• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 22
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 25
  • 18
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Monocristaux YVO4:Ln à l'échelle nanométrique : Mécanismes de fluorescence et « upconversion »

Mialon, Geneviève 15 October 2009 (has links) (PDF)
Les nanoparticules d'oxydes dopés par des lanthanides sont d'un intérêt particulier pour leur luminescence propre à la nature des ions dopants et non à la taille du matériau. La voie colloïdale est souvent la méthode la mieux adaptée pour obtenir des objets nanométriques, individualisés, bien cristallisés et dispersables dans un milieu donné avec une fluorescence optimisée. Toutefois, elle reste difficile à réaliser pour ces matériaux de température de cristallisation élevée et conduit à des nanocristaux dont les propriétés physiques sont généralement altérées par les défauts cristallins. Ce travail de thèse a ainsi été consacré à l'élaboration de nanoparticules YVO4:Ln parfaitement monocristallines et à l'étude de leurs propriétés optiques. Les nanocristaux formés sont issus d'une synthèse colloïdale suivie d'un traitement thermique dans une matrice de silice mésoporeuse. Les particules obtenues sont monocristallines, nanométriques (40 nm) et stables dans l'eau. Les spectres de luminescence des particules YVO4:Ln sont semblables à ceux des matériaux microniques. Avec un dopage par Eu3+, les rendements de luminescence atteignent 40%. Cette valeur, plus faible que pour le massif (68%), s'explique par la limitation induite par un indice de réfraction plus faible que dans le monocristal massif. Avec un codopage par Yb3+ et Er3+, le phénomène d'upconversion a été observé et étudié pour la 1ère fois en solution aqueuse. Ces nanoparticules sont des convertisseurs relativement efficaces de photons infrarouges en photons visibles. Les particules YVO4:Eu ont par ailleurs été fonctionnalisées pour être utilisées comme sondes biologiques.
12

Phosphors for lighting applications

Yan, Xiao January 2012 (has links)
Trivalent rare earth cations (RE3+) activated nanometre-sized Y2O2S and Gd2O2S phosphors were prepared by converting hydroxycarbonate precursor powders during a firing process. The precursors were prepared using the urea homoprecipitation method. The choice of host crystal and dopant were optimised to meet the specific requirements for practical applications in the field of lighting, X-ray detection, and displays. Parameters that affect the luminescent properties of the resulting phosphors, such as doping concentration, excitation mechanism, firing temperature, and host lattice were investigated. Tb3+ and Er3+ co-doped Y2O2S and Gd2O2S were studied for their upconversion properties under 632.8 nm red laser excitation. The intensities of UC emission were affected by both doping concentration and host lattices. Tb3+ and Er3+ co-doped Y2O2S was found to show strong downconversion from Tb3+ and upconversion from Er3+. The presence of the Er3+ cations directly affects the Tb3+ down-converting properties by acting as centres for energy transfer. The possible energy transfer between Gd3+ and Er3+ should be responsible for the different trend of Er3+ upconversion intensity in Y2O2S and Gd2O2S. It has been established that the Tb3+ and Er3+ co-doped system is superior than the Yb3+ and Er3+ co-doped one. In the latter system the presence of Yb3+ reduces the efficiency of both upconversion and downconversion emission under red laser excitation. These phosphors show potential applications in the security and anti-fraud field. The novel ZnS:Mn QDs were prepared and successfully incorporated into GaN based photonic crystal (PC) holes to efficiently produce white light. The crystal structure and luminescent properties of the ZnS:Mn QDs were investigated as well as the factors affecting the filling rate. Zn1-xCdxS:Mn QDs were also investigated. The addition of Cd cations leads to a red shift in the PL excitation spectra of the Zn1-xCdxS:Mn QDs. The crystal structures and surface properties were also affected by the presence of Cd. Monodisperse PbS QDs with particle size of ~5 nm has been obtained using a similar aqueous reaction method.
13

Synthesis, Characterization, and Spectroscopy of Lanthanide-Doped Inorganic Nanocrystals; Radiant Flux and Absolute Quantum Yield Measurements of Upconversion Nanocrystals, and Fabrication of a Fiber-Optic Radiation Detector Utilizing Synthetically Optimized, Linearly Responsive Nanoscintillators

