• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 18
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of structure, dynamics, function and interactions of components from the type IV secretion system of Xanthomonas citri by solution nuclear magnetic resonance / Caracterização da estrutura, dinâmica, interações e função de componentes do sistema de secreção tipo IV de Xanthomonas citri por ressonância magnética nuclear em solução

Oliveira, Luciana Coutinho de 01 February 2016 (has links)
Bacteria use specialized systems, called secretion systems, in order to translocate substrates to the environment or to other cells, or even to uptake molecules from the exterior environment. Six different secretion systems have been described in Gram-negative bacteria. The Type IV Secretion System (T4SS) is involved in translocation of virulence factors, bacterial conjugation, uptake and release of DNA, and in the secretion of antibacterial toxins. The T4SS channel corresponds to a toroidal upramolecular complex consisting of 14 repetitions of the VirB7-VirB9-VirB10 heterotrimer. This channel, also called \"core complex\", is divided in two layers, an outer layer consisting of the VirB7 lipoprotein in complex with the C-terminal domains of VirB9 (VirB9CT) and VirB10 (VirB10CT), and an inner layer composed by the N-terminal domains of VirB9 (VirB9NT) and VirB10 (VirB10NT). Xanthomonas citri pv. citri (Xac) is a gram-negative bacterium that infects citrus plants causing a disease called \"citrus canker\". Although not directly involved in causing the disease, the chromosomally encoded T4SS is responsible for the secretion of toxins, working as a bacterial killing machine (Souza et al., 2015). The three-dimensional structure of Xac\'s VirB7 obtained by Nuclear Magnetic Resonance (NMR) spectroscopy (PDB 2L4W) revealed that, unlike the canonical VirB7, Xac\'s VirB7 consists of a flexible N-terminal domain followed by a C-terminal globular domain. The flexible N-terminal tail is involved in interaction with VirB9CT. In this thesis, the NMR structure of the complex formed between VirB9CT and a peptide derived from the N-terminal tail of Xac-VirB7 (VirB7NT) was solved. This complex is stabilized by hydrophobic interactions involving the side chains of particular amino acid residues such as Phe30, Trp34 and Val37 in VirB7, and Arg250, Tyr167 and Tyr169 in VirB9. Mutations of such amino acids affect not only the stability of the VirB9:VirB7 complex in vitro, but also reduce the T4SS activity and impairs its assembly in vivo. Furthermore, the ability of forming VirB7:VirB7 oligomers is essential for a functional T4SS, although it is not required for assembling the complex. The structural propensity and flexibility of a fragment derived from the proline-rich region (PRR) of the N-terminal tail of VirB10 (VirB10NT - residues 85 to 182) were studied. Measurements of the {1H}-15N heteronuclear NOE showed that VirB10NT is highly flexible on a sub-nanosecond time scale. Analysis of chemical shifts and NOEs showed that the ensemble and time average conformation of VirB10NT consists of a short alpha helix between residues 151-163, and that this helix is involved in interactions with VirB9NT. These findings provide the first compelling evidence for the interaction between the N-terminal domains of VirB9 and VirB10, and for the existence of significant flexibility within Xacs T4SS. / Bactérias usam sistemas especializados, denominados sistemas de secreção, a fim de translocar substratos para o ambiente ou para outras células, ou até mesmo para capturar moléculas do meio externo. Seis diferentes sistemas de secreção foram descritos em bactérias gram-negativas. O Sistema de Secreção do Tipo IV (T4SS) está envolvido na translocação de fatores de virulência, conjugação bacteriana, absorção e liberação de DNA, e secreção de toxinas antibacterianas. O canal do T4SS (core complex) corresponde a um complexo formado por 14 repetições do heterotrimero VirB7-VirB9-VirB10. A camada externa deste canal é constituída por VirB7 em complexo com os domínios C-terminal de VirB9 (VirB9CT) e VirB10 (VirB10CT). Os domínios N-terminal de VirB9 (VirB9NT) e VirB10 (VirB10NT) formam a camada interna do core complex. Xanthomonas citri pv. citri (Xac) é uma bactéria gram-negativa que infecta plantas cítricas causando uma doença chamada \"cancro cítrico\". Embora não esteja diretamente envolvido na infecção, o T4SS cromossomal secreta toxinas capazes de matar outras bactérias gram-negativas. VirB7 de Xac possui uma cauda N-terminal flexível e um domínio globular C-terminal ausente em outras proteínas VirB7. VirB7 interage com VirB9CT através de sua cauda N-terminal. Nesta tese, a estrutura de RMN do complexo formado por VirB9CT e um peptídeo derivado do segmento N-terminal de VirB7 foi resolvida. O complexo é estabilizado, principalmente, por interações hidrofóbicas envolvendo as cadeias laterais de determinados resíduos de aminoácidos, particularmente a Phe30, o Trp34 e a Val37 em VirB7 e a Arg250, a Tyr167 e a Tyr169 em VirB9. A substituição de alguns destes aminoácidos por alanina afeta não só a constante de dissociação do complexo in vitro, como também a atividade e a montagem do T4SS in vivo. Além disso, resíduos específicos envolvidos em oligomerização de VirB7 são essenciais para a manutenção de um T4SS funcional, embora não sejam essenciais para a montagem do sistema. Estudos estruturais, de dinâmica e de interações de um fragmento derivado da região rica em prolinas (proline-rich region - PRR) contida no N-terminal de VirB10 (VirB10NT - resíduos 85-182) também foram realizados. Medidas de {1H}-15N NOE heteronuclear mostraram que VirB10NT é altamente flexível. Análises de deslocamentos químicos e NOEs mostrou que VirB10NT forma uma hélice curta entre os resíduos 151-163. Ensaios de interação por RMN indicaram que esta hélice está envolvida em interações com VirB9NT. Estes resultados são a primeira evidência convincente para a especificidade de interação entre os domínios N-terminal de VirB9 e VirB10. Estes dados apontam também para a existência de flexibilidade dentro do T4SS de Xac.
12

