• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 30
  • 19
  • 19
  • 18
  • 11
  • 10
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 769
  • 264
  • 131
  • 90
  • 86
  • 83
  • 81
  • 60
  • 57
  • 52
  • 52
  • 50
  • 47
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Discovery and development of liquid biomarkers for ovarian and lung cancer

Chudasama, Dimple January 2018 (has links)
Survival rates in cancers have improved vastly over the years. However, some survival rates remain extremely low, as is the case for ovarian and lung cancer. The lack of robust and reliable biomarkers is strongly reflected in the absence of pre-screening programs, and as such, most patients in these cancer types are diagnosed only in advanced stages, leaving few treatment options. Moreover, relapse and resistance to therapies adds to the complexities of treating these diseases, even in the era of targeted drug development. Research has shown the presence of cancer material, in the form of circulating cancer cells (CTCs) and genomic material in the blood of patients, opening the possibility of 'liquid biopsies'. Liquid biopsies allow sampling of the disease to provide phenotypic and genomic data on the cancer in real-time and on a routine basis. Moreover, they overcome obstacles currently faced by conventional tissue biopsies. In this work we evaluate the use of a novel CTC imaging flow-cytometry platform, and report the ability to characterise and quantify these cells in blood samples. Moreover, we report significantly higher levels of CTCs in cancer patients compared to controls, and found them to be associated with a poorer prognosis. In particular, in lung cancer we observe these findings even in the early stages, suggesting a potential diagnostic use for this assay. We detect a similar trend in when analysing the ctDNA and suggest the possibility of using this technique with a prognostic value in the advanced setting. We also report on the analysis of existing microarray data by use of unique gene regulatory networks to identify biomarkers of interest. RAD51AP1 was identified by this process. Clinical validation revealed an over-expression of this gene in both tissue and blood of ovarian and lung cancers. Moreover, the gene over-expression was associated with a poor overall survival. Functional analysis in vitro revealed silencing RAD51AP1 suppressed tumour growth, in addition, various tumorigenic proteins were down-regulated, whilst apoptotic and immune genes were up-regulated. These results suggest a role for RAD51AP1 as a potential therapeutic target. In this study, we also demonstrate the ability to further exploit tumour genomic material in the blood by means of RNAseq, cancer panels, and CNI scoring to identify novel markers, that play an important role in disease genesis and evolution. RNAseq analysis identified XIST as a gene up-regulated in the blood and tissue of lung cancers. The ovarian cancer panels revealed 2 unique gene signatures in the ovarian cancer patients. With the CNI analyses also highlighting chromosomal aberrations from plasma analysis of cancer patients. Collectively, the use of all these techniques and exploitation of available blood based biomarkers could see significant improvements to survival rates in these, currently devastating diseases.
412

Correlation between the expression of integrins and their role in cancer progression : expression pattern of integrins αvβ3, αvβ5 and α5β1 in clinical and experimental tumour samples