Stanton, Ian Nicholas January 2013 (has links)
<p>The ability to interrogate structure-function photophysical properties on lanthanide-doped nanoscale materials will define their utility in next-generation applications and devices that capitalize on their size, light-conversion efficiencies, emissive wavelengths, syntheses, and environmental stabilities. The two main topics of this dissertation are (i) the interrogation of laser power-dependent quantum yield and total radiant flux metrics for a homogeneous, solution phase upconversion nanocrystal composition under both continuous wave and femtosecond-pulsed excitation utilizing a custom engineered absolute measurement system, and (ii) the synthesis, characterization, and power-dependent x-ray excited scintillation properties of [Y<sub>2</sub>O<sub>3</sub>; Eu] nanocrystals, and their integration into a fiber-optic radiation sensing device capable of in vivo dosimetry.</p><p>Presented herein is the laser power-dependent total radiant flux and absolute quantum yield measurements of homogeneous, solution-phase [NaYF<sub>4</sub>; Yb (15%), Er (2%)] upconversion nanocrystals, and further compares the quantitative total radiant flux and absolute quantum yield measurements under both 970 nm continuous-wave and 976 nm pulsed Ti-Sapphire laser excitation (140 fs pulse-width, 80 MHz). This study demonstrates that at comparable excitation densities under continuous-wave and fs-pulsed excitation from 42 - 284 W/cm<super>2</super>, the absolute quantum yield, and the total radiant flux per unit volume, are within a factor of two when spectra are integrated over the 500 - 700 nm wavelength regime. This study further establishes the radiant flux as the true unit of merit for quantifying emissive output intensity of upconverting nanocrystals for application purposes, especially given the high uncertainty in solution phase upconversion nanocrystal quantum yield measurements due to their low absorption cross-section. Additionally, a commercially available bulk [NaYF<sub>4</sub>; Yb (20%), Er (3%)] upconversion sample was measured in the solid-state to provide a total radiant flux and absolute quantum yield standard. The measurements were accomplished utilizing a custom-engineered, multi-detector integrating sphere measurement system that can measure spectral sample emission in Watts on a flux-calibrated (W/nm) CCD-spectrometer, enabling the direct measurement of the total radiant flux without need for an absorbance or quantum yield value. </p><p>Also presented is the development and characterization of a scintillating nanocrystalline composition, [Y<sub>2-x</sub>O<sub>3</sub>; Eu<sub>x</sub>, Li<sub>y</sub>], in which Eu and Li dopant ion concentrations were systematically varied in order to define the most emissive compositions under specific x-ray excitation conditions. It is shown that these optimized [Y<sub>2-x</sub>O<sub>3</sub>; Eu<sub>x</sub>, Li<sub>y</sub>] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at x-ray energies spanning from 40 - 220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. X-ray excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon x-ray exposure-rate in energy regimes where either the photoelectric or the Compton effect governs the scintillation mechanism on the most emissive [Y<sub>2-x</sub>O<sub>3</sub>; Eu<sub>x</sub>, Li<sub>y</sub>] composition, [Y<sub>1.9</sub>O<sub>3</sub>; Eu<sub>0.1</sub>, Li<sub>0.16</sub>]. These experiments demonstrate for nanoscale [Y<sub>2-x</sub>O<sub>3</sub>; Eu<sub>x</sub>], that for comparable radiation exposures, when scintillation is governed by the photoelectric effect (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp excitation). </p><p>The nanoscale [Y<sub>1.9</sub>O<sub>3</sub>; Eu<sub>0.1</sub>, Li<sub>0.16</sub>] was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from a [Y<sub>1.9</sub>O<sub>3</sub>; Eu<sub>0.1</sub>, Li<sub>0.16</sub>]-modified optical fiber tip, recorded using a CCD-photodetector or a Si-photodiode, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system, an orthovoltage cabinet-irradiator, and a clinical X-ray Computed Tomography (CT) machine. For all x-ray energies tested from 80 - 225 kVp, this near-radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging and radiation therapy treatment. Because Si-based CCD and photodiode detectors manifest maximal sensitivities over the emission range of nanoscale [Y<sub>1.9</sub>O<sub>3</sub>; Eu<sub>0.1</sub>, Li<sub>0.16</sub>], the timing speeds, sizes, and low power-consumption of these devices, coupled with the detection element's linear dependence of scintillation intensity with radiation dose, demonstrates the opportunity for next-generation radiation exposure measuring devices for in/ex vivo applications that are ultra-small, inexpensive, and accurate.</p> / Dissertation
14

