Spelling suggestions: "subject:"ultrastructural.""
311 |
Embryo-toxic effects of lead nitrate of the African catfish Clarias gariepinus (Burchell, 1822)Osman, Alaa Gad El-Karim Mahmoud 04 April 2007 (has links)
Im Rahmen der Studien zur Wirkung von Bleinitrat auf die Embryonalstadien des afrikanischen Welses Clarias gariepinus wurde zunächst der Einfluß der Besamung auf den Härtungsprozess des Chorions untersucht, um die Bedeutung des gehärteten Chorions als Schutzfunktion im Hinblick auf Schadstoffeinwirkung zu klären. Das Studium der Embryonalentwicklung war erforderlich, um das Ausmaß der Änderung der Normalentwicklung unter dem Einfluß von Bleinitrat bewerten zu können. Im Rahmen der toxikologischen Untersuchungen der Wirkung des Bleinitrats auf die Embryonalstadien wurden folgende biologische Marker (Biomarker) betrachtet: Änderungen in der Entwicklung und der Schlüpfrate, morphologische und histologische Änderungen, sowie biochemische Veränderungen (Änderungen von Stoffwechsel-Enzymaktivitäten) und molekulare Veränderungen (Erfassung von DNA-Schädigungen). Die Exposition der besamten Eier mit Bleinitrat führte zu einer Verlängerung der Inkubationszeit und zu starken Mißbildungen. Der Rückgang der Häufigkeiten der Mißbildungen mit der Zeit ließ die Annahme zu, daß die mißgebildeten Embryonen starben. Im Gegensatz zu den morphologischen Mißbildungen wurden histopathologische Effekte nur bei Embryonen gefunden, die den höchsten Dosierungen (300 µg/l und 500 µg/l Bleinitrat) ausgesetzt waren. Nach dem Schlupf war das Muster der Enzymaktivitäten nach Exposition mit Bleinitrat uneinheitlich; die Aktivität von G6PDH nahm zu, die von LDH nahm ab und die von PK zeigte unregelmäßige Fluktuationen. Die Embryonalstadien zeigten signifikante Dosis-abhängige Antworten über die Zeit, da das Ausmaß der DNA-Schädigungen signifikant mit den Bleinitrat Konzentrationen anstieg. Vor dem Schlupf konnten bei den Embryonen nach Bleinitrat Exposition keine Änderungen in den Enzymaktivitäten gefunden werden und nur geringe DNA-Schädigungen, d.h die toxischen Effekte waren sehr gering. Eine Erklärung könnte die schützende Wirkung der Eihülle gegenüber Schadstoffen sein. Die gewählten Biomarker stellen sensitive Detektionsmethoden für Bleinitrat dar. So könnten sie sich als sinnvolle Bioindikatoren für Ägypten erweisen, da dort zunehmend Umweltverschmutzung mit Blei und Bleiakkumulation in Lebensmitteln zu verzeichnen ist. / In order to study the embryo-toxic effects of lead nitrate of the African catfish Clarias gariepinus, we first had to study the effect of fertilization on the hardening process of the chorion to clarify the role of the hardened chorion on the protection of the embryo from the pollutants. Also we had to study the embryonic development of C. gariepinus for providing us with a model for comparison when normal patterns of development are altered due the exposure to lead nitrate. The present toxicological work focuses on lead toxicity in different developmental stages of C. gariepinus considering different biological markers (biomarkers) comprising changes in the development and hatching rate, morphological and histological changes, biochemical changes (alteration of metabolic enzymes activity) and molecular changes (monitoring of DNA damage). Exposure of fertilized eggs to lead nitrate prolonged the incubation period and caused severe morphological malformations. Since the frequencies of the morphological malformations decreased with time, we conclude a lethal impact and selected mortality of abnormal embryos. Unlike the morphological malformation, histopathological changes were only recorded in embryos exposed to the highest dosages (300 µg/l and 500 µg/l lead nitrate). In the post-hatching stages, the patterns of the enzymes activities after lead exposure varied, G6PDH increased, LDH decreased and PK showed fluctuations. Embryonic stages revealed significant dose-related DNA damage response over time, since the degree of DNA damage increased significantly with higher lead concentrations. No specific response in the activities of the selected enzymes and low DNA damage were recorded in the pre-hatching stage after exposure to the lead nitrate doses. This means the lead nitrate had a minute toxic effect on the pre-hatched embryos. We conclude that, low susceptibility in pre-hatching stages is most probably a consequence of the chorion, which seems to protect the embryos from a range of external pollutants. The selected biomarkers were sensitive detection methods for low-level toxicity of lead nitrate. Thus, these are useful tools for biomonitoring, urgently required in Egypt with regard to increasing environmental deposition of lead and bioaccumulation in human food recently observed.
