Spelling suggestions: "subject:"uavs"" "subject:"uvas""
71 |
A Compact Phased Array Radar for UAS Sense and AvoidSpencer, Jonathan Cullinan 01 November 2015 (has links)
As small unmanned aerial systems (UAS) are introduced into the national airspace, measures must be introduced to ensure that they do not interfere with manned aviation and other UAS. Radar provides an attractive solution because of its inherent range accuracy and because it works in diverse weather and lighting conditions. Traditional radar systems, however, are large and high power and do not meet the size, weight and power (SWaP) constraints imposed by UAS, and fully integrated automotive solution do not provide the necessary range. This thesis proposes a compact radar system that meets both the SWaP and range requirements for UAS and can act as a standalone sensor for a sense and avoid system (SAA). The system meets the field of view requirements motivated by the UAS sensing problem (120deg x 30deg) and tracks targets in range and azimuthal angle using a four element phased array receiver. The phased array receiver implements real time correlation and beamforming using a field programmable gate array (FPGA) and can track multiple targets simultaneously. Excluding antennas, the radar transceiver and signal processing platform weighs approximately 120g and is approximately the size of a whiteboard eraser (2.25in x 4in x 1in), which meets the payload requirements of many small (<25kg) UAS. To our knowledge, this is the first real time phased array radar that meets the sensing and SWaP requirements for small UAS.Our testing was done with the radar system on the ground, aimed at airborne UAS targets. Using antennas with a gain of 12 dB, and 800 milliwatts of transmitted power, the system detects UAS targets with a radar cross section of less than 0.1 square meters up to 150 meters away. The ground based system demonstrates radar detectability of extremely small UAS targets, and is scalable to further ranges by increasing antenna gain or adding additional elements. Based on our success in detecting airborne UAS, we conclude that radar remains a feasible option for a UAS collision avoidance sensor.
|
72 |
ASSESSING THE APPLICATION OF THE UNMANNED AERIAL SYSTEMS (UAS) IN EARTHWORK VOLUME MEASUREMENTWang, Xi 01 January 2018 (has links)
Earthwork operations are often one of the major cost items on infrastructure construction projects. Because earthwork is largely influenced by unstable construction conditions and organization plans, it becomes the emphasis and difficulties of the cost control in the construction process. Therefore, precise estimates of actual earthwork volumes are important for both owners and contractors alike to ensure appropriate payments are made. However, measuring work on site requires lots of time and labors because of various and irregular site conditions. Conventional measurement methods, such as planned quantities from the drawings or estimates from equipment activity, are rough estimates with significant opportunities for errors and safety concerns.
Recently, unmanned aerial systems (UAS) have become popular for numerous surveying applications in civil engineering. They require less cost and time consumptions compared with traditionally manual methods. Also, they are able to perform photogrammetric data acquisition with equipped digital cameras in hazardous, complex or other conditions that may present high safety risks. However, UAS photogrammetry for research applications is still in its infancy, especially in construction management, and research conducted on UAS photogrammetry for earthwork volume estimation are very limited.
Therefore, this research intends to investigate and validate the feasibility and efficiency of utilizing the UAS photogrammetry surveying technique to estimate earthwork volume. The research is conducted into three steps based on distinct case studies: firstly, adapting a basic analysis through a case study to preliminarily prove the effectiveness of the UAS photogrammetry method in earthwork volume measurement; also providing an analytical foundation for further utilizations; secondly, Quantitatively assessing the impact of flight parameters and environmental factors on the accuracy of UAS photogrammetry in earthwork volume measurement and identifying the most influential individual or combinations through observations and a statistical multiple regression analysis; at last, comparing volumes calculated by using the UAS platform and other two conventional methods which are Average-End-Area method and grid method in AutoCAD to further validate the feasibility of using the UAS technology in the process of earthwork volumes estimation.