The Influence of Synthesis Temperature on the Crystallographic and Luminescent Properties of NaYF4-based Upconverters and their Application to Amorphous Silicon Photovoltaics

Faulkner, Daniel Owen 28 February 2013 (has links)
There are several factors which conspire to limit the efficiency of solar cells. One of these is the fact that a solar cell is unable to absorb photons of energy less than the band gap of the semiconductor from which it is made; in the case of some high-band gap materials such as amorphous silicon – the model system used in this study – this can mean that as much as 50% of the solar spectrum is unusable. Upconversion phosphors – materials which can, by way of two or more successive photon absorptions, convert low energy (typically near infrared) light into high energy (typically visible) light – offer a potential solution to this problem as they can be used to convert light, which would otherwise be useless to the cell, into light which can be used for power generation. In this thesis we work towards the application of NaYF4-based upconverters to enhanced efficiency amorphous silicon (a-Si) photovoltaic power generation. We begin by synthesizing these upconverters at a range of temperatures and studying the crystallographic and spectroscopic properties of the resulting materials, elucidating heretofore undocumented trends in their luminescence and crystallography, including the effect of synthesis temperature on upconversion intensity, crystallite size, and lattice parameter. We also investigate the emission quantum yield of these materials, beginning with an in depth discussion and investigation of two methods for recording absolute quantum yields. We demonstrate that the quantum yields of the materials may vary by a factor of over 100, depending on the synthesis conditions. After we have fully characterized these properties we turn our attention to the application of these materials to amorphous silicon solar cells, for which we provide a proof of concept by demonstrating the effect of upconversion luminescence on the photoconductance of an a-Si film. We conclude by developing a roadmap for future improvements in the field.
15

The Influence of Synthesis Temperature on the Crystallographic and Luminescent Properties of NaYF4-based Upconverters and their Application to Amorphous Silicon Photovoltaics

Faulkner, Daniel Owen 28 February 2013 (has links)
There are several factors which conspire to limit the efficiency of solar cells. One of these is the fact that a solar cell is unable to absorb photons of energy less than the band gap of the semiconductor from which it is made; in the case of some high-band gap materials such as amorphous silicon – the model system used in this study – this can mean that as much as 50% of the solar spectrum is unusable. Upconversion phosphors – materials which can, by way of two or more successive photon absorptions, convert low energy (typically near infrared) light into high energy (typically visible) light – offer a potential solution to this problem as they can be used to convert light, which would otherwise be useless to the cell, into light which can be used for power generation. In this thesis we work towards the application of NaYF4-based upconverters to enhanced efficiency amorphous silicon (a-Si) photovoltaic power generation. We begin by synthesizing these upconverters at a range of temperatures and studying the crystallographic and spectroscopic properties of the resulting materials, elucidating heretofore undocumented trends in their luminescence and crystallography, including the effect of synthesis temperature on upconversion intensity, crystallite size, and lattice parameter. We also investigate the emission quantum yield of these materials, beginning with an in depth discussion and investigation of two methods for recording absolute quantum yields. We demonstrate that the quantum yields of the materials may vary by a factor of over 100, depending on the synthesis conditions. After we have fully characterized these properties we turn our attention to the application of these materials to amorphous silicon solar cells, for which we provide a proof of concept by demonstrating the effect of upconversion luminescence on the photoconductance of an a-Si film. We conclude by developing a roadmap for future improvements in the field.
16

Estudos estruturais e espectroscópicos de materiais vitrocerâmicos à base de SiO2-Ta2O5 dopados com Er3+ luminescentes nas regiões do visível e infravermelho próximo / Structural and spectroscopic studies of visible and near-infrared emitting glass ceramic materials based on Er3+- doped SiO2-Ta2O5

