets transportés exposés aux bactéries de type E. coli a été étudiée et les résultats montrent que la zone d’inactivation des bactéries augmente significativement.De plus le potentiel de cette décharge pour le traitement de surface et dépôt des couches minces de polymère a été investigué aussi bien à l’extérieur qu’à l’intérieur du tube capillaire pour la première fois. Nous avons employé deux types de précurseurs: le TEOS, et le DEGME. Sous certaines conditions, les couches de type PEG présentant des propriétés antiadhésives des cellules ont été déposées sur le PS. Afin d’étudier les modifications de surface créées sur les polymères par cette décharge. Les résultats obtenus par des méthodes d’analyse différentes montrent qu’à part l’oxydation de la surface du UHMWPE nous pouvons déceler une insaturation de la surface qui est souvent accompagnée de la réticulation de la surface. / We have developed a transporting discharge source that can operate at atmospheric pressure. The device is working by using AC power supply with a frequency ranging between 1 to 10 kHz. The sawtooth waveform enabled the transport of discharge as long as 200 cm. The different parameters that affect the plasma delivery such as voltage of the waveforms, tube diameter and electrode configuration were investigated. The electronically excited and active species inside and outside of the plasma channel were characterized by Optical Emission Spectroscopy. The electrical and temporal characteristics of the plasma, discharge power and charges on the sample were investigated. The propagation of transporting discharge with multi-jets and a single jet with the same cross-sectional area has been compared. Also, E.coli bacteria were exposed to the transporting discharge multijets and single jet for different time durations.The potential of the transported discharge for the surface treatment of polymers and deposition of thin films has been investigated. Two different precursors namely TEOS, and DEGME have been employed for the elaboration of thin organic coatings by introducing the precursors inside and at the exit of the capillary tube. The PEG like coatings obtained in the case of DEGME on PolyStyrene films showed for particular operating conditions nonadhesive coatings with respect to Ovary Carcinoma Celles. In order to study the surface modification effects of the discharge, the Ultra High Molecular Weight PolyEthylene was used as the substrate in the two different configurations. The results show that besides the oxydation of the UHMWPE, crosslinking takes place.
|
1137 |
Middle ear structure in relation to function : the rat in middle ear researchAlbiin, Nils January 1985 (has links)
The present study was undertaken to evaluate the rat as a model for middle ear research. The rat was chosen primarily because the gross structure of its middle ear shows several similarities to that of man. It was considered of great importance to make a thorough structural study of the rat middle ear and to compare the results with those reported for the human middle ear. The thesis therefore includes independent studies on various aspects of rat middle ear structure and function as well as a review of the literature. The most pertinent findings in the experimental part of this study were the following. The rat Eustachian tube consists of a nasopharyngeal, and a cartilaginous and bony portion. The orifice of the nasopharyngeal portion is composed of two soft tissue lips, which appear to be opened mainly by the action of the salpingopharyngeal muscle, but also by the levator and tensor veli palatini muscles. The cartilaginous portion appears to be opened solely by the tensor veli palatini muscle. The tensor tympani muscle seems to have no effect on the tube. A ciliated and secretory epithelium lines the inferomedial walls of the tube throughout its length. In the tympanic cavity these thelial cell types extend as two tracts - one anterior and the other inferoposterior to the promontory - which communicate