11 |
Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-thermo-refractive Glass For Ultrashort Pulse Stretching And CompressingLantigua, Christopher 01 January 2013 (has links)
Chirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then recompress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of optical glass. This therefore demands perfect control of the glass homogeneity, as well as the holographic recording process of the CBG. In this thesis, we present a study of the CBG parameters that lead to distortions in the quality of diffracted beams. We first present the challenges associated with measuring the quality of these beams and we show that such measurements are not easily achieved using commercial systems that rely on the ISO standard M2 method. Thus, we introduce a new metric of beam quality, which we have coined S2 , that is a combination of both the M2 and power in the bucket metrics. Subsequently, we investigate the influence of the CBG parameters on the quality of diffracted beams. In particular, we examine the impact of small optical heterogeneities known as striae, as well as the impact of the optically and thermally induced distortions in the grating. We then use this data to improve the fabrication and characterization of 100 mm long CBGs. Finally, we characterize the performance of CBGs recorded in PTR for stretching and compression of femtosecond pulses using a custom autocorrelation system. We present data on high quality 100 mm long CBGs and an analysis on the correlation between beam quality and the final pulse duration after stretching and re-compressing the pulse.
|
12 |
Characterization of Organic and Inorganic Optoelectronic Semiconductor Devices Using Advanced Spectroscopic MethodsSchroeder, Raoul 22 January 2002 (has links)
In this thesis, advanced spectroscopy methods are discussed and applied to gain understanding of the physical properties of organic conjugated molecules, II-VI thin film semiconductors, and vertical cavity surface emitting lasers (VCSEL). Experiments include single photon and two-photon excitation with lasers, with subsequent measurements of the absorption and photoluminescence, as well as photocurrent measurements using tungsten and xenon lamps, measuring the direct current and the alternating current of the devices. The materials are investigated in dissolved form (conjugated polymers), thin films (polymers, II-VI semiconductors), and complex layer structures (hybrid device, VCSEL). The experiments are analyzed and interpreted by newly developed or applied theories for two-photon saturation processes in semiconductors, bandgap shrinkage due to optically induced electron hole pairs, and the principle of detailed balance to describe the photoluminescence in thin film cadmium sulfide. / Ph. D.
|
13 |
Ultrashort Laser Pulse Interaction With Photo-thermo-refractive GlassSiiman, Leo 01 January 2008 (has links)
Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ~10^12 W/cm^2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to phase-matching with a grating formed by modulation of the nonlinear refractive index of PTR glass.
|
14 |
Análise e estudo de parâmetros para texturização a laser com pulsos ultracurtos para melhoria das propriedades tribológicas de componentes de motor / Analysis and study of parameters for laser surface texturing with ultrashort pulses to improve of tribological properties of engine componentsVieira, Alexandre 13 June 2018 (has links)
Neste trabalho foram realizadas otimizações no processo de fabricação de micro cavidades na superfície do aço DIN 16MnCr5, com o objetivo de reduzir o coeficiente de atrito dinâmico entre duas superfícies. Para a confecção das micro cavidades (dimples) foi utilizado um laser com pulsos ultracurtos, de largura temporal de algumas dezenas de femtossegundos. Além de estudos de variação de fluência do laser, também foi analisado o resultado da utilização de diferentes perfis de energia do feixe. Para a caracterização das micro cavidades, foram utilizadas técnicas como a microscopia eletrônica de varredura, para análise morfológica, interferometria de luz branca e microscopia confocal para análise topográfica, dimensional e perfilométrica. Foram realizados ensaios de desgaste, em tribômetro para análise da variação do coeficiente de atrito após a texturização. Após os ensaios, percebeu-se que a texturização com pulsos ultracurtos apresenta grande vantagem na confecção de micro cavidades devido a precisão e ausência de interação térmica entre o laser e o material. Em relação ao atrito, as amostras texturizadas apresentaram redução da força e do coeficiente de atrito, porém, foram observados sinais de aumento da pressão de contato entre as superfícies. / In this work, optimizations were realized in the dimples manufacturing process on DIN 16MnCr5 steel surface, the target were to reduce the coefficient of dynamic friction between two surfaces. A laser with ultrashort pulses, temporal width of a few tens of femtoseconds, was used to manufacture dimples. In addition to studies of variation of laser beam fluency, the results of the use of different beam energy profiles were also analyzed. For analysis of dimples, techniques such as scanning electron microscopy (SEM), for morphological analysis, white light interferometry and confocal surface microscopy were used for topographic, dimensional and perfilometry. Wear tests were performed to analyze the variation of the friction coefficient in texturing surface. After the tests, it was observed that the texturing with ultrashort pulses presents a great advantage in manufacturing of dimples, due to the precision and absence of thermal interaction between the laser beam and the material. In relation to the friction coefficient, the textured samples presented a reduction of the friction force and consequently of the friction coefficient, but an increase in the contact pressure between the studied surfaces was observed.