Karmel de Oliveira Lima 23 July 2012 (has links)
Neste trabalho foram realizadas preparação e caracterizações estrutural e espectroscópica de materiais à base de óxidos nanoestruturados de Ta2O5 dispersos em matrizes amorfas de SiO2, dopados com íons Er3+ e Eu3+. Os materiais foram sintetizados através da metodologia sol-gel e caracterizados com o intuito tanto de estudar a estrutura e a distribuição de íons lantanídeos nestes compósitos, quanto de otimizar suas propriedades ópticas. Foram utilizadas técnicas de espectroscopias vibracional de absorção na região do infravermelho e de espalhamento Raman, difratometria de raios X, espectroscopia de fotoluminescência, reflectância difusa, perfilometria, acoplamento por prisma e microscopia de força atômica para caracterizar tais sistemas na forma de pós e filmes. As variações na razão entre Si-Ta e na concentração de íons lantanídeos, promoveram alterações nos parâmetros estruturais do Ta2O5, mostrando que tais íons lantanídeos são incorporados preferencialmente na matriz de Ta2O5. Foi verificado que estes materiais nanocompósitos possuem tanto emissão em 1550 nm, quanto processos de conversão ascendente de energia com excitação em 980 nm, apresentando emissões nas regiões verde e vermelha. A investigação dos processos de emissão no infravermelho próximo e de transferência de energia como migração e conversão ascendente de energia foi realizada em função da variação de íons Er3+ nos sistemas, de temperaturas de tratamentos térmicos e de potências de excitação. Todos os materiais apresentaram largas e intensas emissões na região de 1550 nm e tempos de vida entre 6,9 a 0,5 ms, além de concentrações de supressão de 1 % em mol de íons Er3+ para materiais na forma de pós e 0,81% em mol de íons Er3+ para os filmes. Foi observado que as emissões na região do visível apresentam processos de absorção do estado excitado (ESA) e de transferência de energia (ETU), envolvendo cerca de 2 e 1,7 fótons para as emissões em 550 e 670 nm, respectivamente. Os filmes apresentaram nanocristais de Ta2O5 dispersos em uma matriz amorfa de sílica, perfis homogêneos para todas as amostras, além de superfícies livres de trincas e rugosidades médias da ordem de 1 nm, que demonstram elevado potencial para aplicações como guias de luz. Os materiais estudados apresentam potenciais aplicações como amplificadores ópticos, laseres e conversores de energia no infravermelho-visível. / This work reports on the preparation and structural and spectroscopic characterization of Er3+ ion and Eu3+.-doped nanostructured Ta2O5-based oxides materials dispersed in a SiO2 amorphous matrix. The materials were synthesized by the sol-gel method and characterized in order to study the structure and distribution of these lanthanides composite as well as to optimize its optical properties. The techniques used to characterize such systems, in the form of powders and films, were the vibrational infrared absorption spectroscopy and Raman scattering, X-ray diffraction, photoluminescence spectroscopy, diffuse reflectance, perfilometry, prism coupling and atomic force microscopy. Variations in the Si-Ta ratio and the lanthanide ions concentration promoted changes in the Ta2O5 structural parameters, showing these lanthanide ions are preferentially incorporated in the Ta2O5 matrix of. It was found that these nanocomposite materials have emission in 1550 nm as well as green and red range upconversion energy processes with 980 nm excitation. The investigation of emission and energy transfer processes in the near infrared range - such as energy migration and upconversion - was carried out according the variation of Er3+ ions, annealing temperatures and excitation powers in the studied systems. All materials shown intense and wide emissions in the 1550 nm range, lifetimes of 6.9 to 0.5 ms and quenching concentrations of 1 mol% of Er3+ ions for materials in the powder form and 0.81 mol% of Er3+ ions for the films. It were observed excited state absorption (ESA) and energy transfer (ETU) processes, involving about 2 and 1.7 photons in the visible range emission at 550 and 670 nm, respectively. The films shown Ta2O5 nanocrystals dispersed in an amorphous SiO2 matrix with similar profiles for all samples, with crack-free surfaces and average roughness of about 1 nm, showing a high potential for applications such as waveguides. Therefore, the studied materials have potential applications as optical amplifiers, lasers and infrared-visible energy converters.
17

Studies of the upconversion of light by Ru(II) complexes as photosensitizers with anthracene derivatives as emitters