Untersuchungen zum Aufbau, zur Funktion und zur Verbreitung von genomischen Inseln in der Gattung Legionella

Lautner, Monika 25 February 2013 (has links)
Der Austausch von genetischem Material über horizontalen Gentransfer, stellt einen wichtigen Mechanismus in der bakteriellen Evolution dar. Legionella pneumophila Stämme codieren für verschiedene Typ IV Sekretionssysteme (T4SS) und integrative konjugative Elemente, die zur genomischen Variabilität der intrazellulären Erreger beitragen. L. pneumophila Corby codiert auf der genomischen Insel Trb-1 für ein funktionelles Konjugations- und T4ASS. Trb-1 ist innerhalb des tRNAPro Gens integriert und kann in einer chromosomalen oder zirkulären episomalen Form existieren. Zusätzlich zu den trb/tra Genen sind auf der Insel eine Integrase (int-1) und die Gene lvrRABC der Legionella vir Region (lvr) lokalisiert. Durch die Deletion von int-1 konnte gezeigt werden, dass die Exzision von Trb-1 unter Beteiligung der Integrase erfolgt. Zudem wurde in dieser Arbeit zum ersten Mal demonstriert, dass die lvr-Region, vor allem der putative Phagen-Repressor LvrR an der Regulation der Exzision von Trb-1 beteiligt ist. Die Konjugation von Trb-1 in L. oakridgensis, hatte keinen Effekt auf die in vivo Fitness der Transkonjuganten in humanen Makrophagen. Die genomischen Inseln LpcGI-1 und LpcGI-2 codieren für ein neues putatives GI-T4SS. Für LpcGI-2 konnte erstmals gezeigt werden, dass das T4SS funktionell ist und die Konjugation der genomischen Insel in einen anderen L. pneumophila Stamm vermitteln kann. LpcGI-2 kann anschließend ortsspezifisch in das Genom der Transkonjuganten integriert werden. LpcGI-1 und LpcGI-2 werden vom tRNAThr bzw. tRNAMet Gen flankiert und können in verschiedenen chromosomalen und zirkulären, episomalen Formen existieren. Die Exzision von LpcGI-2 erfolgt ähnlich zu Trb-1, in Abhängigkeit einer ortsspezifischen Integrase. Im Genom von Lp Corby wurden zwei weitere genomische Inseln (LpcGI-Asn und LpcGI-Phe) identifiziert. In silico Analysen zeigten zudem, dass genomische Inseln mit einer Ähnlichkeit zu Trb-1, LpcGI-2 bzw. LpcGI-1 im Genus Legionella verbreitet sind. / Exchange of genetic information by horizontal gene transfer is an important mechanism for the evolution of bacterial genomes. Legionella pneumophila strains encode different type IV secretion systems and integrative conjugative elements contribute to the variability of the intracellular pathogen. The genomic island Trb-1 of L. pneumophila Corby encodes a functional conjugation and T4ASS. Trb-1 is integrated within the tRNAPro gene and can exist in a chromosomal or an episomal circular form. In addition to the trb/tra genes, a site-specific integrase (int-1) and a Legionella vir region (lvrRABC) are also localized on the genomic island. By deleting the int-1 gene, it could be demonstrated that the excision and of Trb-1 is integrase dependent. Furthermore, in this work it was shown for the first time that the lvr region and especially the putative phage repressor LvrR, is involved in the regulation of Trb-1 excision. Conjugation of Trb-1 in L. oakridgensis does not influence the in vivo fitness of the transconjugants in human macrophages. The genomic islands LpcGI-1 and LpcGI-2 encode a new putative T4SS. For the first time it could be demonstrated, that the T4SS localized on LpcGI-2 is functional. Although LpcGI-2 could be mobilized and transferred via conjugation to another L. pneumophila strain, followed by the site-specific integration into the genome of the transconjugants. LpcGI-1 and LpcGI-2 are flanked by the tRNAThr or tRNAMet gene respectively. Both islands can exist in different chromosomal and episomal forms. The excision of LpcGI-2 occurs similar to Trb-1 in an integrase dependent manner. Two additional genomic islands (LpcGI-Asn and LpcGI-Phe) could be identified in the genome of Lp Corby. Moreover, data of the in silico analysis demonstrated, that genomic islands similar to Trb-1, LpcGI-2 and LpcGI-1 are distributed within the genus Legionella.
13

Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri / Structural and protein-protein interaction studies of type IV secretion system components from Xanthomonas axonopodis pv. citri

Souza, Diorge Paulo de 25 May 2010 (has links)
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS / Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
14

Characterization of structure, dynamics, function and interactions of components from the type IV secretion system of Xanthomonas citri by solution nuclear magnetic resonance / Caracterização da estrutura, dinâmica, interações e função de componentes do sistema de secreção tipo IV de Xanthomonas citri por ressonância magnética nuclear em solução