|
15 |
Análise e estudo de parâmetros para texturização a laser com pulsos ultracurtos para melhoria das propriedades tribológicas de componentes de motor / Analysis and study of parameters for laser surface texturing with ultrashort pulses to improve of tribological properties of engine componentsAlexandre Vieira 13 June 2018 (has links)
Neste trabalho foram realizadas otimizações no processo de fabricação de micro cavidades na superfície do aço DIN 16MnCr5, com o objetivo de reduzir o coeficiente de atrito dinâmico entre duas superfícies. Para a confecção das micro cavidades (dimples) foi utilizado um laser com pulsos ultracurtos, de largura temporal de algumas dezenas de femtossegundos. Além de estudos de variação de fluência do laser, também foi analisado o resultado da utilização de diferentes perfis de energia do feixe. Para a caracterização das micro cavidades, foram utilizadas técnicas como a microscopia eletrônica de varredura, para análise morfológica, interferometria de luz branca e microscopia confocal para análise topográfica, dimensional e perfilométrica. Foram realizados ensaios de desgaste, em tribômetro para análise da variação do coeficiente de atrito após a texturização. Após os ensaios, percebeu-se que a texturização com pulsos ultracurtos apresenta grande vantagem na confecção de micro cavidades devido a precisão e ausência de interação térmica entre o laser e o material. Em relação ao atrito, as amostras texturizadas apresentaram redução da força e do coeficiente de atrito, porém, foram observados sinais de aumento da pressão de contato entre as superfícies. / In this work, optimizations were realized in the dimples manufacturing process on DIN 16MnCr5 steel surface, the target were to reduce the coefficient of dynamic friction between two surfaces. A laser with ultrashort pulses, temporal width of a few tens of femtoseconds, was used to manufacture dimples. In addition to studies of variation of laser beam fluency, the results of the use of different beam energy profiles were also analyzed. For analysis of dimples, techniques such as scanning electron microscopy (SEM), for morphological analysis, white light interferometry and confocal surface microscopy were used for topographic, dimensional and perfilometry. Wear tests were performed to analyze the variation of the friction coefficient in texturing surface. After the tests, it was observed that the texturing with ultrashort pulses presents a great advantage in manufacturing of dimples, due to the precision and absence of thermal interaction between the laser beam and the material. In relation to the friction coefficient, the textured samples presented a reduction of the friction force and consequently of the friction coefficient, but an increase in the contact pressure between the studied surfaces was observed.