Ahmedah, Hanadi Talal A. January 2015 (has links)
The integrins play a crucial role in cancer cell proliferation, migration, differentiation, survival and angiogenesis. It has been shown that integrin expression is positively correlated to cancer dissemination, this suggests targeting selected integrins as an anti-metastatic strategy. The aim of this study is to investigate the effect of novel antagonists of α5β1, αvβ3 and αvβ5 integrins on cancer cell migration, a key process in tumour cell dissemination. Immunohistochemistry was used to evaluate the expression of α5, αv, β3 and β5 integrin subunits in prostate cancer tissues. Furthermore the expression of these integrin subunits in tumour and normal human head and neck tissues was compared. The expression profile of these integrin subunits in established human cancer cell lines was subsequently evaluated using immunodetection methods in cells and xenograft tumour samples. The effect of integrin inhibition on cell migration was then assessed using neutralizing antibodies against αvβ3, αvβ5, and α5β1 integrins in the scratch-wound healing assay. This assay was then used to evaluate the potential of novel small molecule integrin antagonists in preventing tumour cell migration. In H & N tissues, αvβ3, αvβ5 and α5β1 integrins are extensively expressed in tumour tissues but weakly expressed in normal tissue from the same patient. Further, prostate cancer tissues expressed variable levels of αvβ3, αvβ5 and α5β1 integrins. αvβ3 and αvβ5 integrins were expressed in variable levels in OSC-19, PC-3, DU145, DLD-1, HT-29, HUVEC, MCF-7, MCF-7ADR and M14 human tumour cell lines and in OSC-19, PC-3, HT-29 and MCF-7 xenografts. α5β1 integrin was expressed in all cell lines and xenografts except in MCF-7 cell line and HT-29 cell line and xenograft. Overall, the expression was elevated in xenografts compared to the corresponding cultured cells. Based on the expression profile and ability of cells to migrate, three cell lines (DLD-1 colon, DU145 prostate and OSC-19 HNSCC) were selected as models to further evaluate the potential of novel small molecule integrin antagonists to inhibit cell migration. The cell lines were characterized by using neutralizing antibodies against αvβ3, αvβ5, and α5β1 integrins to determine which of these three integrins were primarily involved in tumour cell migration. In DLD-1 and DU145, blocking αvβ5 and αvβ3 significantly inhibited migration, whilst the migration of OSC-19 was 50% inhibited by a multi-integrin inhibitor combination. Among the antagonists, ICT9055 and ICT9072 significantly decreased DLD-1 cell migration by 70% and 60% respectively while ICT9023, ICT9024, and ICT9026 significantly decreased DU145 cell migration by 60%, 60% and 50% respectively. The findings suggest that single integrin inhibition is not sufficient to prevent cell migration whereas dual or multiple inhibition is more effective. Two novel anti-migratory agents were identified in colon cancer and three in prostate cancer which would warrant further investigation.
413

11β-hydroxysteroid dehydrogenase type I inhibition in solid tumours

Davidson, Callam Titus January 2018 (has links)
Glucocorticoids, key hormonal regulators of the stress response, powerfully influence inflammation and metabolism. Reducing excessive glucocorticoid exposure is beneficial in treating metabolic and cognitive disorders, but manipulating systemic endogenous glucocorticoids risks compromising their beneficial effects. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates glucocorticoids in target tissues and thus inhibition of this enzyme presents a clinical opportunity to reduce tissue-specific glucocorticoid action. Active glucocorticoids also exert potent angiostatic effects by binding the glucocorticoid receptor (GR), and 11β-HSD1 inhibitors have proven beneficial in models of myocardial infarction by promoting angiogenesis. The possibility that 11β-HSD1 inhibitors may increase pathological angiogenesis, such as that seen in solid tumours, remains unaddressed. This project tested the hypothesis that 11β-HSD1 inhibition promotes tumour growth as a result of increased angiogenesis, using murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC). Murine SCC or PDAC cells were injected (1x106 cells/flank) into WT female mice fed either standard diet, or diet containing the 11β-HSD1 inhibitor UE2316 (175 mg/kg, N=6/group), or into 11β-HSD1 knockout (Del1) mice fed standard diet. Developing tumours were measured by callipers over several weeks, before animals were culled and tissues collected. SCC tumours grew more rapidly in UE2316-treated mice to reach a significantly (P < 0.01) larger final volume (0.158 ± 0.037 cm3) than in control mice (0.051 ± 0.007 cm3). PDA tumours were unaffected by 11β-HSD1 inhibition or deletion. Immunofluorescent co-staining of tumour sections for CD31/α-smooth muscle actin revealed no differences in vessel density, and RT-qPCR showed no difference in angiogenic factor expression, after 11β-HSD1 inhibition/deletion in either tumour type. GR and 11β-HSD1 RNA expression were greater in SCC vs PDAC tumours (P < 0.001), as was 11β-HSD1 activity (P < 0.0001). In studies using the aortic ring assay of ex vivo angiogenesis, 11β-HSD1 deletion, but not inhibition with UE2316, was shown to prevent glucocorticoid-mediated angiostasis. The growth/viability of tumour cell lines was not affected by UE2316 or corticosterone, as assessed by live cell imaging using the Incucyte imaging system. RNA-sequencing of SCC tumours revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated tumours, and that extracellular matrix regulation was also altered by UE2316. Imaging of tumour sections using Second Harmonic Generation microscopy confirmed that UE2316 altered Type I collagen deposition in SCC (P < 0.001) but not PDAC. 11β-HSD1 inhibition can increase tumour growth, possibly via suppression of inflammatory/immune cell signalling and alteration of the extracellular matrix, and tumours with higher GR and 11β-HSD1 content, such as SCC, may be more at risk. Interestingly this investigation found no evidence of increased angiogenesis in vivo or ex vivo after UE2316 treatment, suggesting that 11β-HSD1 inhibition does not promote angiogenesis in all ischaemic environments. Future work must focus on the effects of 11β-HSD1 inhibition on the immune and extracellular matrix component of the tumour microenvironment. While promotion of pathological angiogenesis does not appear to pose a major threat, 11β-HSD1 inhibitors may still interact with the immune and inflammatory environment in tumours to the detriment of health.
414