Suwatpipat, Kullatat 07 August 2010 (has links)
High-energy light was generated from lower-energy photons through an upconversion process using a mixture of a photosensitizer and an emitter. Factors that influence efficiency of the process were studied. Several ruthenium(II) complexes coordinated with bi- and polypyridyl ligands were prepared and used as photosensitizers. Anthracene and its derivatives were used as emitters. In each experiment, the upconversion sample was irradiated with a laser and the emission was monitored. The emission spectra exhibited upconversion (415-513 nm), scattering laser light (514 or 632.8 nm), and phosphorescence (>550 nm). The laser beam was positioned close to the edge of the sample cuvette to avoid a reduction in the upconversion emission caused by self absorption. Increases in laser power, photosensitizer concentration, or emitter concentration increased the upconversion intensity (Iu). Dissolved oxygen caused a minor decrease in Iu. Different photosensitizer and emitter derivatives were tested. Homoleptic ruthenium complexes were more effective photosensitizers with DPA as emitter than their heteroleptic analogues. Upconversion was detected in the [Ru(deab)3](PF6)2 (deab = 4,4'-bis(N,N-diethylamino)-2,2'-bipyridine) and DPA system using helium-neon (632.8 nm) and argon ion (514 nm) lasers, indicating the same process can occur whenever the photosensitizer absorbs the incident radiation. A detailed mechanism is proposed in which an excitation photon is absorbed by a sensitizer to produce an excited triplet state. Energy is transferred from sensitizer to emitter by collision, generating triplet excited emitter. Two emitter triplets annihilate to produce one highly excited singlet. This singlet emits the upconversion photon. The steady-state approximation is used to explore the upconversion and phosphorescence (Ip) intensities. Ip has a first order dependence on laser power, while Iu varies between first and second order. The variable power dependence of Iu occurs because of the competition between triplet-triplet annihilation and other decay pathways. Finally, (Iu/Ip2) is proportional to the second order of DPA concentration. These results generate a better understanding of the upconversion process and they will help to direct the work of others to enhance the efficiency of photonic devices. Practical applications of upconversion, such as the development of better photovoltaic cells, will be aided by the work described herein.
18

Produção e caracterização de vidros de óxidos de metais pesados dopados com terras-raras e nanopartículas metálicas / PRODUCTION AND CHARACTERIZATION OF RARE-EARTH AND METALLIC NANOPARTICLE DOPED HEAVY METAL OXIDE GLASSES

Bomfim Júnior, Francisco Araújo 26 June 2009 (has links)
Vidros de óxido de metais pesados dopados com érbio têm sido estudados e utilizados em diversas aplicações. Entretanto, a eficiência de absorção óptica destes vidros em 980 nm é limitada pela baixa secção de choque de absorção, a qual pode ser aumentada pela presença de íons Yb3+ e de nanopartículas metálicas, as quais contribuem significativamente para o aumento da eficiência das emissões de conversão ascendente. No presente trabalho é investigada a influência da presença de nanopartículas metálicas na luminescência de conversão ascendente de freqüência do íon Er3+ em vidros co-dopados com Er3+/Yb3+. Vidros com composição GeO2-PbO e PbO-GeO2-Ga2O3 co-dopados com 0,5% de Er2O3 e diferentes concentrações de Yb2O3 foram produzidos. Para avaliar os efeitos da presença de nanopartículas metálicas na luminescência de conversão ascendente de freqüência, foram também produzidos vidros co-dopados com Er2O3/ Yb2O3 contendo AgNO3, Au2O3 e Cu2O. O aumento nas emissões de conversão ascendente de freqüência na região de visível dos íons Er3+ foi observado para os vidros GeO2-PbO e PbO-GeO2- Ga2O3 co-dopados. Vidros GeO2-PbO co-dopados contendo prata apresentam um aumento substancial nas emissões de CAF influenciado pelo aumento do campo atômico local na vizinhança das nanopartículas. Este efeito não foi observado nos vidros PbO-GeO2-Ga2O3 co-dopados contendo ouro e nem nos vidros GeO2-PbO codopados contendo Cu2O. Todas as medidas de conversão ascendente de freqüência foram realizadas por meio da excitação das amostras por um laser de diodo operando em 980 nm. / Erbium doped heavy metal oxide glasses have been previously studied and used in several applications. However, the Er3+ optical absorption efficiency around 980 nm is restricted by its low absorption cross-section. To overcome this drawback Yb3+ ions and metallic nanoparticles have been added in the glass matrices which can effectively contribute to increase the efficiency of the frequency upconversion emissions. In the present work the effects of nanoparticles in the frequency upconversion luminescence of Er3+ in Er3+/ Yb3+ co-doped glasses were investigated. GeO2-PbO and PbO-GeO2-Ga2O3 glasses co-doped with 0.5 wt/o of Er2O3 and different concentrations of Yb2O3 were produced. To evaluate the effects of metallic nanoparticles in the frequency upconversion luminescence, AgNO3, Au2O3, and Cu2O were also added to the glass compositions. The increase of the visible Er3+ frequency upconversion luminescence emissions was observed for Er3+ /Yb3+ codoped PbO-GeO2-Ga2O3 and GeO2-PbO glasses. The GeO2-PbO glasses containing silver NPs presented a substantial increase of the Er3+ frequency upconversion luminescence emissions. This is probably due to the local atomic field increase in the vicinity of the metallic NPs, which affects the rare-earth ion transitions. However, this effect was not observed in co-doped PbO-GeO2-Ga2O3 glasses containing Au2O3 and co-doped GeO2-PbO glasses containing Cu2O. All frequency upconversion luminescence emissions were stimulated by exciting samples with a diode laser operating in 980nm.
19