with the epitympanic/attic compartments. The remaining parts of the tube and the tympanic cavity are covered by a squamous/cuboidal, non-ciliated epithelium. The subepithelial loose connective tissue contains vessels, nerves, and connective tissue cells, among these mast cells. The mast cells are confined to areas covered by the ciliated epithelium, and in the floor of the bulla, in the pars flaccida, and along the manubrial vessels. Glands are restricted to the Eustachian tube. In the clearance/transport of serum-like material, from the epitympanum towards the tube, hydrostatic forces appear to be important. The tympanic membrane is vascularized from meatal and tympanal vessels. Meatal vessels branch in the pars flaccida and along the handle of the malleus, where they are localized directly beneath the outer, keratinizing, stratified, squamous epithelium. Furthermore, meatal vessels form a vascular network at the junction between the fibrocartilaginous annulus and the tympanic sulcus. Tympanal vessels send branches to the periphery of the pars tensa, where they run immediately beneath the tympanal, simple, squamous epithelium. In the major portion of the pars tensa, no blood vessels were found. The rat stapedial artery is a thin-walled vessel with a wide lumen. Without branching, it runs through the tympanic cavity to the extratympanal regions it supplies. In contrast to the corresponding artery in man, the rat stapedial artery persists throughout life. The artery does not seem to be affected by the fluid produced during experimentally induced otitis media with effusion. The middle ear structure in the rat and in man show both similarities and differences. If the differences are kept in mind and considered, it would seem that the rat is indeed a suitable model for experimental middle ear research. / digitalisering@umu
|
1138 |
A Numerical Study Of Localized Necking During Forming Of Aluminium Alloy Tubes Using A Continuum Damage ModelVarma, N Siva Prasad 12 1900 (has links) (PDF)
No description available.
|
1139 |
Energy Separation And Lox Separation Studies In Vortex TubesBehera, Upendra 01 1900 (has links) (PDF)
Vortex Tube (VT) is a simple device having no moving mechanical parts, in which compressed gas at high pressure is injected through one or more tangential nozzles into a vortex chamber resulting in the separation of the inlet flow into two low pressure streams. One of the streams is the peripheral flow that is warmer than the inlet stream while the other is the central (core) flow that is colder than the inlet stream. This separation of the inlet flow into high and low temperature streams is known as temperature or energy separation. It is suggested by many investigators that compressed air of few atmospheres pressure and at room temperature can produce temperatures as high as +200ºC at the hot end (peripheral flow exit) and as low as -50ºC at the cold end (core flow exit) of the VT. Though VTs have large potential for simple heating and cooling applications, the mechanism of energy separation is not clear so far. Based on their studies, many investigators have suggested various theories, different from each other, but having specific lacunas and is an unresolved issue. Also, till date, experimental and industrial designs of the VTs are based purely on empirical correlations.
Apart from heating and cooling applications, VTs can also be used for separation of binary gas mixtures and separation of oxygen from two-phase precooled air stream. The conceptual futuristic cryogenic launch vehicle designs are being attempted with in-flight liquid oxygen (LOX) collection system that significantly improves the pay load fraction. Vortex tube technology is one of the few promising technologies for futuristic in-flight LOX separation based launch vehicles. This technology has significant advantages over its counterparts as it is a simple, compact and light weight, and most importantly have no moving parts and unaffected by gravity and orientation.