Luciana Coutinho de Oliveira 01 February 2016 (has links)
Bacteria use specialized systems, called secretion systems, in order to translocate substrates to the environment or to other cells, or even to uptake molecules from the exterior environment. Six different secretion systems have been described in Gram-negative bacteria. The Type IV Secretion System (T4SS) is involved in translocation of virulence factors, bacterial conjugation, uptake and release of DNA, and in the secretion of antibacterial toxins. The T4SS channel corresponds to a toroidal upramolecular complex consisting of 14 repetitions of the VirB7-VirB9-VirB10 heterotrimer. This channel, also called \"core complex\", is divided in two layers, an outer layer consisting of the VirB7 lipoprotein in complex with the C-terminal domains of VirB9 (VirB9CT) and VirB10 (VirB10CT), and an inner layer composed by the N-terminal domains of VirB9 (VirB9NT) and VirB10 (VirB10NT). Xanthomonas citri pv. citri (Xac) is a gram-negative bacterium that infects citrus plants causing a disease called \"citrus canker\". Although not directly involved in causing the disease, the chromosomally encoded T4SS is responsible for the secretion of toxins, working as a bacterial killing machine (Souza et al., 2015). The three-dimensional structure of Xac\'s VirB7 obtained by Nuclear Magnetic Resonance (NMR) spectroscopy (PDB 2L4W) revealed that, unlike the canonical VirB7, Xac\'s VirB7 consists of a flexible N-terminal domain followed by a C-terminal globular domain. The flexible N-terminal tail is involved in interaction with VirB9CT. In this thesis, the NMR structure of the complex formed between VirB9CT and a peptide derived from the N-terminal tail of Xac-VirB7 (VirB7NT) was solved. This complex is stabilized by hydrophobic interactions involving the side chains of particular amino acid residues such as Phe30, Trp34 and Val37 in VirB7, and Arg250, Tyr167 and Tyr169 in VirB9. Mutations of such amino acids affect not only the stability of the VirB9:VirB7 complex in vitro, but also reduce the T4SS activity and impairs its assembly in vivo. Furthermore, the ability of forming VirB7:VirB7 oligomers is essential for a functional T4SS, although it is not required for assembling the complex. The structural propensity and flexibility of a fragment derived from the proline-rich region (PRR) of the N-terminal tail of VirB10 (VirB10NT - residues 85 to 182) were studied. Measurements of the {1H}-15N heteronuclear NOE showed that VirB10NT is highly flexible on a sub-nanosecond time scale. Analysis of chemical shifts and NOEs showed that the ensemble and time average conformation of VirB10NT consists of a short alpha helix between residues 151-163, and that this helix is involved in interactions with VirB9NT. These findings provide the first compelling evidence for the interaction between the N-terminal domains of VirB9 and VirB10, and for the existence of significant flexibility within Xacs T4SS. / Bactérias usam sistemas especializados, denominados sistemas de secreção, a fim de translocar substratos para o ambiente ou para outras células, ou até mesmo para capturar moléculas do meio externo. Seis diferentes sistemas de secreção foram descritos em bactérias gram-negativas. O Sistema de Secreção do Tipo IV (T4SS) está envolvido na translocação de fatores de virulência, conjugação bacteriana, absorção e liberação de DNA, e secreção de toxinas antibacterianas. O canal do T4SS (core complex) corresponde a um complexo formado por 14 repetições do heterotrimero VirB7-VirB9-VirB10. A camada externa deste canal é constituída por VirB7 em complexo com os domínios C-terminal de VirB9 (VirB9CT) e VirB10 (VirB10CT). Os domínios N-terminal de VirB9 (VirB9NT) e VirB10 (VirB10NT) formam a camada interna do core complex. Xanthomonas citri pv. citri (Xac) é uma bactéria gram-negativa que infecta plantas cítricas causando uma doença chamada \"cancro cítrico\". Embora não esteja diretamente envolvido na infecção, o T4SS cromossomal secreta toxinas capazes de matar outras bactérias gram-negativas. VirB7 de Xac possui uma cauda N-terminal flexível e um domínio globular C-terminal ausente em outras proteínas VirB7. VirB7 interage com VirB9CT através de sua cauda N-terminal. Nesta tese, a estrutura de RMN do complexo formado por VirB9CT e um peptídeo derivado do segmento N-terminal de VirB7 foi resolvida. O complexo é estabilizado, principalmente, por interações hidrofóbicas envolvendo as cadeias laterais de determinados resíduos de aminoácidos, particularmente a Phe30, o Trp34 e a Val37 em VirB7 e a Arg250, a Tyr167 e a Tyr169 em VirB9. A substituição de alguns destes aminoácidos por alanina afeta não só a constante de dissociação do complexo in vitro, como também a atividade e a montagem do T4SS in vivo. Além disso, resíduos específicos envolvidos em oligomerização de VirB7 são essenciais para a manutenção de um T4SS funcional, embora não sejam essenciais para a montagem do sistema. Estudos estruturais, de dinâmica e de interações de um fragmento derivado da região rica em prolinas (proline-rich region - PRR) contida no N-terminal de VirB10 (VirB10NT - resíduos 85-182) também foram realizados. Medidas de {1H}-15N NOE heteronuclear mostraram que VirB10NT é altamente flexível. Análises de deslocamentos químicos e NOEs mostrou que VirB10NT forma uma hélice curta entre os resíduos 151-163. Ensaios de interação por RMN indicaram que esta hélice está envolvida em interações com VirB9NT. Estes resultados são a primeira evidência convincente para a especificidade de interação entre os domínios N-terminal de VirB9 e VirB10. Estes dados apontam também para a existência de flexibilidade dentro do T4SS de Xac.
15

Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion Systems

Sharifahmadian, Mahzad 07 1900 (has links)
Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the β-sheet domain (β1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs. / La sécrétion est le passage de macromolécules à travers les membranes cellulaires. Chez les bactéries, la sécrétion est essentielle pour la virulence et la survie. Les bactéries à Gramnégatif utilisent le système de sécrétion de type IV (SST4) pour la sécrétion de toxines et de nucléoprotéines. Les SST4 contribuent notamment à la propagation des gènes de résistance aux antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le développement de médicaments antivirulence. Le SST4 est un complexe protéique qui s’étend entre la double membrane de la bactérie à Gram-négatif. Les protéines qui le composent sont insérées dans les membranes cellulaires ou solubles. Bien que la structure du pore central du SST4 ait été résolue récemment, les détails de l'assemblage et la structure de ce complexe ne sont pas connus. VirB8 est une protéine de la membrane interne qui interagit avec de nombreuses autres sous-unités du SST4. Il s’agit d’un acteur central de l'assemblage du SST4. Des études biophysiques, et notamment des expériences de RMN ont ainsi été réalisées pour caractériser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans la structure de VirB8 ont été identifiées par spectroscopie RMN lors de la transition entre la forme monomérique et dimérique. Les analyses de cristallographie et de RMN ont révélé des différences structurales dans les régions hélicoïdales (α1 et α4) de VirB8 wild-type et du variant monomérique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molécules capables de se lier à VirB8 ainsi qu’au variant monomérique. Les analyses d’arrimage moléculaire in silico suggèrent que la rainure de surface dans la structure VirB8 est importante pour laliaison de ces petites molécules. Les expériences de RMN et les essais biochimiques révèlent que le feuillet β (β1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De plus, j'ai identifié des changements dans la structure de VirB8 lors de l'interaction avec VirB5. Les études sur la protéine VirB8 nous ont permis de caractériser la séquence d'événements entre VirB8 et d'autres protéines VirB, régulant l'assemblage et la fonction du SST4.
16

Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri / Structural and protein-protein interaction studies of type IV secretion system components from Xanthomonas axonopodis pv. citri

Diorge Paulo de Souza 25 May 2010 (has links)
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS / Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
17

Molécules anti-facteurs de virulence : étude de l’efficacité et de l’amélioration d’une molécule inhibitrice du système de sécrétion de type IV de Helicobacter pylori