"Distribuição dos componentes não colágenos da matriz extracelular em tumores odontogênicos" / Distribution of the non-collagenous components of extracellular matrix in odontogenic tumours

Filipe Modolo Siqueira 06 March 2006 (has links)
A matriz extracelular (MEC) pode ser definida como um complexo de proteínas e glicoproteínas que envolve as células nos mais diversos tecidos e tem papel importante na diferenciação e atividade celular, bem como no processo de mineralização e nos processos neoplásicos. Os componentes não colágenos da MEC têm sido abundantemente estudados, visando conhecer os minuciosos detalhes da biologia dos tecidos e assim entender os mecanismos envolvidos em suas patologias. Neste contexto, o presente trabalho tem como objetivo estudar a expressão e distribuição dos seguintes componentes não colágenos da MEC dos tecidos dentais: biglican, decorin, fibromodulin, osteonectina (ONC), osteopontina (OPN), sialoproteína óssea (BSP) e osteocalcina (OCC) no ameloblastoma e no tumor odontogênico cístico calcificante (cisto de Gorlin). Para ta nto foi utilizada a técnica da imunoistoquímica, com o método da estreptavidina-biotina-peroxidase, e anticorpos contra as proteínas anteriormente citadas. Os resultados mostraram que o biglican, o decorin e a BSP foram expressos somente nas células epiteliais metaplásicas, nas células fantasmas e células fantasmas em processo de calcificação, no estroma dos ameloblastomas e no ectomesênquima neoplásico do tumor odontogênico cístico calcificante. Já o fibromodulin e a OC foram predominantemente negativos no componente epitelial e no mesenquimal, com exceção para as células fantasmas, células fantasmas em processo de calcificação e áreas de hialinização próximas ao epitélio. A ONC foi positiva na maioria das células epiteliais, com exceção das células estrelárias dos ameloblastomas folicular e acantomatoso, e também no componente mesenquimal de ambas neoplasias. Já a OPN apresentou positividade somente nos focos de calcificação presentes no tumor odontogênico cístico calcificante. As proteínas estudadas apresentaram distribuição semelhante em neoplasias caracterizadas por padrões de crescimento diferentes, levando a crer que, apesar de participarem ativamente do mecanismo de crescimento neoplásico intra-ósseo, isoladamente não exercem papel decisivo na determinação do tipo de padrão de crescimento. Outro fato digno de relevância é a baixa expressão dessas proteínas nas células epiteliais neoplásicas quando comparada com a expressão no estroma e ectomesênquima, levando-nos a crer que as células epiteliais atuem principalmente como estimuladores da expressão dessas proteínas, que, por sua vez, podem atuar de forma agonista ou antagonista ao crescimento neoplásico. / The extracellular matrix (ECM) can be defined as a complex of proteins and glycoproteins that involves the cells in all tissues. It has a key role in cell differentiation and activity, as well as in mineralization and neoplastic processes. The non-collagenous components of the ECM have been abundantly studied to know the details of the biology of tissues and thus to understand the mechanisms involved in its pathologies. The aim of the present work is to study the expression and distribution of the following noncollagenous components of the ECM of dental tissues: biglycan, decorin, fibromodulin, osteonectin (ONC), osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin (OCC) in ameloblastoma and the calcifying cystic odontogenic tumour. The streptavidin-biotinperoxidase method of immunohistochemistry was used with antibodies against the antigens previously cited. The results show that biglican, decorin and BSP had been expressed only in metaplastic epithelial cells, in ghost cells and ghost cells in calcification process, stroma of ameloblastomas and neoplastic ectomesenchyma of the calcifying cystic odontogenic tumour. The fibromodulin and the OCC showed predominantly negative expression in the epithelial and mesenchymal components, with exception for the ghost cells, ghost cells in calcification process and hyalinization areas next to the epithelium. The ONC was positive in the majority of the epithelial cells, with exception of the central cells of follicular and acanthomatous ameloblastomas, and also in the mesenchymal component of both tumours. OPN presented positivity only in the calcification focus of the calcifying cystic odontogenic tumour. The proteins studied presented similar distribution in tumours characterized by different patterns of growth, leading to believe that although they participate actively of the mechanism of intraosseous growth, separately they do not exert a key role in the determination of the type of growth pattern. Another relevance fact is the low expression of these proteins in the neoplastic epithelial cells when compared to the expression in stroma and ectomesenchyma, which make us believe that the epithelial cells act mainly as stimulators of the expression of these proteins, which in turn can act as agonist or antagonist to the tumour growth.
415