Produção e caracterização de vidros de óxidos de metais pesados dopados com terras-raras e nanopartículas metálicas / PRODUCTION AND CHARACTERIZATION OF RARE-EARTH AND METALLIC NANOPARTICLE DOPED HEAVY METAL OXIDE GLASSES

Francisco Araújo Bomfim Júnior 26 June 2009 (has links)
Vidros de óxido de metais pesados dopados com érbio têm sido estudados e utilizados em diversas aplicações. Entretanto, a eficiência de absorção óptica destes vidros em 980 nm é limitada pela baixa secção de choque de absorção, a qual pode ser aumentada pela presença de íons Yb3+ e de nanopartículas metálicas, as quais contribuem significativamente para o aumento da eficiência das emissões de conversão ascendente. No presente trabalho é investigada a influência da presença de nanopartículas metálicas na luminescência de conversão ascendente de freqüência do íon Er3+ em vidros co-dopados com Er3+/Yb3+. Vidros com composição GeO2-PbO e PbO-GeO2-Ga2O3 co-dopados com 0,5% de Er2O3 e diferentes concentrações de Yb2O3 foram produzidos. Para avaliar os efeitos da presença de nanopartículas metálicas na luminescência de conversão ascendente de freqüência, foram também produzidos vidros co-dopados com Er2O3/ Yb2O3 contendo AgNO3, Au2O3 e Cu2O. O aumento nas emissões de conversão ascendente de freqüência na região de visível dos íons Er3+ foi observado para os vidros GeO2-PbO e PbO-GeO2- Ga2O3 co-dopados. Vidros GeO2-PbO co-dopados contendo prata apresentam um aumento substancial nas emissões de CAF influenciado pelo aumento do campo atômico local na vizinhança das nanopartículas. Este efeito não foi observado nos vidros PbO-GeO2-Ga2O3 co-dopados contendo ouro e nem nos vidros GeO2-PbO codopados contendo Cu2O. Todas as medidas de conversão ascendente de freqüência foram realizadas por meio da excitação das amostras por um laser de diodo operando em 980 nm. / Erbium doped heavy metal oxide glasses have been previously studied and used in several applications. However, the Er3+ optical absorption efficiency around 980 nm is restricted by its low absorption cross-section. To overcome this drawback Yb3+ ions and metallic nanoparticles have been added in the glass matrices which can effectively contribute to increase the efficiency of the frequency upconversion emissions. In the present work the effects of nanoparticles in the frequency upconversion luminescence of Er3+ in Er3+/ Yb3+ co-doped glasses were investigated. GeO2-PbO and PbO-GeO2-Ga2O3 glasses co-doped with 0.5 wt/o of Er2O3 and different concentrations of Yb2O3 were produced. To evaluate the effects of metallic nanoparticles in the frequency upconversion luminescence, AgNO3, Au2O3, and Cu2O were also added to the glass compositions. The increase of the visible Er3+ frequency upconversion luminescence emissions was observed for Er3+ /Yb3+ codoped PbO-GeO2-Ga2O3 and GeO2-PbO glasses. The GeO2-PbO glasses containing silver NPs presented a substantial increase of the Er3+ frequency upconversion luminescence emissions. This is probably due to the local atomic field increase in the vicinity of the metallic NPs, which affects the rare-earth ion transitions. However, this effect was not observed in co-doped PbO-GeO2-Ga2O3 glasses containing Au2O3 and co-doped GeO2-PbO glasses containing Cu2O. All frequency upconversion luminescence emissions were stimulated by exciting samples with a diode laser operating in 980nm.
20