Morin, Claire 08 1900 (has links)
Helicobacter pylori est une bactérie à Gram négatif qui colonise plus de 50% de la population humaine. Cette bactérie est l'un des pathogènes les plus présents dans la population et la colonisation se fait dans l'enfance et l'adolescence. H. pylori est responsable de l'apparition de maladies gastriques chez l'humain comme des ulcères gastriques, mais aussi des cancers gastriques. Plusieurs mécanismes contribuent aux maladies gastriques dont une infection chronique à long terme ainsi que des facteurs de virulence comme le système de sécrétion de type 4 (SST4). Le SST4 forme une seringue protéique utilisée par la bactérie pour injecter la protéine CagA dans les cellules humaines. Cette protéine a été la première protéine bactérienne classifiée comme une oncoprotéine par sa capacite à interférer et modifier de nombreuses fonctions et signaux métaboliques des cellules épithéliales gastriques. Afin d'éradiquer Helicobacter, une antibiothérapie est utilisée, cependant depuis les 10 dernières années plus de 50% des bactéries isolées de patients ont été identifiés comme étant porteuses de résistances contre aux moins un antibiotique de première ligne. L’utilisation de petites molécules organiques capables d'interférer avec les facteurs de virulence est une alternative intéressante à la thérapie aux antibiotiques. L'utilisation de ces molécules possède des avantages dont la faible pression de sélection de résistance parce qu’elles n’impactent pas des fonctions vitales des bactéries. Le SST4 de H. pylori est composé de nombreuses protéines essentielles qui pourraient être de potentielles cibles pour des molécules inhibitrices. Nous avons choisi la cible Cagα, une ATPase homologue à VirB11 de Agrobacterium tumefaciens. Cette protéine est essentielle pour l’injection de CagA. Précédemment, notre laboratoire a identifié une petite molécule nommée 1G2 qui était capable d’interagir avec Cagα et de diminuer l’induction de l’interleukine 8 produit par les cellules gastriques lors de l’infection par des souches de H. pylori possédant un SST4 fonctionnel. A partir d’une structure cristallographique de Cagα liée à 1G2 et nous avons créé des protéines Cagα avec des mutations aux site de liaison de 1G2. En utilisant la fluorimétrie différentielle à balayage (DSF) nous avons pu identifier les acides aminés qui contribuent à la liaison de 1G2 (K41, R73 et F39). Basé sur cette information nous avons utilisé la chimie médicinale pour créer une librairie de molécules dérivées de 1G2 dans le but d’identifier des inhibiteurs plus puissants. Après avoir éliminé les molécules ayant un effet toxique sur les cellules gastriques et H. pylori, nous avons sélectionné cinq molécules (1313, 1338, 2886, 2889 et 2902) qui inhibent la production d’IL-8 plus que 1G2 dans notre modèle d’infection cellulaire. Nous avons montré par DSF que les molécules interagissent toujours avec Cagα et 1338, 2889 et 2902 sont des inhibiteurs plus puissants de son activité d’ATPase. Avec le modèle d’infection, nous avons déterminé que les cinq molécules n’affectent par la présence de CagA dans le lysat de l’infection. Cependant, nous avons observé par microscopie électronique à balayage que le SST4 pilus n’était pas présent en présence des inhibiteurs. En plus, nous avons testé les effets de 1G2 sur des souches de H. pylori résistantes, à un ou plusieurs antibiotiques de première ligne, isolées de biopsie gastriques de patients. Comme dans le cas de la bactérie modèle de laboratoire, nous avons observé une diminution de l’induction des IL-8 lors de l’infection ainsi qu’une inhibition de la formation du SST4 pilus. Nous avons aussi identifié que le gène de la protéine Cagα d’une des bactéries résistantes à 1G2 (souche #3822) porte un remplacement de R73 à K ce qui pourrait expliquer la résistance à 1G2. Pour conclure, nous avons dans cette étude caractérisé le site de liaison de 1G2 à Cagα et nous avons identifié des molécules qui sont plus puissantes comme inhibiteurs que 1G2. / Helicobacter pylori is a Gram-negative bacterium that colonizes more than 50% of the human population. This bacterium is one of the most common pathogens in the population and colonization occurs in childhood and adolescence. H. pylori is implicated in the manifestation of gastric diseases in humans such as gastric ulcers and also gastric cancer. Several mechanisms are involved in the formation of gastric diseases including long-term chronic infection as well as virulence factors such as the type 4 secretion system (T4SS). The T4SS forms a protein syringe used by the bacteria to inject the protein CagA into mammalian cells. This protein is the first bacterial protein classified as an oncoprotein by its ability to interact with numerous metabolic functions of gastric epithelial cells. To eradicate Helicobacter, antibiotic therapy is used, but for the last 10 years more than 50% of the bacteria isolated from patients have been identified as carrying resistance against at least one first-line antibiotic. The use of small molecules capable of interfering with virulence factors is being studied as an alternative to antibiotic therapy. The use of these molecules has many advantages, and they may cause lower selection pressure for resistance than antibiotics. The H. pylori T4SS is composed of many essential proteins that could be potential targets for inhibitory molecules. We chose the target Cagα, an ATPase homologous to the model VirB11 from Agrobacterium tumefaciens. This protein is essential for the injection of CagA. Previously, our laboratory identified a small molecule coined 1G2 that interacts with Cagα and decreases the induction of interleukin-8 produced by gastric cells upon infection with H. pylori strains with functional T4SS. Based on a crystallographic study of Cagα bound to 1G2, we created Cagα proteins with mutations at the 1G2 binding site. Using differential scanning fluorimetry, we identified amino acids that contribute to 1G2 binding (K41, R73 and F39). Based on these observations, we used medicinal chemistry to create a library of molecules derived from 1G2 to create more potent inhibitors. After eliminating the molecules with a toxic effect on gastric cells and H. pylori growth, we selected five molecules with stronger effects than 1G2 on IL8 induction in our cell infection model (1313, 1338, 2886, 2889 and 2902). We observed by DSF that the molecules interact with Cagα and 1338, 2889 and 2902 are stronger inhibitors of the ATPase 8 activity than 1G2. With our infection model, we determined that the five molecules do not affect the presence of CagA. However, by scanning electron microscopy we observed that the T4SS pilus was not present. In addition to the tests on a laboratory model bacterium, we evaluated 1G2 on resistant strains of H. pylori isolated from gastric biopsy from patients. Similar to the laboratory model bacterium, 1G2 decreased IL-8 induction and inhibited T4SS pilus formation. We have also identified that strain #3822 that is resistant to 1G2 carries a R73 to K mutation in the Cagα gene, which could explain the 1G2 resistance. To conclude, we have here characterized the 1G2 binding site on Cagα and we created inhibitors that are more potent than 1G2.
18

Caracterização de dois pares efetor/inibidor associados ao sistema de secreção tipo IV de Xanthomonas citri / Characterization of the two effector/inhibitor pair associated with the type IV secretion system of Xanthomonas citri