Tumour localisation in histopathology images

Akbar, Shazia January 2015 (has links)
Immunohistochemical (IHC) assessment in cancer research is important for understanding the distribution and localisation of biomarkers at the cellular level. However currently IHC analyses are predominantly performed manually, increasing workloads and introducing inter- and intra-observer variability. Automation shows great potential in clinical research to reduce pathologists' workloads and speed up cancer research in large clinical studies. Whilst recent advancements in digital pathology have enabled IHC measurements to be performed automatically, the acquisition of manual annotations of tumours in scanned digital slides is still a limiting factor. In this thesis, an automated solution to tumour localisation is explored with the aim of replacing manual annotations. As an exemplar, human breast tissue microarrays stained with estrogen receptor are considered. Methods for automated tumour localisation are described with a focus on capturing structural information in tissue by adopting superpixel properties in a rotation invariant manner, suitable for histopathology images. To incorporate essential contextual information, methods which utilise posterior tumour probabilities in an iterative manner are proposed. Results showed pixel-level agreements between automated and manual tumour segmentation masks (κ=0.811) approach inter-rater agreement between expert pathologists (κ=0.908). A large proportion of disagreements between automated and manual segmentations were shown to correlate to minor discrepancies, inconsequential for IHC assessment. IHC scores extracted from automated and manual tumour segmentation masks showed strong agreements (Allred: κˆ=0.911; Quickscore: κˆ=0.922), demonstrating the potential of automation in clinical practice across large clinical trials.
416