The results indicate that the UAS is an effective method for earthwork volume measurement. According to published standards, practice experience, and literature, the measurement errors are in an acceptable range when parameters are under control. In addition, the UAS demonstrates its advantages in balancing between the accuracy and efficiency compared with conventional earthwork volume measurement methods.
|
73 |
Inflatable wing UAV experimental and analytical flight mechanicsBrown, Ainsmar Xavier 21 January 2011 (has links)
The field of man portable UASs (Unmanned Aerial Systems) is currently a key area in improving the fielded warrior's capabilities. Pressurized aerostructures that can perform with similar results of solid structures can potentially change how this objective may be accomplished now and in the future. Construction with high density polymers and other composites is currently part of active inflatable vehicle research. Many shape forming techniques have also been adapted from the airship and balloon manufacturing industry. Additional research includes modeling techniques so that these vehicles may be included in simulation packages.
A flight dynamics simulation with reduced-order aeroelastic effects derived with Lagrangian and Eulerian dynamics approaches were developed and optimized to predict the behavior of inflatable flexible structures in small UASs. The models are used to investigate the effects of significant structural deflections (warping) on aerodynamic surfaces. The model also includes compensation for large buoyancy ratios. Existing literature documents the similarity in structural dynamics of rigid beams and inflatable beams before wrinkling. Therefore, wing bending and torsional modes are approximated with the geometrically exact ntrinsic beam equations using NATASHA (Nonlinear Aeroelastic Trim And Stability for HALE Aircraft) code. An approach was also suggested for inclusion of unique phenomena such as wrinkling during flight. A simplified experimental setup will be designed to examine the most significant results observed from the simulation model. These methods may be suitable for specifying limits on flight maneuvers for inflatable UASs.
|
74 |
Communication-aware planning aid for single-operator multi-UAV teams in urban environmentsChristmann, Hans Claus 21 September 2015 (has links)
With the achievement of autonomous flight for small unmanned aircraft, currently
ongoing research is expanding the capabilities of systems utilizing such
vehicles for various tasks. This allows shifting the research focus from the
individual systems to task execution benefits resulting from interaction and
collaboration of several aircraft.
Given that some available high-fidelity simulations do not yet support
multi-vehicle scenarios, the presented work introduces a framework which allows
several individual single-vehicle simulations to be combined into a larger
multi-vehicle scenario with little to no special requirements towards the
single-vehicle systems. The created multi-vehicle system offers real-time
software-in-the-loop simulations of swarms of vehicles across multiple hosts and
enables a single operator to command and control a swarm of unmanned aircraft
beyond line-of-sight in geometrically correct two-dimensional cluttered
environments through a multi-hop network of data-relaying intermediaries.
This dissertation presents the main aspects of the developed system: the
underlying software framework and application programming interface, the
utilized inter- and intra-system communication architecture, the graphical user
interface, and implemented algorithms and operator aid heuristics to support the
management and placement of the vehicles. The effectiveness of the aid
heuristics is validated through a human subject study which showed that the
provided operator support systems significantly improve the operators'
performance in a simulated first responder scenario.
The presented software is released under the Apache License 2.0 and, where
non-open-source parts are used, software packages with free academic licenses
have been chosen--resulting in a framework that is completely free for academic
research.
|
75 |
ANALYSIS OF THE <i>CRMP</i> GENE IN <i>DROSOPHILA</i>: DETERMINING THE REGULATORY ROLE OF CRMP IN SIGNALING AND BEHAVIORMorris, Deanna Hardt 01 January 2010 (has links)
The mammalian genome encodes five collapsin response mediator protein (CRMP) isoforms. Cell culture studies have shown that the CRMPs mediate growth cone dynamics and neuron polarity through associations with a variety of signal transduction components and cytoskeletal elements. CRMP is also a member of a protein family including the presumably ancestral dihydropyrimidinase (DHP) protein that catalyzes the second step in pyrimidine degradation. In Drosophila, CRMP and DHP proteins are produced by alternatively spliced transcripts of the CRMP gene. The alternative protein forms have a 91% sequence identity, but unique expression patterns. CRMP is found exclusively in neuronal tissues and DHP is ubiquitously expressed in non-neuronal tissues. Comparative analysis of CRMP homologous sequences from insect taxa show CRMP alternative splicing is a common feature and probably represents the ancestral state of this gene family.