In order that VTs become an acceptable technology for in-flight LOX separation system, it is necessary to achieve minimum oxygen purity of 90% with more than 60% yield (separation efficiency) for the oxygen enriched stream in the VT. A survey of the available open literature has shown very little reported details, in particular, on achieving the required specifications for in-flight LOX separation systems. Till date, the highest LOX purity of 60% with 40% separation efficiency has been reported with VT technology. In view of the above mentioned facts, the work carried out has been focused on to: • Optimize the critical parameters of the VT to achieve maximum energy separation by CFD and experimental studies. • Understand the flow behaviour in the VT by estimating the velocity, temperature and pressure profiles at various locations in the VT and validation of secondary circulation flow and its effect on the performance of energy separation in VT. • Estimation of the energy transfer between the core and the peripheral layers of fluid flow in VT by analytical and CFD methods to propose the most appropriate mechanism of energy separation in VT. • Design and development of a dedicated experimental setup for both energy separation and LOX separation studies in VTs. • Design and fabrication of straight and conical VTs and experimental programme on energy separation and LOX separation. • Development of the VT air separation technology to achieve the required specifications of in-flight LOX separation system for futuristic launch vehicles. With these specific objectives and motivations, the total work was carried out with the following planned and sequential steps: • The first step was the CFD modeling of the VT with the available CFD software (Star-CD) and obtain the energy separation phenomena for a 12mm diameter VT. After gaining sufficient confidence level, optimization of the critical parameters like the air injection nozzle profile, number of nozzles, cold end orifice diameter dc, length to diameter (L/D) ratio, hot gas fraction etc of the VT was carried out through CFD and experimental studies. • The studies show that 6 convergent nozzles perform better in comparison to other configurations like circular helical, rectangular helical, 2 convergent and 6 straight nozzles. The studies also show that cold end orifice diameter (dc) plays an important role on energy separation and bring out the existence of secondary circulation flow with improper design of cold end orifice diameter. Through our studies, the effect of cold end diameter on the secondary circulation flow has been evaluated for the first time. Also, the mechanism of energy transfer in VT based on heat pump mechanism enabled by secondary circulation flow as suggested by some investigators has been evaluated in our studies. The studies show that cold end orifice diameter dc = 7mm is optimum for 12mm diameter VT, which matches fairly with the correlations given by other investigators. The studies confirms that CFD modeling carried out in this work is capable of selecting the correct dc value for a VT, without resorting to the empirical correlations as a design guide or a laborious experimental programme. • Through the CFD and experimental studies on different length to diameter (L/D) ratios and hot gas fractions, maximum hot gas temperature of 391K was obtained for L/D = 30 with hot gas fraction of 12-15 % and minimum cold gas temperature of 267K for L/D = 35 was obtained for cold gas fraction ≈ 60% (lowest cold gas fraction possible with the present experimental system). • CFD analysis has been carried out to investigate the variation of static and total temperatures, static and total pressures as well as the velocity components of the particles as it progresses in the flow field, starting from the entry through the nozzles to the exit of the VT by tracking the particles to understand the flow phenomenon and energy transfer mechanism inside the VT. The studies indicate that the mechanism of energy transfer from the core flow to the peripheral flow in VT is predominantly occurs by the tangential shear work. Thus the investigations reported in the thesis have given a clear understanding of the contributing mechanism for energy separation in VT, which has been an unresolved issue for long time. The net energy transfer between the core and the peripheral fluid has been calculated analytically and compared with the values obtained by CFD model for VTs of L/D ratios equal to 10 and 30. The net energy transfer by analytical and CFD model for VT with L/D = 10 is 159.87W and 154.2W respectively whereas the net energy transfer by analytical and CFD model for VT with L/D = 30 is 199.87W and 192.3W respectively. The results show that CFD results are in very good agreement with the analytical results and CFD can be used as a tool for optimization of the critical parameters and to analyze the flow parameters and heat transfer analysis for VTs. Also, the net energy transfer between the core and peripheral fluids calculated analytically matches very well with that of the net energy transfer by CFD analysis, without considering the effect of acoustic streaming. Thus acoustic streaming may not be the mechanism of energy separation in VT as suggested by some investigators. • By optimizing the critical parameters of the 12mm diameter straight VT through CFD and experimental studies, LOX separation studies have been carried out using both straight and conical VTs of dc = 7mm and of different L/D ratios for high LOX purity and separation efficiency. It is observed that conical (3º divergence) VTs perform better as compared to straight VTs for LOX separation whereas straight VTs perform better for energy separation. The better performance of conical VT as compared to straight VTs can be attributed to its increased surface area for condensation-evaporation phenomenon of oxygen and nitrogen molecules. Experimental studies have been conducted to evaluate the influence of the inlet pressure and the inlet temperature (liquid fraction) on LOX purity. Studies indicate that for achieving high LOX purity for the studied experimental system, the inlet pressure is to be in the range of 6-6.5bar and there exists a very narrow band of inlet temperature zone in which high LOX purity can be achieved. Experimental studies on VTs show that VT can be optimized suitably either for high LOX purity with low separation efficiency or low LOX purity with high separation efficiency by adjusting the hot end mass fraction accordingly. It is also observed that it is not possible to obtain both high purity and high separation efficiency simultaneously with the single VT. Staging approach has to be adapted to achieve higher LOX purity with higher separation efficiency. By staging the VTs, the enriched air stream (hot end outlet flow) from the first stage of VTs is introduced to the inlet of the second stage of VTs. Experimental studies have been conducted to evaluate the design parameters on staging of VTs. LOX purity of 48% with 89% separation efficiency has been achieved for conical first stage VT of L/D = 25. LOX purity of about 94% with separation efficiency of 84% has been achieved for 50% oxygen content at the inlet of the second stage VT. Similarly, LOX purity of 96% with separation efficiency of 73.5% has been achieved for 60% oxygen content at the inlet of the VT. This is the highest LOX purity and separation efficiency reported so far indicating that, conical VT of optimized diameter, L/D ratio and orifice diameter can yield the hot end flow very close to the target value of futuristic in-flight LOX separation based launch vehicles.