|
312 |
Pollination biology of <i>Echinacea angustifolia</i> and <i>E. purpurea</i> (<i>Asteraceae</i>) in SaskatchewanWist, Tyler Jonathan 28 October 2005
The goals of this research project were to identify the various insects observed to visit inflorescences of Echinacea angustifolia DC, and to rank these visitors according to their importance as pollinators of E. angustifolia in Saskatchewan. Studying nectar and the nectary is essential to understanding the interaction of disc florets with pollinators. Nectar-sugar production by disc florets of E. angustifolia and E. purpurea (L. Moench) was quantified from anthesis to cessation with production per disc floret peaking in the afternoon of the staminate phase (191.7 µg) and at midday of the first day of the pistillate phase (156.6 µg), respectively.
Morphology of the disc-like floral nectaries of both Echinacea species was studied, as well as the ultrastructure of the nectary of E. purpurea. Modified stomata on the nectary rim are the most likely exits for nectar, but creases in the epidermis may also participate. The nectary of E. purpurea is vascularized by phloem alone, which occurred adjacent to the epidermis. Companion cells possessed wall ingrowths, and these cells may unload arriving sugar destined for either an apoplastic or symplastic pathway. Lobed nuclei were a key feature of secretory parenchyma cells, as was a predominance of mitochondria, suggesting that energy-requiring eccrine secretion predominates in E. purpurea.
E. angustifolia exhibited a generalist pollination system, with pollinating insects belonging to the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera. The pollination efficiency of visitors was determined by single insect visits to bagged, virgin inflorescences followed by quantifying pollen tubes at the bases of receptive styles and/or calculating the percentage of shrivelled styles. It was determined that bumble bees (Bombus spp.) were efficient pollinators, indicating that they would likely contribute much to the pollination of E. angustifolia. Grasshopper bee flies (Systoechus vulgaris Loew) were plentiful but individually were not efficient pollinators, but taken together, they provided much pollination. Golden blister beetles (Epicauta ferruginea Say) were efficient pollinators but where yellow-petalled flowers occurred, their numbers on E. angustifolia decreased. Honey bees (Apis mellifera L.) were efficient pollinators and were present in low numbers without managed introduction. Pierid (2003) butterflies were regular visitors and efficient pollinators, and likely contributed significantly to E. angustifolia pollination. When introduced, the alfalfa leafcutter bee (Megachile rotundata Fabr.) preferred not to forage on E. angustifolia and as such, these solitary bees were not suitable as managed pollinators. In large agricultural plantings of E. angustifolia, however, native insects may not be capable of providing sufficient pollination for seed production when floral competition occurs.
|
313 |
Pollination biology of <i>Echinacea angustifolia</i> and <i>E. purpurea</i> (<i>Asteraceae</i>) in SaskatchewanWist, Tyler Jonathan 28 October 2005 (has links)
The goals of this research project were to identify the various insects observed to visit inflorescences of Echinacea angustifolia DC, and to rank these visitors according to their importance as pollinators of E. angustifolia in Saskatchewan. Studying nectar and the nectary is essential to understanding the interaction of disc florets with pollinators. Nectar-sugar production by disc florets of E. angustifolia and E. purpurea (L. Moench) was quantified from anthesis to cessation with production per disc floret peaking in the afternoon of the staminate phase (191.7 µg) and at midday of the first day of the pistillate phase (156.6 µg), respectively.
Morphology of the disc-like floral nectaries of both Echinacea species was studied, as well as the ultrastructure of the nectary of E. purpurea. Modified stomata on the nectary rim are the most likely exits for nectar, but creases in the epidermis may also participate. The nectary of E. purpurea is vascularized by phloem alone, which occurred adjacent to the epidermis. Companion cells possessed wall ingrowths, and these cells may unload arriving sugar destined for either an apoplastic or symplastic pathway. Lobed nuclei were a key feature of secretory parenchyma cells, as was a predominance of mitochondria, suggesting that energy-requiring eccrine secretion predominates in E. purpurea.