To investigate the regulatory role of CRMP, loss-of-function mutations of CRMP that lack both proteins were isolated; homozygous animals display DHP-null phenotypes but exhibit no overt developmental or neurological defects. To determine possible interactions of Drosophila CRMP with signaling pathways in which mammalian CRMP has been shown to act, the UAS-GAL4 system was utilized. Phenotypes produced by misexpression of a variety of UAS signal transduction mediator responders were modified in a CRMP mutant background. The modification entails enhancement or suppression of a specific phenotype in a direction that corresponds to the hypothesized involvement of mammalian CRMP in signaling pathways that regulate growth cone dynamics. These data suggest that Drosophila CRMP has a role in cell signaling pathways similar to the role of the mammalian CRMPs.
Furthermore, recent findings demonstrate that CRMP plays an important role in learning and memory of mice, leading to the assessment of new phenotypes in the Drosophila CRMP mutants. Tests utilizing the Pavlovian olfactory conditioning assay reveal that loss of CRMP function leads to significant learning, 3 hour memory, and long term memory deficits. Preliminary data also suggest that Drosophila CRMP may be required for normal circadian locomotor rhythms. Collectively, the data presented here demonstrate CRMP’s role in adult behavioral processes and regulating signaling events comparable to mammalian CRMP signaling.
|
76 |
Distributing Non-cooperative Object Information in Next Generation Radar Surveillance SystemsYuan, Xiaochen January 2014 (has links)
Radar surveillance systems, in both airspace and maritime domains, are facing increasing challenges in dealing with objects that cannot be detected by traditional transponder-based radar surveillance technologies. These objects, including birds, weather, Unmanned Aircraft Systems (UAS), hot balloons, are labeled as non-cooperative objects. In order to prevent ambiguity and confusion for human operators using the surveillance data non-cooperative objects are commonly treated as unwanted clutter and removed from the displayed data.
However, the omitted information of non-cooperative object can be critical to aircraft safety. With new developments in technology and radar capabilities, it is possible to detect these non-cooperative objects and consider how to distribute relevant information about them to human operators throughout a system. The research goal of this thesis is to identify the human factors challenges in future radar surveillance systems where non-cooperative object information is distributed to both air traffic controllers and pilots.
In order to achieve the goal, the thesis first constructed a model of surveillance information distribution in current ATC operations and a model of surveillance information distribution in the expected future operational environment. The expected future surveillance information distribution model was then carefully examined to identify potential human factors challenges in the non-cooperative object information distribution process. Two of the identified challenges (non-equal time delay and information level of details) were studied in depth through conducting human-in-the-loop experiments and online surveys.
The results of an asynchronous information (non-equal time delay) static simulation environment experiment showed that while a delay in the non-cooperative object information would lead to observable but not statistically significant longer communication time, it does have a significant effect on number of clarification statements ??? with an increase of time delay, more clarifications were made. A survey of controller and pilot perceptions of maximum acceptable delay showed no significant differences in the average maximum acceptable delay reported by controller (20.5 seconds) and pilot (13.64 seconds) participants. Future research should consider adopting dynamic simulation environment, subject matter experts and shorter delay intervals to identify an acceptable delay threshold.
The survey results also demonstrated that there are more controllers and pilots who have had encounters with UAS in their daily tasks than what was originally expected. The survey also helped identify operational information requirements and availabilities for individual UAS and challenges in sharing non-cooperative object information between controllers and pilots.