CSPG4 in osteosarcoma : functional roles and therapeutic potential

Worrell, Harrison January 2018 (has links)
Osteosarcoma is the most common primary malignancy of bone. 5-year survival has remained stable at around 60-70% for 40 years. However, a number of patients will suffer from recurrent and/or metastatic disease representing a large unmet clinical need. CSPG4 is a transmembrane protein which is expressed on a number of progenitor cells and tumour types. Preliminary work had found CSPG4 present in osteosarcoma tumour samples. In this study, CSPG4 mRNA and protein expression was demonstrated in clinical samples and model cell lines. CSPG4 mRNA is overexpressed in osteosarcoma samples compared to mature osteoblast cells, the putative cell of origin for osteosarcoma. In a cohort of patients, CSPG4 protein expression was found on 86% of samples. Furthermore, CSPG4 expression was demonstrated in U2OS, MG63, HOS, HOS-MNNG and 143B osteosarcoma cell lines. CSPG4 protein expression was successfully deleted in 143B cells using CRISPR/Cas9 technology. Two stable CSPG4-negative cell lines were produced. CSPG4 expression was then reintroduced into negative cell lines, as well as the parental 143B cell line. This created a panel of 6 cell lines with differing CSPG4 expression. Furthermore, siRNA treatment of U2OS, MG63, 143B and U87MG cell lines reduced CSPG4 expression. These cells provided another panel with varying CSPG4 expression for in vitro investigation. In vitro experiments failed to demonstrate a role for CSPG4 in osteosarcoma tumorigenesis. The CRISPR/Cas9 cell panel found that CSPG4 expression did not influence cell proliferation, adhesion and spreading on fibronectin or collagen-I, cell migration, chemosensitivity or anchorage-independent growth. Similarly, the siRNA cell panel found that CSPG4 expression did not influence cell proliferation or anchorage-independent growth. In vivo experimentation did not demonstrate a role for CSPG4 in mediating osteosarcoma tumour growth or metastatic spread. Treatment with a sc-Fv antibody fragment failed to demonstrate specific toxicity of CSPG4-positive cell lines. These results indicate that CSPG4 plays no role in osteosarcoma tumour cell behaviour. However, due to its wide expression pattern it represents a viable therapeutic option for drug targeting.
417

Influence of genotoxic drug-induced post-translational modifications on mutant p53 stability and oncogenic activities

Estevan Barber, Anna January 2018 (has links)
The tumour suppressor p53 is often disrupted by missense mutations that can result in p53 protein accumulation and acquisition of novel oncogenic activities. Various studies have demonstrated that DNA-damaging drugs currently used in the clinic aimed at activating wild type p53, can also stabilise and activate mutant p53 oncogenic functions and thereby paradoxically enhance tumour progression, resulting in poor response to the treatment. In this study we aimed to investigate whether, like in wt p53, post-translational modifications (PTMs) drive such drug-induced mutant p53 accumulation and activation. For this purpose, we generated plasmids expressing non-phosphorylatable and phospho-mimic versions of R175H mutant p53 and tested them in different cell line models. We demonstrated that in response to DNA damage mutant p53 is accumulated and phosphorylated and these phenomena appeared to be mediated by ATM and ATR kinases. DNA-damage induced acetylation was also observed and occurred in a S15 phosphorylation-dependent manner. This suggested a role of the HAT p300, which is recruited by phosphorylated S15. Of note, other works have shown that p300 is required to trigger some oncogenic functions of mutant p53. We then aimed at developing systems to explore mutant p53 functions and their dependence on PTMs. Although we showed that cell growth is compromised upon endogenous mutant p53 depletion, exogenous expression of mutant p53 or its phosphorylation-site forms did not result in a successful rescue in our experimental conditions, thus we were unable to use this strategy to test the effect of PTMs. Ectopic expression of R175H mutant p53 or its phosphorylayion-site versions did not interfere with the growth rate and response to chemotherapy of the p53-null cell line H1299. We also found that mutant p53 phosphorylation does not affect subcellular localisation of mutant p53 and mutant p53-mediated inhibition of p63. Interestingly, ectopically expressed mutant p53 enhanced cell migration in H1299 cells. Notably, our results suggested an apparent threshold effect of mutant p53 levels required to induce migration. Due to the difficulty of obtaining cell lines expressing similar levels of the different phosphorylation-site mutants, the determination of the role of phosphorylation in mutant p53-induced migration was not conclusive. Remarkably, we found that, while S15 and S20 phosphorylation decreased MDM2-dependent degradation, only phosphorylated S20 interfered with CHIP-induced turnover in H1299 cells. Overall our data suggest that, despite exhibiting opposite biological effects, mutant and wt p53 can share upstream regulatory mechanisms and thus present phosphorylation as a promising target to prevent mutant p53 stabilisation and activation and improve response to therapy. Our results also highlight the challenge of developing a good system for determining the effects of the mutant p53 protein and its regulation by PTMs.
418