Bueno, Natalia Fernanda 15 June 2018 (has links)
O sistema de secreção tipo IV (T4SS) da família de bactérias Xanthomonadaceae transfere efetores (X-Tfes) com a capacidade de matar outras bactérias, conferindo uma vantagem em comunidades bacterianas mistas para colonizar diferentes nichos como o solo ou as superfícies das plantas. Os X-Tfes possuem diferentes domínios putativos com atividades hidrolíticas contra componentes do envelope celular bacteriano do tipo: glicohidrolases, transglicosilases, amidases e lipases. Os X-Tfes por sua atividade biológica inata podem ocasionar dano intracelular para a bactéria que os produz. Para se proteger contra estas atividades, também são produzidas lipoproteínas com função inibitoria (X-Tfis) localizadas no periplasma. Os genes que codificam os X-Tfes e os X-Tfis estão organizados em operons, o que permite gerar os pares efetor/inibidor simultaneamente. Entre os potenciais X-Tfes do fitopatógeno Xanthomonas citri estão Xac1918 e Xac0574. Xac1918 é uma proteína com um domínio da superfamília da lisozima e um domínio conhecido como RTX (Repeats in Toxin) de ligação ao cálcio, enquanto Xac0574 tem um domínio da superfamília da lipase 3. Os seus possíveis inibidores, Xac1917 e Xac0573 respectivamente, apresentam um peptídeo sinal no N-terminal contendo o lipobox representativo das lipoproteínas. As proteínas Xac0574 e Xac0573 são monômeros em solução que formam um complexo estável 1:1, favorecido termodinamicamente (ΔG°= -12 Kcal/mol) com uma constante de dissociação de 2,45 nM, garantindo que a bactéria fique protegida contra os efeitos nocivos de Xac0574 quando é produzida intracelularmente. Xac0574 é uma fosfolipase A1, sem atividade lisofosfolipase, com a capacidade de hidrolisar os três fosfolipídios majoritários que compõem a membrana celular bacteriana, fosfatidilglicerol (PG), cardiolipina e fosfatidiletanolamina (PE), mostrando uma aparente preferência pelo último. A atividade enzimática de Xac0574 explica a forte inibição do crescimento celular em E. coli após da sua indução heteróloga, já que gera uma diminuição de quase 10 vezes da população celular comparada com a cultura não induzida com a mesma construção. Poroutro lado, Xac0573 inibe efetivamente a atividade enzimática de Xac0574 ao formar o complexo, além de não ter atividade fosfolipase nem lisofosfolipase. Foram produzidos cristais da Xac1918 e Xac0573 que difrataram com uma resolução de 3,0 e 2,5 Å, respectivamente. Porém, só foi gerado um modelo de Xac0573. Xac0573 está composta por duas folhas β antiparalelas com uma topologia característica de β sanduíche Com uma pequena hélice e duas voltas. Um alinhamento de homólogos de Xac0573 identificou nas extremidades da proteína as regiões conservadas, constituindo duas possíveis interfaces de interação que podem ser as responsáveis por bloquear o acesso dos fosfolipídios ao sítio catalítico ou impedir os rearranjos estruturais de Xac0574 que são necessários para a sua atividade enzimática. Adicionalmente, a topologia da Xac0573 é semelhante do domínio C2, conhecido em eucariotos como domínio de ligação ao lipídio e ao cálcio, e está envolvido em processos de sinalização de segundos mensageiros lipídicos, proteínas de trafego de membranas e mecanismos de fusão de membranas. Nossos resultados apontam para uma nova função biológica do domínio C2 como um inibidor enzimático intracelular em bactérias. / The type IV secretion system (T4SS) of the bacteria family Xanthomonadaceae transfers effectors (X-Tfes) with that can kill other bacterial cells, conferring an advantage to the bacterial community during colonization of different niches in the soil or on the plant surface. The X-Tfes possess different putative domains with hydrolytic activity against components of the bacterial cellular envelope, including glycohydrolase, transglycolase, amidase and lipase domain. The innate biological activity of X-Tfes can cause intracellular damage. Therefore, the bacteria that produce them also produce lipoproteins with inhibitor function (X-Tfis) located in the periplasm for their protection. The genes that code for X-Tfes and X-Tfis are organized in operons that allow for their simultaneous expression. Among the X-Tfes of the phytopathogen Xanthomonas citri are Xac1918 and Xac0574. Xac1918 is carries a lysozyme superfamily domain, as well as a domain known as RTX (Repeats in Toxic) predict to bind calcium, while, Xac0574 has a domain belonging to the lipase 3 superfamily. Their possible inhibitors, Xac1917 e Xac0573 respectively, carry an N-terminal signal peptide containing a lipobox found in bacterial lipoproteins. The Xac0574 and Xac0573 proteins are both monomers in solution, They can form a stable 1:1 complex, that is thermodynamically favored (ΔG°= -12 Kcal/mol) with a dissociation constant of 2,45 nM. This affinity ensure that the bacterium is protected against the harmful effects of Xac0574 when it is produced intracellularly. We show that Xac0574 is a phospholipase A1, without lisophospholipase activity, and is able to hydrolyze the three most common phospholipids found in the membranes of Gram negative bacteria, namely phosphatidylglycerol (PG), cardiolipin and phosphatidylethanolamine (PE), presenting an apparent preference for PE. The enzymatic activity of Xac0574 explains the strong inhibition of growth of E. coli cells after its heterologous induction: a nearly 10-fold decrease in the cell population is observed when compared to the non-induced culture with the same construct. On the other hand, Xac0573 effectively inhibits the enzymatic activity of Xac0574. Furthermore, Xac0573 does not possess when forming the complex, besides not having phospholipase nor lysophospholipase activity.Crystals of Xac1918 and Xac0573 were produced which diffracted with to resolution of 3.0 and 2.5 Å, respectively. However, we were able to resolve the structure of only Xac0573. Xac0573 is composed of two anti-parallel sheet that form a β-sandwich with three small helices. An alignment to Xac0573 homologs identified conserved regions at the ends of the protein that constitute two possible interfaces of interaction that may be responsible for blocking the access of the phospholipids to the catalytic site or impede the structural rearrangements of Xac0574 that are necessary for its enzymatic activity. Additionally, the topology of Xac0573 is similar to that to C2 domains, known in eukaryotes to bind lipids and calcium and to be involved in signaling processes mediated by lipid second messengers, membrane trafficking and membrane fusion mechanisms. Our results point to a new biological function of the C2 domain as an intracellular enzyme inhibitor in bacteria.
19

Molekulare Charakterisierung von Typ IV Sekretionssytem-spezifischen Wirtszellantworten und bakteriellen Virulenzfaktoren des humanen Magenpathogens Helicobacter pylori