These findings are quite valuable as they provide guidance on future radar surveillance systems design in supporting the effective distribution of non-cooperative object information. Future work should complete the analysis of the survey and create more dynamic environment for studying information asynchrony.
|
77 |
Automated taxiing for unmanned aircraft systemsEaton, William H. January 2017 (has links)
Over the last few years, the concept of civil Unmanned Aircraft System(s) (UAS) has been realised, with small UASs commonly used in industries such as law enforcement, agriculture and mapping. With increased development in other areas, such as logistics and advertisement, the size and range of civil UAS is likely to grow. Taken to the logical conclusion, it is likely that large scale UAS will be operating in civil airspace within the next decade. Although the airborne operations of civil UAS have already gathered much research attention, work is also required to determine how UAS will function when on the ground. Motivated by the assumption that large UAS will share ground facilities with manned aircraft, this thesis describes the preliminary development of an Automated Taxiing System(ATS) for UAS operating at civil aerodromes. To allow the ATS to function on the majority of UAS without the need for additional hardware, a visual sensing approach has been chosen, with the majority of work focusing on monocular image processing techniques. The purpose of the computer vision system is to provide direct sensor data which can be used to validate the vehicle s position, in addition to detecting potential collision risks. As aerospace regulations require the most robust and reliable algorithms for control, any methods which are not fully definable or explainable will not be suitable for real-world use. Therefore, non-deterministic methods and algorithms with hidden components (such as Artificial Neural Network (ANN)) have not been used. Instead, the visual sensing is achieved through a semantic segmentation, with separate segmentation and classification stages. Segmentation is performed using superpixels and reachability clustering to divide the image into single content clusters. Each cluster is then classified using multiple types of image data, probabilistically fused within a Bayesian network. The data set for testing has been provided by BAE Systems, allowing the system to be trained and tested on real-world aerodrome data. The system has demonstrated good performance on this limited dataset, accurately detecting both collision risks and terrain features for use in navigation.
|
78 |
Modelling, Control, and Experimental Evaluation of the Hovering Characteristics of a Tilt-Wing Unmanned Aerial VehicleSmall, Elias January 2017 (has links)
A Tilt-Wing Unmanned Aerial Vehicle (TW-UAV) and the preliminary evaluation of its hovering characteristics in extended simulation studies and experiments are presented in this Master Thesis. In the beginning, an overview of the TW-UAV's design properties are established, highlighting the novelties of the proposed structure and the overall merits. The TW-UAV's design and structural properties are mathematically modelled and utilized for the synthesis of a cascaded P-PI and PID based control structure for the regulation of its hovering performance. In addition, extensive simulation trials are performed in order to evaluate the structure's efficiency in controlling the TW-UAV's attitude and position under various noise and disturbance scenarios. The model and aircraft are then put through experimental evaluation with an on-board processor, namely the KFly, in a Motion-capture equipped laboratory to evaluate the control structure and physical behaviour of the TW-UAV. The results of these experiments are presented and discussed. The system and control scheme are shown to work well. However, an unfortunate crash forced the premature termination of experimentation and thus the conclusion of this thesis. Nevertheless, the reason for the crash is understood and discussed for future work.
|
79 |
A Study of Human-Machine Interface (HMI) Learnability for Unmanned Aircraft Systems Command and ControlHaritos, Tom 01 January 2017 (has links)
The operation of sophisticated unmanned aircraft systems (UAS) involves complex interactions between human and machine. Unlike other areas of aviation where technological advancement has flourished to accommodate the modernization of the National Airspace System (NAS), the scientific paradigm of UAS and UAS user interface design has received little research attention and minimal effort has been made to aggregate accurate data to assess the effectiveness of current UAS human-machine interface (HMI) representations for command and control. UAS HMI usability is a primary human factors concern as the Federal Aviation Administration (FAA) moves forward with the full-scale integration of UAS in the NAS by 2025. This study examined system learnability of an industry standard UAS HMI as minimal usability data exists to support the state-of-the art for new and innovative command and control user interface designs. This study collected data as it pertained to the three classes of objective usability measures as prescribed by the ISO 9241-11. The three classes included: (1) effectiveness, (2) efficiency, and (3) satisfaction. Data collected for the dependent variables incorporated methods of video and audio recordings, a time stamped simulator data log, and the SUS survey instrument on forty-five participants with none to varying levels of conventional flight experience (i.e., private pilot and commercial pilot). The results of the study suggested that those individuals with a high level of conventional flight experience (i.e., commercial pilot certificate) performed most effectively when compared to participants with low pilot or no pilot experience. The one-way analysis of variance (ANOVA) computations for completion rates revealed statistical significance for trial three between subjects [F (2, 42) = 3.98, p = 0.02]. Post hoc t-test using a Bonferroni correction revealed statistical significance in completion rates [t (28) = -2.92, p<0.01] between the low pilot experience group (M = 40%, SD =. 