Spelling suggestions: "subject:"ultralow power"" "subject:"ultraslow power""
11 |
MESH : a power management system for a wireless sensor networkRais, Shahil Bin 16 October 2014 (has links)
Energy harvesting is becoming increasingly important in low-power applications where energy from the environment is used to power the system alone, or to supplement a battery. For example, pulse oximeter sensors inside helmets of road racing cyclists are powered by the sun. These sensors have become smaller and more practical without the limitation of a finite energy supply. Harvested energy from an energy transducer (solar, piezoelectric, etc.) must be maximized to ensure these devices can survive periods where environmental energy is scarce. The conversion process from the transducer to usable power for the device is not perfectly efficient. Specifically, the output voltage of a solar cell is a function of the light intensity, and by extension the load it powers. A small perturbation of the light source quickly diminishes the available power. The wasted power reduces the energy available for the application, and can be improved using an approach called maximum power point tracking (MPPT). This technique maximizes harvesting efficiency by dynamically impedance matching the transducer to its load. This report introduces the Maximum Efficient Solar Harvester (MESH), an MPPT algorithm tuned for a specific Wireless Sensor Network (WSN) application. MESH specifically controls the operation of the DC-DC converter in a solar power management unit (PMU). The control is done by monitoring the available light and feeding that information to choose the optimal operating point DC-DC converter. This operating point has a direct dependency on the overall efficiency of the system. For MESH to be practical, the cost and power overhead of adding this functionality must be assessed. Empirical results indicate that MESH improves the maximum efficiency of the popular Texas Instruments (TI) RF2500-SEH WSN platform by an average of 20%, which far exceeds the power overhead it incurs. The cost is also found to be minimal, as WSN platforms already include a large portion of the hardware required to implement MESH. The report was done in collaboration with Stephen Kobdish. It covers the software implementation and MESH architecture definition; Kobdish's companion report focuses on hardware components and the bench automation environment. / text
|
12 |
Universal Hashing for Ultra-Low-Power Cryptographic Hardware ApplicationsYuksel, Kaan 28 April 2004 (has links)
Message Authentication Codes (MACs) are valuable tools for ensuring the integrity of messages. MACs may be built around a keyed hash function. Our main motivation was to prove that universal hash functions can be employed as underlying primitives of MACs in order to provide provable security in ultra-low-power applications such as the next generation self-powered sensor networks. The idea of using a universal hash function (NH) was explored in the construction of UMAC. This work presents three variations on NH, namely PH, PR and WH. The first hash function we propose, PH, produces a hash of length 2w and is shown to be 2^(-w)-almost universal. The other two hash functions, i.e. PR and WH, reach optimality and are proven to be universal hash functions with half the hash length of w. In addition, these schemes are simple enough to allow for efficient constructions. To the best of our knowledge the proposed hash functions are the first ones specifically designed for low-power hardware implementations. We achieve drastic power savings of up to 59% and speedup of up to 7.4 times over NH. Note that the speed improvement and the power reduction are accomplished simultaneously. Moreover, we show how the technique of multi- hashing and the Toeplitz approach can be combined to reduce the power and energy consumption even further while maintaining the same security level with a very slight increase in the amount of key material. At low frequencies the power and energy reductions are achieved simultaneously while keeping the hashing time constant. We develope formulae for estimation of leakage and dynamic power consumptions as well as energy consumption based on the frequency and the Toeplitz parameter t. We introduce a powerful method for scaling WH according to specific energy and power consumption requirements. This enables us to optimize the hash function implementation for use in ultra-low-power applications such as "Smart Dust" motes, RFIDs, and Piconet nodes. Our simulation results indicate that the implementation of WH-16 consumes only 2.95 ìW 500 kHz. It can therefore be integrated into a self- powered device. By virtue of their security and implementation features mentioned above, we believe that the proposed universal hash functions fill an important gap in cryptographic hardware applications.