|
16 |
Pushing frontiers in Carrier-Envelope Phase stabilization of ultrashort laser pulsesBorchers, Bastian 16 February 2015 (has links)
Die vorliegende Arbeit ist der Verbesserung der Carrier-Envelope Phasenstabilisierung von ultrakurzen Laserimpulsen gewidmet. Zur Realisierung von Fortschritten auf diesem Gebiet werden die grundlegenden Rauschquellen identifiziert, die das erzielbare Restphasenrauschen limitieren, und geeignete Maßnahmen zu deren Verringerung vorgeschlagen. Es wird gezeigt, dass sowohl die Messung der Carrier-Envelope Phase (CEP) als auch deren Kontrolle durch verschiedene Rauschbeiträge beeinträchtigt wird. Der Detektionsprozess ist dabei einerseits durch technische Rauschquellen beeinflusst, die vor allem in den verwendeten nichtlinearen Interferometern auftreten. Andererseits repräsentiert das Detektionsrauschen während der elektro-optischen Wandlung eine fundamentale Limitierung, da das optische Schrotrauschen sowie das Rauschen des Lichtdetektors die Messung der CEP unausweichlich beeinträchtigen. Es wird demonstriert, wie solche Beschränkungen durch geeignete Wahl der Interferometertopologie, bzw. durch Optimierung des spektralen Verbreiterungsmechanismus verringert werden können. Experimentell gelingt es dadurch den Signal-Rauschabstand der Phasenmessung um 20 Dezibel zu steigern. Hinsichtlich der CEP Kontrolle von Oszillatoren wird in dieser Arbeit ein neuartiges Doppelstabilisierungskonzept vorgestellt, welches eine feed-forward Stabilisierung, die auf einem akustooptischen Frequenzschieber beruht, mit einer klassischen Feedback Regelung kombinert. Mit diesem Konzept gelingt eine Reduzierung des Phasenrestrauschen auf beispiellose 20 Milliradian. Darüber hinaus werden weitere neue Stabilisierungskonzepte vorgestellt, die ohne Feedback zu dem Laseroszillator auskommen. Bei einem dieser Konzepte, handelt es sich um eine gepulste feed-forward Stabilisierung, die speziell für das Zusammenwirken mit einer Verstärkerstufe konzipiert ist. Erste experimentelle Ergebnisse zeigen, dass Phasenrestrauschen von weniger als 100 Milliradian auch für Verstärkersysteme erreichbar sind. / The present thesis is dedicated to improvements of the carrier-envelope phase stabilization of ultrashort laser pulses. In order to realize such improvements, the fundamental noise sources are identified, and suitable measures for their reduction are proposed. It is shown that both, the measurement of the carrier-envelope phase (CEP) as well as its control are corrupted by different noise contributions. On the one hand, the detection process is influenced by technical noise sources, which arise especially in the used nonlinear interferometers. On the other hand, the detection noise in the electro-optic conversion represents a fundamental limitation, since the optical shot noise as well as the noise induced by the light detector inevitably influence the measurement of the CEP. It is demonstrated how such limitations can be minimized by a suitable choice of the interferometer topology and by an optimization of the spectral broadening process in a micro-structured fiber. This way an enormous improvement of the signal-to-noise ratio by 20 dB is obtained experimentally, which significantly reduces the limitation of detection noise. For controlling the CEP of mode-locked oscillators, a novel double stabilization scheme is introduced in this thesis, which combines a feed-forward stabilization based on an acousto-optic frequency shifter, with a classical feedback loop. This method enables a reduction of the residual phase jitter to an unprecedented value of 20 milliradian. Beyond that, several further concepts are introduced that are capable of stabilizing the CEP without any feedback to the laser oscillator. One of these concepts, represents a pulsed feed-forward stabilization, which is specifically designed for the use in combination with a subsequent amplification stage. First experimental results indicate that residual phase jitters of less than 100 milliradian are within reach also for amplified laser systems.
|
17 |
Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser SystemLöser, Markus 23 January 2018 (has links) (PDF)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime.
This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown.
Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control
filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results.
The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range.
The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach.
Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
|
18 |
Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser SystemLöser, Markus 16 November 2017 (has links)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime.
This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown.
Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control
filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results.
The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range.
The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach.
Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
|
19 |
Laserstrukturierung von Mikroprägewerkzeugen und Abformung beugungsoptisch wirksamer GitterstrukturenEngel, Andy 28 July 2020 (has links)
In dieser Arbeit werden Ergebnisse der Untersuchungen zur Laserstrukturierung von Prägewerkezeugen sowie zur Abformung von Gitterstrukturen mit Gitterperioden von kleiner gleich 2 µm in verschiedene Folien und Werkstoffverbunde präsentiert und diskutiert. Die hierfür entwickelte Kombination von Laserprozessen wird erläutert. Des Weiteren sind die auf Basis der experimentellen Untersuchungen ermittelten Parameterräume aufgezeigt und in Bezug zu theoretischen Beschreibungsmodellen gesetzt. Limitationen und Potentiale der einzelnen Teilprozesse werden dargelegt. Unter Anwendung der beschriebenen Strukturierungs- und Prozessparameter ist die Erstellung funktional einsetzbarer Prägewerkzeuge möglich. Für die Strukturübertragung konnte die Abformbarkeit der in die Oberflächen der Prägewerkzeuge eingebrachten beugungsoptisch wirksamen Gitterstrukturen mit Gitterperioden von kleiner gleich 2 µm bei Kontaktzeiten im Millisekundenbereich nachgewiesen werden.
|
20 |
Examination of Surface Morphology and Sub-Surface Crystallographic Changes of Si, Cu, GaP and Ge After Ultrashort Laser Pulse IrradiationCrawford, Travis H. R. 10 1900 (has links)
This thesis reports the effects of ultrashort laser pulse irradiation of various materials. The morphology after irradiation was examined using several microscopy techniques. Emphasis was placed on the identification of crystallographic changes and the analysis of laser-induced periodic surface structures. Grooves were machined in silicon by translating the target under the focused laser beam. The resulting depths were measured as a function of pulse energy, translation speed, and number of consecutive passes, for 800 and 400nm wavelength irradiation. The wall morphology and a corrugation along the bottom of the grooves were characterized. Various polarization configurations relative to the translation direction were compared. Such characterizations are relevant for the practical application of femtosecond laser micromachining. Silicon and gallium phosphide exhibited periodic structures after irradiation using photon energies less than the bandgap energy, with periods as small as ~20% of the irradiation wavelength. The significantly sub-wavelength periodic structures had a shallow profile on silicon, appearing as fine lines or grids of protrusions and depressions. On gallium phosphide, the surface evolved into planar-like structures with a large aspect ratio, possessing crystalline centers coated with amorphous material. These investigations, along with additional experiments, would help identify the precise physical origins of the short-period structures. On silicon and germanium, the target crystal orientation was shown to affect the formation of certain morphological features. For multiple-pulse irradiation, the (100) and (111) surface orientations exhibited significantly different tendencies for large conical structure formation. A thin layer of defected material coated the conical structures, with some defects present within the periodic structures. The different crystalline orientations did not affect periodic structuring. Cross-sectional transmission electron microscopy of silicon after irradiation by single pulses revealed amorphous material and dislocations in the bulk for sufficiently high pulse fluences. On a sample consisting of a metal layer on thermally-grown oxide on silicon, a range of pulse fluences was found which removed the metal layer without observed thinning of the oxide layer. Within this fluence range, above a particular fluence substantial defects were formed in the underlying silicon. Although ultrashort pulse irradiation of materials is frequently considered to be 'damage-free', attention should be paid to sub-surface modifications not evident from surface imaging. For the drilling of holes in copper foils, the pulse duration did not strongly affect the final morphology for durations under several picoseconds. A photodiode below the foil during drilling recorded transmitted light, indicating the number of pulses required for penetration under a variety of conditions, and characterizing hole evolution during drilling. Periodic surface structuring on the walls of holes depended on the irradiation atmosphere, pulse duration, and laser polarization. These measurements provide insight into the physical processes of material modification, and for the selection of irradiation parameters in practical applications. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0778 seconds