E. angustifolia exhibited a generalist pollination system, with pollinating insects belonging to the orders Coleoptera, Diptera, Hymenoptera, and Lepidoptera. The pollination efficiency of visitors was determined by single insect visits to bagged, virgin inflorescences followed by quantifying pollen tubes at the bases of receptive styles and/or calculating the percentage of shrivelled styles. It was determined that bumble bees (Bombus spp.) were efficient pollinators, indicating that they would likely contribute much to the pollination of E. angustifolia. Grasshopper bee flies (Systoechus vulgaris Loew) were plentiful but individually were not efficient pollinators, but taken together, they provided much pollination. Golden blister beetles (Epicauta ferruginea Say) were efficient pollinators but where yellow-petalled flowers occurred, their numbers on E. angustifolia decreased. Honey bees (Apis mellifera L.) were efficient pollinators and were present in low numbers without managed introduction. Pierid (2003) butterflies were regular visitors and efficient pollinators, and likely contributed significantly to E. angustifolia pollination. When introduced, the alfalfa leafcutter bee (Megachile rotundata Fabr.) preferred not to forage on E. angustifolia and as such, these solitary bees were not suitable as managed pollinators. In large agricultural plantings of E. angustifolia, however, native insects may not be capable of providing sufficient pollination for seed production when floral competition occurs.
|
314 |
Development, growth and ultrastructure of the floral nectar spur of Centranthus ruber (L.) DC (Valerianaceae)2013 July 1900 (has links)
The main objective of this research project was to study the growth and development of the floral nectar spur of Centranthus ruber (L.) DC. Nectar spurs are tubular floral outgrowths, generally derived from the perianth organs, which typically contain secreted floral nectar. The morphological characteristics of the spur, particularly the length, determine which floral visitors will be able to access the nectar reward pooled at the spur tip. Therefore, nectar spurs are ecologically important for the development of specialised pollinator interactions and have been demonstrated to act as key innovations in the evolution of some taxa.
Morphological and anatomical characteristics of the spur and floral nectary were investigated using light and scanning electron microscopy. Ultrastructural features of the nectar spur, particularly the floral nectary within, were assessed using transmission electron microscopy. Nectar in C. ruber is produced by a trichomatous nectary which runs along the entire, inner abaxial surface of the spur. The nectary is aligned with the single vascular bundle which runs along the abaxial side of the spur, through the sub-nectary parenchyma, and back up the adaxial side. The secretory trichomes are unicellular and, in late development, they develop a thick layer of secondary wall ingrowths which vastly increases the surface area of the plasma membrane for nectar secretion. Elongate, non-secretory trichomes occupy the entire remaining circumference of the spur’s inner epidermis, but their density is reduced compared to the secretory trichomes.
The cellular basis for spur growth is poorly characterized in the literature. Until recently, it was assumed that all nectar spurs grow by the constant production of new cells via up to three potential meristematic regions (the meristem hypothesis, Tepfer 1953). The cellular basis for spur growth in C. ruber was investigated by cell file counts and cell length and width measurements along the lateral side of nectar spurs in each of the developmental stages. DAPI stained spurs were also examined with Confocal/Apotome microscopy to determine the timing and position of cell division activity throughout spur development. It was determined that elongation of the spur epidermal cells contributes much more to spur growth than cell division. In early development, division is the primary driver of spur growth and the cells are isotropic. However, as development progresses, cell division activity slows down and the spur cells become increasingly anisotropic until anthesis.
The patterns of nectar secretion were determined by assessing the volume, solute concentration and carbohydrate composition of the nectar throughout flowering phenology in two C. ruber plants. Nectar volumes and solute amounts rose initially, followed by an eventual decline in both as phenology progressed towards senescence. Because this study was conducted on greenhouse grown plants, it can be assumed that nectar was not removed by insects, suggesting that it is likely reabsorbed following secretion. High performance liquid chromatography (HPLC) analysis determined that C. ruber's nectar is sucrose dominant and that nectar composition remains stable following anthesis throughout floral phenology.
|
315 |
In Vitro and In Silico Analysis of Osteoclastogenesis in Response to Inhibition of De-phosphorylation of EIF2alpha by Salubrinal and GuanabenzTanjung, Nancy Giovanni January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / An excess of bone resorption over bone formation leads to osteoporosis, resulting in a reduction of bone mass and an increase in the risk of bone fracture. Anabolic and anti-resorptive drugs are currently available for treatment, however, none of these drugs are able to both promote osteoblastogenesis and reduce osteoclastogenesis. This thesis focused on the role of eukaryotic translation initiation factor 2 alpha (eIF2alpha), which regulates efficiency of translational initiation. The elevation of phosphorylated eIF2alpha was reported to stimulate osteoblastogenesis, but its effects on osteoclastogenesis have not been well understood. Using synthetic chemical agents such as salubrinal and guanabenz that are known to inhibit the de-phosphorylation of eIF2alpha, the role of phosphorylation of eIF2alpha in osteoclastogenesis was investigated in this thesis.