|
13 |
Design and Evaluation of an Ultra-Low PowerLow Noise Amplifier LNAyasami, saeed January 2009 (has links)
<p>This master thesis deals with the study of ultra low power Low Noise Amplifier (LNA) for use inmedical implant device. Usually, low power consumption is required for a long battery lifetime andlonger operation. The target technology is 90nm CMOS process.First basic principle of LNA is discussed. Then based on a literature review of LNA design, theproposed LNA is presented in sub-threshold region which reduce power consumption through scalingthe supply voltage and through scaling current.The circuit implementation and simulations is presented to testify the performance of LNA .Besides thepower consumption simulated under the typical supply voltage (1V), it is also measured under someother low supply voltages (down to 0.5V) to investigate the minimum power consumption and theminimum noise figure. Evaluation results show that at a supply voltage of 1V the LNA performs a totalpower consumption of 20mW and a noise of 1dB. Proper performance is achieved with a current ofdown to 200uA and supply voltage of down to 0.45V, and a total power consumption of 200uW</p>
|
14 |
Design and Evaluation of an Ultra-Low PowerLow Noise Amplifier LNAyasami, saeed January 2009 (has links)
This master thesis deals with the study of ultra low power Low Noise Amplifier (LNA) for use inmedical implant device. Usually, low power consumption is required for a long battery lifetime andlonger operation. The target technology is 90nm CMOS process.First basic principle of LNA is discussed. Then based on a literature review of LNA design, theproposed LNA is presented in sub-threshold region which reduce power consumption through scalingthe supply voltage and through scaling current.The circuit implementation and simulations is presented to testify the performance of LNA .Besides thepower consumption simulated under the typical supply voltage (1V), it is also measured under someother low supply voltages (down to 0.5V) to investigate the minimum power consumption and theminimum noise figure. Evaluation results show that at a supply voltage of 1V the LNA performs a totalpower consumption of 20mW and a noise of 1dB. Proper performance is achieved with a current ofdown to 200uA and supply voltage of down to 0.45V, and a total power consumption of 200uW
|
15 |
NanoWatt resistorless CMOS voltage references for Sub-1 V applications / Referências de tensão CMOS em NanoWatts e sem resistores para aplicações em sub-1 VMattia Neto, Oscar Elisio January 2014 (has links)
Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas. / Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
|
16 |
NanoWatt resistorless CMOS voltage references for Sub-1 V applications / Referências de tensão CMOS em NanoWatts e sem resistores para aplicações em sub-1 VMattia Neto, Oscar Elisio January 2014 (has links)
Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas. / Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
|
17 |
NanoWatt resistorless CMOS voltage references for Sub-1 V applications / Referências de tensão CMOS em NanoWatts e sem resistores para aplicações em sub-1 VMattia Neto, Oscar Elisio January 2014 (has links)
Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas. / Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
|
18 |
Security primitives for ultra-low power sensor nodes in wireless sensor networksHuang, An-Lun 05 May 2008 (has links)
The concept of wireless sensor network (WSN) is where tiny devices (sensor nodes), positioned fairly close to each other, are used for sensing and gathering data from its environment and exchange information through wireless connections between these nodes (e.g. sensor nodes distributed through out a bridge for monitoring the mechanical stress level of the bridge continuously). In order to easily deploy a relatively large quantity of sensor nodes, the sensor nodes are typically designed for low price and small size, thereby causing them to have very limited resources available (e.g. energy, processing power). Over the years, different security (cryptographic) primitives have been proposed and refined aiming at utilizing modern processor’s power e.g. 32-bit or 64-bit operation, architecture such as MMX (Multi Media Extension) and etc. In other words, security primitives have targeted at high-end systems (e.g. desktop or server) in software implementations. Some hardware-oriented security primitives have also been proposed. However, most of them have been designed aiming only at large message and high speed hashing, with no power consumption or other resources (such as memory space) taken into considerations. As a result, security mechanisms for ultra-low power (<500µW) devices such as the wireless sensor nodes must be carefully selected or designed with their limited resources in mind. The objective of this project is to provide implementations of security primitives (i.e. encryption and authentication) suitable to the WSN environment, where resources are extremely limited. The goal of the project is to provide an efficient building block on which the design of WSN secure routing protocols can be based on, so it can relieve the protocol designers from having to design everything from scratch. This project has provided three main contributions to the WSN field. Provides analysis of different tradeoffs between cryptographic security strength and performances, which then provide security primitives suitable for the needs in a WSN environment. Security primitives form the link layer security and act as building blocks for higher layer protocols i.e. secure routing protocol. Implements and optimizes several security primitives in a low-power microcontroller (TI MSP430F1232) with very limited resources (256 bytes RAM, 8KB flash program memory). The different security primitives are compared according to the number of CPU cycles required per byte processed, specific architectures required (e.g. multiplier, large bit shift) and resources (RAM, ROM/flash) required. These comparisons assist in the evaluation of its corresponding energy consumption, and thus the applicability to wireless sensor nodes. Apart from investigating security primitives, research on various security protocols designed for WSN have also been conducted in order to optimize the security primitives for the security protocols design trend. Further, a new link layer security protocol using optimized security primitives is also proposed. This new protocol shows an improvement over the existing link layer security protocols. Security primitives with confidentiality and authenticity functions are implemented in the TinyMote sensor nodes from the Technical University of Vienna in a wireless sensor network. This is to demonstrate the practicality of the designs of this thesis in a real-world WSN environment. This research has achieved ultra-low power security primitives in wireless sensor network with average power consumption less than 3.5 µW (at 2 second packet transmission interval) and 700 nW (at 5 second packet transmission interval). The proposed link layer security protocol has also shown improvements over existing protocols in both security and power consumption. / Dissertation (MEng (Computer Engineering))--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