50) and high experience group (M = 86%, SD = .39). An evaluation of error rates in parallel with the completion rates for trial three also indicated that the high pilot experience group committed less errors (M = 2.44, SD = 3.9) during their third iteration when compared to the low pilot experience group (M = 9.53, SD = 12.63) for the same trial iteration. Overall, the high pilot experience group (M = 86%, SD = .39) performed better than both the no pilot experience group (M = 66%, SD = .48) and low pilot experience group (M = 40%, SD =.50) with regard to task success and the number of errors committed. Data collected using the SUS measured an overall composite SUS score (M = 67.3, SD = 21.0) for the representative HMI. The subscale scores for usability and learnability were 69.0 and 60.8, respectively. This study addressed a critical need for future research in the domain of UAS user interface designs and operator requirements as the industry is experiencing revolutionary growth at a very rapid rate. The deficiency in legislation to guide the scientific paradigm of UAS has generated significant discord within the industry leaving many facets associated with the teleportation of these systems in dire need of research attention. Recommendations for future work included a need to: (1) establish comprehensive guidelines and standards for airworthiness certification for the design and development of UAS and UAS HMI for command and control, (2) establish comprehensive guidelines to classify the complexity associated with UAS systems design, (3) investigate mechanisms to develop comprehensive guidelines and regulations to guide UAS operator training, (4) develop methods to optimize UAS interface design through automation integration and adaptive display technologies, and (5) adopt methods and metrics to evaluate human-machine interface related to UAS applications for system usability and system learnability.
|
80 |
Landing site reachability and decision making for UAS forced landingsCoombes, Matthew January 2016 (has links)
After a huge amount of success within the military, the benefits of the use of unmanned aerial systems over manned aircraft is obvious. They are becoming cheaper and their functions advancing to such a point that there is now a large drive for their use by civilian operators. However there are a number of significant challenges that are slowing their inevitable integration into the national airspace systems of countries. A large array of emergency situations will need to be dealt with autonomously by contingency management systems to prevent potentially deadly incidences. One such emergency situation that will need autonomous intervention, is the total loss of thrust from engine failure. The complex multi faceted task of landing the stricken aircraft at a potentially unprepared site is called a forced landing. This thesis presents methods to address a number of critical parts of a forced landing system for use by an unmanned aerial system. In order for an emergency landing site to be considered, it needs to be within glide range. In order to find a landing site s reachability from the point of engine failure the aircraft s glide performance and a glide path must be known. A method by which to calculate the glide performance, both from aircraft parameters or experiments is shown. These are based on a number of steady state assumptions to make them generic and quick to compute. Despite the assumptions, these are shown to have reasonable accuracy. A minimum height loss path to the landing site is defined, which takes account of a steady uniform wind. While this path is not the path to be flown it enables a measure of how reachable a landing site is, as any extra height the aircraft has once it gets to the site makes a site more reachable. It is shown that this method is fast enough to be run online and is generic enough for use on a range of aircraft. Based on identified factors that make a landing site more suitable, a multi criteria decision making Bayesian network is developed to decide upon which site a unmanned aircraft should land in. It can handle uncertainty and non-complete information while guaranteeing a fast reasonable decision, which is critical in this time sensitive situation. A high fidelity simulation environment and flight test platform are developed in order to test the performance of the developed algorithms. The test environments developed enable rapid prototyping of algorithms not just within the scope of this thesis, but on a range of vehicle types. In simulation the minimum height loss paths show good accuracy, for two completely different types of aircraft. The decision making algorithms show that they are capable of being ran online in a flight test. They make a reasonable decision and are capable of quickly reacting to changing conditions, enabling redirection to a more suitable landing site.
|
Page generated in 0.0447 seconds