The questions addressed herein were: Does the elevation of phosphorylated eIF2alpha (p-eIF2alpha) by salubrinal and guanabenz alter osteoclastogenesis? If so, what regulatory mechanism mediates the process? It was hypothesized that p-eIF2alpha could attenuate the development of osteoclast by regulating the transcription factor(s) amd microRNA(s) involved in osteoclastogenesis. To test this hypothesis, we conducted in vitro and in silico analysis of the responses of RAW 264.7 pre-osteoclast cells to salubrinal and guanabenz.
First, the in vitro results revealed that the elevated level of phosphorylated eIF2alpha inhibited the proliferation, differentiation, and maturation of RAW264.7 cells and downregulated the expression of NFATc1, a master transcription factor of osteoclastogenesis. Silencing eIF2alpha by RNA interference suppressed the downregulation of NFATc1, suggesting the involvement of eIF2alpha in regulation of NFATc1. Second, the in silico results using genome-wide expression data and custom-made Matlab programs predicted a set of stimulatory and inhibitory regulator genes as well as microRNAs, which were potentially involved in the regulation of NFATc1. RNA interference experiments indicated that the genes such as Zfyve21 and Ddit4 were primary candidates as an inhibitor of NFATc1.
In summary, the results showed that the elevation of p-eIF2alpha by salubrinal and guanabenz leads to attenuation of osteoclastogenesis through the downregulation of NFATc1. The regulatory mechanism is mediated by eIF2alpha signaling, but other signaling pathways are likely to be involved. Together with the previous data showing the stimulatory role of p-eIF2alpha in osteoblastogenesis, the results herein suggest that eIF2alpha-mediated signaling could provide a novel therapeutic target for treatment of osteoporosis by promoting bone formation and reducing bone resorption.
|
316 |
Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritisShakibaei, M., Csaki, C., Nebrich, S., Mobasheri, A. January 2008 (has links)
No / Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.
|
317 |
Manganese as a site factor for epiphytic lichens / Mangan als Standortfaktor für epiphytische FlechtenPaul, Alexander 27 April 2005 (has links)
No description available.
|
318 |
Bone morphogenetic proteins differentially regulate pigmentation in human skin cellsSingh, Suman K., Abbas, Waqas A., Tobin, Desmond J. January 2012 (has links)
No / Bone morphogenetic proteins (BMPs) are a large family of multi-functional secreted signalling molecules. Previously BMP2/4 were shown to inhibit skin pigmentation by downregulating tyrosinase expression and activity in epidermal melanocytes. However, a possible role for other BMP family members and their antagonists in melanogenesis has not yet been explored. In this study we show that BMP4 and BMP6, from two different BMP subclasses, and their antagonists noggin and sclerostin were variably expressed in melanocytes and keratinocytes in human skin. We further examined their involvement in melanogenesis and melanin transfer using fully matched primary cultures of adult human melanocytes and keratinocytes. BMP6 markedly stimulated melanogenesis by upregulating tyrosinase expression and activity, and also stimulated the formation of filopodia and Myosin-X expression in melanocytes, which was associated with increased melanosome transfer from melanocytes to keratinocytes. BMP4, by contrast, inhibited melanin synthesis and transfer to below baseline levels. These findings were confirmed using siRNA knockdown of BMP receptors BMPR1A/1B or of Myosin-X, as well as by incubating cells with the antagonists noggin and sclerostin. While BMP6 was found to use the p38MAPK pathway to regulate melanogenesis in human melanocytes independently of the Smad pathway, p38MAPK, PI3-K and Smad pathways were all involved in BMP6-mediated melanin transfer. This suggests that pigment formation may be regulated independently of pigment transfer. These data reveal a complex involvement of regulation of different members of the BMP family, their antagonists and inhibitory Smads, in melanocytes behaviour.
|
Page generated in 0.0521 seconds