|
19 |
Conception d'un processeur ultra basse consommation pour les noeuds de capteurs sans fil / Design of an ultra low power processor for wireless sensor nodesBerthier, Florent 08 December 2016 (has links)
Les travaux de cette thèse se concentrent sur la réduction de l'énergie consommée et l'amélioration des temps de réveil du microcontrôleur par des innovations au niveau de l'architecture, du circuit et de la gestion de l'énergie. Ces travaux proposent une architecture de microcontrôleur partitionnée entre un processeur de réveil programmable, appelé Wake Up Controller, s'occupant des tâches courantes du nœud de capteurs et un processeur principal gérant les tâches irrégulières. Le Wake Up Controller proposé dans ces travaux de thèse est un processeur RISC 16-bit dont le jeu d'instructions a été adapté pour gérer les tâches régulières du nœud, et n'exécute que du code sur interruptions. Il est implémenté en logique mixte asynchrone/synchrone. Un circuit a été fabriqué en technologie UTBB FDSOI 28nm intégrant le Wake-Up Controller. Le cœur atteint une performance de 11,9 MIPS pour 125μW de consommation moyenne en phase active et un réveil depuis le mode de veille en 55ns pour huit sources de réveil possibles. La consommation statique est d'environ 4μW pour le cœur logique asynchrone à 0,6V sans utilisation de gestion d'alimentation (power gating) et d'environ 500nW avec. / This PhD work focuses on the reduction of energy consumption and wake up time reduction of a WSN node microcontroller through innovations at architectural, circuit and power management level. This work proposes a partitioned microcontroller architecture between a programmable wake up processor, named Wake Up Controller on which this work is focused, and a main processor. The first deals with the common tasks of a wireless sensor node while the second manages the irregular tasks. TheWake Up Controller proposed in this work is a 16-bit RISC processor whose instruction set has been adapted to handle regular tasks of a sensor node. It only executes code on interruptions. It is implemented in asynchronous / synchronous mixed logic to improve wake up time and energy. A circuit was fabricated in a 28nm UTBB FDSOI technology integrating the Wake Up Controller. The core reaches 11,9 MIPS for 125 μW average power consumption in active phase and wakes up from sleep mode in 55ns from eight possible interruption sources. The static power consumption is around 4μW for the asynchronous logic core at 0.6V without power gating and 500nW when gated.
|
20 |
Circuits d’interface intégrés sur silicium pour une gestion optimale de la puissance dans les récupérateurs d’énergie vibratoire à transduction capacitive / Smart power management silicon integrated interfaces for capacitive vibration energy harvestersBedier, Mohammed 20 December 2017 (has links)
Les vibrations ambiantes representent une source potentielle d'energie pour alimentation des capteurs sans fil autonomes. La transduction electrostatique est une des techniques utilisees pour la conversion de l'energie des vibrations en electricite. De nombreuses realisations des transducteurs et leurs circuits de conditionnement ont deja ete presentees dans la litterature. Pour transmettre l'energie convertie vers une charge utile des interfaces specifiques doivent etre concues. Ce dernier sujet a ete peu aborde dans la litterature. Ce travail etudie une interface avec la charge dans un dispositif de recuperation d'energie vibratoire. L'architecture proposee au cours de cette etude est adaptee aux circuits de conditionnement de type pompe de charge, qui fonctionne selon un cycle charge-tension rectangulaire. L'interface proposee accomplit deux taches. Premierement, il permet de transferer l'energie electrique du circuit de conditionnement vers une charge tout en abaissant la tension d'une maniere adiabatique, c.a.d., en minimisant les dissipations. Deuxiemement, il permet de reguler le debit d'extraction d'energie du circuit de conditionnement en ajustant dynamiquement la puissance de ce transfert. Cela est realise avec un circuit integree en technologie 0.35um CMOS haute tension dont l'architecture est inspiree d'un convertisseur DCDC de type Buck fonctionnant en regime discontinu. La consommation de l'interface est minimisee grace a l'utilisation du regime sous le seuil des transistors MOS pour pratiquement tous les blocs, grace a une alimentation reduite a 1.1V. L'interface consomme en dessous de 100nW, et est capable de gerer des sources d'energie a puissance < 1uW. / Vibrational energy is an attractive power source for self-powered wireless sensors. A mainstream harvesting technique for vibrational energy is electrostatic MEMS harvesters. Various circuit architectures have already been introduced with many successful implementation, yet a load interface that efficiently manages the harvested energy has rarely been reported. In this work a load interface is proposed which is suited for any condition circuit (CC) implementing rectangular QV cycles. In general, a rectangular QV conditioning circuit has an optimum interval of which the energy harvested is maximised, thus the harvested energy should be periodically removed to maintain maximising the harvested energy. This is achieved through the load interface (LI). The LI proposed is a switched inductor capacitive architecture with a LI controller allowing the extraction of the energy in a multiple energy shot fashion. The LI controller incorporate an ultra low power clock for switching events and low power comparator for switching decision. Power consumption is reduced by operating at a low supply voltage (1.1V). The LI is implemented in AMS0.35HV technology with a mixed high voltage-low power control blocks. It takes into account the harvester operation to maximise its extracted energy. It overcomes the constrained limited biasing power, tackles resistive losses and power handling transistor long channels by transferring the energy in a multiple shots fashion. A CMOS implementation is proposed along with simulation results showing an average consumed power of the controller less than 100nW allowing the system to operate with input power levels as low as few hundreds of nano-watts.
|
Page generated in 0.0647 seconds