Análise da emissão de conversão ascendente de energia do sistema vítreo ZBLAN: Er3+ em baixa temperatura

Kopp, Fernando Marini 07 June 2006 (has links)
Made available in DSpace on 2017-07-21T19:26:02Z (GMT). No. of bitstreams: 1 FernandoMarini.pdf: 872940 bytes, checksum: 00bc75841ddcac163c60f80471aee109 (MD5) Previous issue date: 2006-06-07 / The upconversion process in rare earth elements (Er, Nd, Pr, Tm and Yb) doped fluoride glasses has received great attention from several researches. The main interest is its use in several technological applications as optical amplifiers and lasers. The fluoride glass (ZBLAN) is an amorphous glass and a good rare earth host material with low multiphonon relaxation, good chemical stability under diverse atmospheric conditions and low optical attenuation in the visible region of the electromagnetic spectrum. ZBLAN:Er3+ is a very well studied material of this class. However, the influence of the glass matrix in the upconversion process has not been investigated. This work presents upconversion and the luminescence spectra at T=2K and some definitions. The both spectra was obtained from 4S3/2 -> 4I15/2 transition level and its analysis show us energy reabsorption in the upconversion process. The upconversion spectrum obtained from 4I13/2 -> 4I9/2 transition with 800 nm Ti-Saphire laser show us seven of eight theoretical expected transitions. This results was compared with luminescence spectra obtained from 4I15/2 -> 4F7/2 transition with 488 nm Argon laser, wich show us the eight theoretical expected lines of 4S3/2 -> 4I15/2 transition, and confirm the correct position of this emission lines obtained from upconversion. We propose a possible path of the upconversion excitation process in this sample and an explanation (energy reabsorption process) for the disappearance of one line in upconversion emission spectra. / O processo de conversão ascendente de energia (upconversion) em vidros fluoretos dopados com elementos terras-raras (Er, Nd, Pr, Tm e Yb) tem recebido grande atenção de pesquisadores no mundo inteiro. O interesse se deve principalmente pelas aplicações deste sistema em dispositivos amplificadores ópticos e lasers com inúmeras aplicações tecnológicas. O vidro fluoreto (ZBLAN) é um material amorfo e que pelas suas vantagens de baixa relaxação multifônica; estabilidade frente a condições atmosféricas e baixa atenuação óptica na região visível do espectro eletromagnético se apresenta com um bom material hospedeiro para íons terras-raras. Entretanto, no caso específico, apesar de muito estudado o sistema ZBLAN:Er3+ apresenta algumas indefinições quanto as suas propriedades ópticas. Uma delas é sobre a efetiva participação da rede da matriz vítrea no processo de conversão ascendente de energia. Neste trabalho são apresentadas medidas de upconversion e luminescência em temperatura de 2K com algumas definições. Ambos os espectros foram obtidos na transição 4S3/2 -> 4I15/2 e servem para demonstrar que existe reabsorção de energia no processo de upconversion. O espectro de upconversion obtido a partir do bombeio da transição 4I15/2 -> 4I9/2 com auxílio de um laser de Ti-Safira emitindo em 800nm permite a verificação de sete das oito transições teoricamente esperadas. Assim, com objetivo de certificar os resultados obtidos de upconversion foram realizadas medidas de luminescência a partir do bombeio da transição 4I15/2 -> - 4F7/2 com auxílio de um laser de argônio emitindo na linha 488nm. Da luminescência pode-se realizar a completa identificação das oito transições esperadas na transição 4S3/2 -> 4I15/2 além da confirmação das posições das linhas de emissão obtidas a partir do espectro de upconversion. Propôs-se então um caminho para as transições de excitação que leve ao processo de upconversion na amostra estudada e uma explicação (processo de reabsorção de energia) para desaparecimento de uma das linhas de emissão no espectro de upconversion.

Page generated in 0.0598 seconds