Bauer, Bianca 28 January 2010 (has links)
Das humane Magenpathogen Helicobacter pylori (H. pylori) besiedelt den menschlichen Magen und kann zu der Entstehung schwerwiegender Krankheiten wie Magenkrebs und Magengeschwüren führen. Die Pathogenese ist eng mit dem bakteriellen Typ IV Sekretionssystems (T4SS) assoziiert, das die Translokation des Effektorproteins CagA in die Wirtszelle vermittelt. Bisher ist noch unbekannt, in welchem Ausmaß wirtszellspezifische Faktoren die T4SS induzierte Pathogenese beeinflussen. Dieser Aspekt wurde in dieser Arbeit durch die Analyse verschiedenster Zelllinien das erste Mal systematisch untersucht. Interessanterweise unterschied sich die zelluläre Antwort auf die T4SS spezifische Infektion erheblich in Abhängigkeit der verwendeten Zelllinie. Die Ergebnisse beweisen, dass Wirtszellfaktoren eine ebenso große Rolle in der H. pylori induzierten Pathogenese spielen wie bakterielle Effektoren. Zusätzlich wurde in dieser Arbeit eine genomweite Screening-Methode etabliert, die es ermöglicht, neue Komponenten des T4SSs, translozierte NF-B Effektoren und bakterielle Adhäsine zu identifizieren. Auch der Einfluss von CagA auf den EGF-Rezeptor wurde hier näher untersucht. Der Rezeptor steht ebenfalls eng mit der Entstehung von Krebs in Verbindung. Hierbei stellte sich heraus, dass CagA die Endozytose des EGF-Rezeptors durch die Aktivierung der Nicht-Rezeptor Tyrosinkinase c-Abl hemmt und dadurch die Rezeptorpopulation auf der Wirtszelloberfläche erhöht. Interessanterweise führt dieser Effekt jedoch nicht zu einer Verstärkung der EGF-Rezeptor Signaltransduktion. Vielmehr kommt es zu einer Hemmung der EGF-Rezeptor Transaktivierung und zu einer Blockade der EGF vermittelten Wundheilung. Die Daten weisen auf eine Rolle des EGF-Rezeptors in der H. pylori induzierten Geschwürbildung hin. Auch der zu Grunde liegende molekulare Mechanismus der Rezeptor-Inhibierung konnte hier entschlüsselt werden, der sowohl von CagA als auch von der Phosphatase SHP-2 gesteuert wird. / The human gastric pathogen Helicobacter pylori (H. pylori) elicits a tremendous medical burden because of its causative association with peptic ulcer disease and gastric cancer. The pathogenic potential of H. pylori is intricately linked to the expression of a pathogenicity island encoded type IV secretion system (T4SS), which translocates the bacterial effector protein CagA into the eukaryotic host cell. The role of host cell determinants in T4SS mediated pathogenesis has not yet been systematically examined. To elucidate the role of host cell factors within T4SS induced host cell responses, different eukaryotic cell lines were analyzed systematically for respective phenotypes. Remarkably, T4SS mediated host responses among these cell lines varied considerably, thereby demonstrating the importance of host cell components in H. pylori induced pathogenesis. In addition, a H. pylori genome wide bacterial screen for factors important in pathogenesis, such as unknown T4SS components or novel NF-kappaB effector molecules, was developed and optimized. The precise function of the prominent effector protein CagA remains unclear. To functionally characterize the role of CagA, its impact on the epidermal growth factor (EGF)-receptor pathway was analyzed. The results suggest a mechanism where EGF-receptor endocytosis is completely blocked by a CagA induced activation of c-Abl, leading to an elevated receptor surface exposition. Surprisingly, EGF-receptor transactivation and EGF-dependent wound healing are selectively blocked during prolonged infections as well, indicating that an increased receptor-population on the cell surface does not necessarily promote signaling. This data suggests a role for the EGF-receptor in H. pylori- induced ulcer disease. The underlying molecular mechanism was identified as being SHP-2 and CagA dependent.
20

Caracterização de dois pares efetor/inibidor associados ao sistema de secreção tipo IV de Xanthomonas citri / Characterization of the two effector/inhibitor pair associated with the type IV secretion system of Xanthomonas citri