The present investigation has focused the optimization of the critical parameters of VTs through CFD and experimental studies. It has also given an insight to the mechanism of energy transfer between the core and peripheral flow in VT by evaluating two of the existing theories on mechanism of energy transfer in VT. The studies also highlighted the fact that custom designed and precision fabricated VTs can be very useful for obtaining maximum / minimum temperatures of fluid flow as well as LOX separation with high purity and high separation efficiency needed for futuristic in-flight LOX separation based space launch vehicles.
|
1140 |
Response of Reinforced Concrete Reservoir Walls Subjected to Blast LoadingFan, Jin January 2014 (has links)
Recent events including deliberate terrorist attacks and accidental explosions have highlighted the need for comprehensive research in the area of structural response to blast loading. Research in this area has recently received significant attention by the civil engineering community. Reinforced Concrete (RC) water reservoir tanks are an integral part of the critical infrastructure network of urban centers and are vulnerable to blast loading. However, there is a lack of research and knowledge on the performance of RC reservoir walls under blast loading. The objective of this research study is to experimentally investigate the performance of reinforced concrete reservoir walls subjected to blast loading and to analyze the structural response. This study provides experimental test data on the performance of reinforced concrete reservoir walls under blast loading and complementary analytical predictions using the Singe-Degree-Of-Freedom (SDOF) analysis method.
The reservoir walls in this study were designed according to the water volume capacity using the Portland Cement Association (PCA 1993) methodology. The design was validated using software SAP 2000. The experimental program involved the construction and simulated blast testing of two RC reservoir wall specimens with different support conditions: (1) two opposite lateral edges fixed, bottom edge pinned and top edge free; and (2) two opposite lateral edges fixed, and bottom and top edges free. The first boundary condition was intended to promote two-way bending action, while the second was dominated by one-way bending. The two specimens were each subjected to a total of six consecutive incrementally increasing blast tests. The experimental program was conducted in the shock tube testing facility that is housed in the University of Ottawa. Wall displacements, reinforcement strains, and reflected pressures and impulses were measured during testing.
Analytical calculations were conducted using the equivalent SDOF method to simulate the dynamic response of the RC reservoir wall specimens under different blast loadings. Published tables, charts and coefficients contained in Biggs (1964) and UFC 3-340-02 (2008) were adopted in the equivalent SDOF calculations. The analytical results were compared against the
ii
experimental data. The SDOF method predicted smaller displacements than those recorded during testing. The approximate nature of the parameters and tables used in the equivalent SDOF calculations contributed to the discrepancy between the analytical and experimental results. Furthermore, assumptions regarding the support conditions and neglecting residual damage from previous blast tests contributed to the underestimation of the displacements.
|
Page generated in 0.0341 seconds