Jun regulates monocyte-derived macrophage accumulation and tumour progression / Jun régule l'accumulation des macrophages dérivés de monocytes et la progression tumorale

Delfini, Marcello 09 April 2019 (has links)
Les macrophages sont des cellules immunitaires innées présentes dans chaque organe. Ils sont des cibles thérapeutiques dans de nombreuses maladies, dont le cancer. En dépit de travaux récents sur l'origine des macrophages, les mécanismes régulant leur différenciation sont mal définis. L'expression de Jun, membre de la famille AP-1, augmente pendant la différenciation des macrophages, mais son rôle dans ce processus n'est pas connu.Au cours de mon doctorat, nous avons caractérisé le rôle de Jun dans le développement et l'homéostasie des macrophages, dans un modèle de souris avec délétion conditionnelle de Jun dans la lignée myéloïde (JunΔCsf1r). Nous montrons que Jun contrôle la différenciation, induite par CSF1, des monocytes en macrophages. In vivo, Jun régule l'accumulation de macrophages dérivés de monocytes dans les poumons et intestins. Les macrophages associés aux tumeurs (TAMs) jouent un rôle crucial dans la progression des cancers. L’absence de Jun freine la croissance d’un mélanome et la différenciation, induite par CSF1, des TAMs dérivés de monocytes qui participent à l’angiogénèse tumorale. Cependant, lors d'une inflammation aiguë, Jun n’affecte pas le recrutement de macrophages inflammatoires.En conclusion, nos résultats identifient Jun comme un régulateur central de la différenciation des macrophages. Dans un modèle de mélanome, les macrophages Jun-dépendants exercent des fonctions pro-tumorales. Le fait que Jun soit un régulateur sélectif du développement des macrophages dépendants de CSF-1 permettra de définir de nouvelles approches ciblant sélectivement la différenciation des macrophages, sans altérer les réponses immunitaires dépendantes des monocytes. / Macrophages are immune cells present in every organ. Given their variety of functions, macrophages are therapeutic targets in many diseases including cancer. Despite the research efforts to characterise their origins, the molecular mechanisms regulating macrophage differentiation are still poorly defined. Expression of the AP-1 factor, Jun, increases during differentiation, but its role in macrophage development is not known.During my PhD, we characterised how Jun affects macrophage development and homeostasis. We developed a conditional mouse model in which Jun is deficient in the myeloid lineage (JunΔCsf1r). We showed that Jun controls CSF1-mediated monocyte to macrophage differentiation, proliferation and survival. In vivo, Jun loss limits macrophage accumulation in lungs and intestine. Tumour-associated macrophages (TAMs) play critical roles in cancer progression. We observed that Jun deficiency dampens melanoma growth and the differentiation of CSF1-dependent monocyte-derived TAMs. We further showed that Jun-dependent TAMs mediate vessel normalisation in melanoma. During inflammation, Jun was dispensable for the recruitment of monocyte-derived inflammatory macrophages.Altogether, our results identify Jun as a master regulator of macrophage differentiation, without altering monocyte effector functions. In a melanoma model, we showed that Jun-dependent TAMs play tumour-promoting roles. Therefore, Jun is a selective regulator of CSF-1-dependent macrophage development, which is redundant during inflammation; this observation should help to define novel approaches to selectively target macrophage differentiation, without altering monocyte-dependent immune responses.
419