Natalia Fernanda Bueno 15 June 2018 (has links)
O sistema de secreção tipo IV (T4SS) da família de bactérias Xanthomonadaceae transfere efetores (X-Tfes) com a capacidade de matar outras bactérias, conferindo uma vantagem em comunidades bacterianas mistas para colonizar diferentes nichos como o solo ou as superfícies das plantas. Os X-Tfes possuem diferentes domínios putativos com atividades hidrolíticas contra componentes do envelope celular bacteriano do tipo: glicohidrolases, transglicosilases, amidases e lipases. Os X-Tfes por sua atividade biológica inata podem ocasionar dano intracelular para a bactéria que os produz. Para se proteger contra estas atividades, também são produzidas lipoproteínas com função inibitoria (X-Tfis) localizadas no periplasma. Os genes que codificam os X-Tfes e os X-Tfis estão organizados em operons, o que permite gerar os pares efetor/inibidor simultaneamente. Entre os potenciais X-Tfes do fitopatógeno Xanthomonas citri estão Xac1918 e Xac0574. Xac1918 é uma proteína com um domínio da superfamília da lisozima e um domínio conhecido como RTX (Repeats in Toxin) de ligação ao cálcio, enquanto Xac0574 tem um domínio da superfamília da lipase 3. Os seus possíveis inibidores, Xac1917 e Xac0573 respectivamente, apresentam um peptídeo sinal no N-terminal contendo o lipobox representativo das lipoproteínas. As proteínas Xac0574 e Xac0573 são monômeros em solução que formam um complexo estável 1:1, favorecido termodinamicamente (ΔG°= -12 Kcal/mol) com uma constante de dissociação de 2,45 nM, garantindo que a bactéria fique protegida contra os efeitos nocivos de Xac0574 quando é produzida intracelularmente. Xac0574 é uma fosfolipase A1, sem atividade lisofosfolipase, com a capacidade de hidrolisar os três fosfolipídios majoritários que compõem a membrana celular bacteriana, fosfatidilglicerol (PG), cardiolipina e fosfatidiletanolamina (PE), mostrando uma aparente preferência pelo último. A atividade enzimática de Xac0574 explica a forte inibição do crescimento celular em E. coli após da sua indução heteróloga, já que gera uma diminuição de quase 10 vezes da população celular comparada com a cultura não induzida com a mesma construção. Poroutro lado, Xac0573 inibe efetivamente a atividade enzimática de Xac0574 ao formar o complexo, além de não ter atividade fosfolipase nem lisofosfolipase. Foram produzidos cristais da Xac1918 e Xac0573 que difrataram com uma resolução de 3,0 e 2,5 Å, respectivamente. Porém, só foi gerado um modelo de Xac0573. Xac0573 está composta por duas folhas β antiparalelas com uma topologia característica de β sanduíche Com uma pequena hélice e duas voltas. Um alinhamento de homólogos de Xac0573 identificou nas extremidades da proteína as regiões conservadas, constituindo duas possíveis interfaces de interação que podem ser as responsáveis por bloquear o acesso dos fosfolipídios ao sítio catalítico ou impedir os rearranjos estruturais de Xac0574 que são necessários para a sua atividade enzimática. Adicionalmente, a topologia da Xac0573 é semelhante do domínio C2, conhecido em eucariotos como domínio de ligação ao lipídio e ao cálcio, e está envolvido em processos de sinalização de segundos mensageiros lipídicos, proteínas de trafego de membranas e mecanismos de fusão de membranas. Nossos resultados apontam para uma nova função biológica do domínio C2 como um inibidor enzimático intracelular em bactérias. / The type IV secretion system (T4SS) of the bacteria family Xanthomonadaceae transfers effectors (X-Tfes) with that can kill other bacterial cells, conferring an advantage to the bacterial community during colonization of different niches in the soil or on the plant surface. The X-Tfes possess different putative domains with hydrolytic activity against components of the bacterial cellular envelope, including glycohydrolase, transglycolase, amidase and lipase domain. The innate biological activity of X-Tfes can cause intracellular damage. Therefore, the bacteria that produce them also produce lipoproteins with inhibitor function (X-Tfis) located in the periplasm for their protection. The genes that code for X-Tfes and X-Tfis are organized in operons that allow for their simultaneous expression. Among the X-Tfes of the phytopathogen Xanthomonas citri are Xac1918 and Xac0574. Xac1918 is carries a lysozyme superfamily domain, as well as a domain known as RTX (Repeats in Toxic) predict to bind calcium, while, Xac0574 has a domain belonging to the lipase 3 superfamily. Their possible inhibitors, Xac1917 e Xac0573 respectively, carry an N-terminal signal peptide containing a lipobox found in bacterial lipoproteins. The Xac0574 and Xac0573 proteins are both monomers in solution, They can form a stable 1:1 complex, that is thermodynamically favored (ΔG°= -12 Kcal/mol) with a dissociation constant of 2,45 nM. This affinity ensure that the bacterium is protected against the harmful effects of Xac0574 when it is produced intracellularly. We show that Xac0574 is a phospholipase A1, without lisophospholipase activity, and is able to hydrolyze the three most common phospholipids found in the membranes of Gram negative bacteria, namely phosphatidylglycerol (PG), cardiolipin and phosphatidylethanolamine (PE), presenting an apparent preference for PE. The enzymatic activity of Xac0574 explains the strong inhibition of growth of E. coli cells after its heterologous induction: a nearly 10-fold decrease in the cell population is observed when compared to the non-induced culture with the same construct. On the other hand, Xac0573 effectively inhibits the enzymatic activity of Xac0574. Furthermore, Xac0573 does not possess when forming the complex, besides not having phospholipase nor lysophospholipase activity.Crystals of Xac1918 and Xac0573 were produced which diffracted with to resolution of 3.0 and 2.5 Å, respectively. However, we were able to resolve the structure of only Xac0573. Xac0573 is composed of two anti-parallel sheet that form a β-sandwich with three small helices. An alignment to Xac0573 homologs identified conserved regions at the ends of the protein that constitute two possible interfaces of interaction that may be responsible for blocking the access of the phospholipids to the catalytic site or impede the structural rearrangements of Xac0574 that are necessary for its enzymatic activity. Additionally, the topology of Xac0573 is similar to that to C2 domains, known in eukaryotes to bind lipids and calcium and to be involved in signaling processes mediated by lipid second messengers, membrane trafficking and membrane fusion mechanisms. Our results point to a new biological function of the C2 domain as an intracellular enzyme inhibitor in bacteria.

Page generated in 0.1143 seconds