Dendritic surface modification of photocatalytic nanoparticles for tumour therapy / Modification dendritique de surface des nanoparticules photocatalytiques pour le traitement des tumeurs

Koch, Susanne Julia 12 October 2017 (has links)
L'apparition d’un développement cancérigène est souvent caractéristique des tumeurs de la région de la tête et du cou. En raison des altérations prémalignes et malignes fréquentes, il n'est souvent pas possible de supprimer complètement la tumeur par chirurgie.Il en résulte un risque élevé de récidive tumorale. Par conséquent, cette recherche de doctorat vise à développer des nanoparticules photocatalytiques (NPs) qui seront utilisées localement en complément de la thérapie tumorale traditionnelle. Ces NPs, une fois absorbées par les cellules tumorales induiront la mort des cellules photocatalytiques par activation de lumière UV. Des NPs de TiO2 ayant des propriétés photocatalytiques et une taille moyenne inférieure à 20 nm étaient donc synthétisées. La biocompatibilité des NPs, leur absorption dans les cellules et un ciblage tumoral efficace devraient être garantis par une modification de surface des particules avec des molécules organiques dendritiques permettant un contrôle précis de la charge de surface des particules ainsi que la possibilité de couplage avec des anticorps. Un autre objectif était la combinaison de propriétés thérapeutiques et diagnostiques dans le système de NPs par exemple réalisé par incorporation d'agent luminescent. Cette recherche était menée à l'Université de Bordeaux (synthèse des molécules organiques pour la fonctionnalisation des particules) en coopération avec l'Institut Fraunhofer de recherche en silicate ISC à Würzburg, Allemagne (synthèse des nanoparticules). / The occurrence of field cancerization is characteristic for tumours of the head and neck region. Due to these widespread premalignant and malignant alterations, it is frequently not possible to entirely remove the tumour by surgery. This results in a high risk of tumour recurrence. Therefore, this PhD research aimed to develop photocatalytic nanoparticles (NPs) as completion of the traditional tumour therapy. These NPs are supposed to be incorporated by tumour cells and to induce photocatalytic cell death by UV light activation. TiO2 with convincing photocatalytic properties and an average size smaller than 20 nm should therefore be synthesized. NP biocompatibility, their uptake into cells and an efficient tumour targeting should be guaranteed by surface modification of the particles with dendritic organic molecules that allow a precise control of the surface charge of the particles as well as antibody coupling.A further objective was the combination of therapeutic and diagnostic properties within the NPsystem realized for example via introduction of a luminescent dye. This research was carried out at the University of Bordeaux (synthesis of organic molecules for particle functionalization) in cooperation with the Fraunhofer Institute for Silicate Research ISC in Würzburg, Germany (nanoparticle synthesis).
420

An investigation of p53’s differential activation of cell cycle arrest and apoptosis

Zhang, Yuan January 2008 (has links)
The p53 tumour suppressor protein lies at the hub of a very complex network of cellular pathways including apoptosis, cell cycle arrest, DNA repair and cellular senescence. However, the mechanism of why and how p53 switches between apoptosis and cell cycle arrest, thereby determining a cell’s fate, remains a mystery to us. To enable us to investigate this ability of p53 to switch between cell cycle arrest and apoptosis, we developed a model which demonstrates similar p53 expression patterns but different functional outcomes. Treating cells with Cisplatin (a common chemotherapeutic drug) and Nutlin-3 (an MDM-2 inhibitor) results in similar high levels of p53 accumulation but different cellular responses. Cisplatin-treated cells undergo apoptosis while Nutlin-treated cells enter cell cycle arrest. Using this model, we explored the localization of p53 and in particular a C-terminal Ser 392 moiety in an attempt to identify how p53 is able to preferentially activate cell cycle arrest or apoptotic pathway.

Page generated in 0.0261 seconds