• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 22
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 25
  • 18
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Elaboration et caractérisation de nanoparticules luminescentes par upconversion pour l'imagerie médicale / Elaboration and characterization of upconverting luminescent nanoparticles for medical imaging

Francolon, Nadège 11 December 2015 (has links)
L’objectif de ces travaux de thèse repose sur la conception de nanoparticules pour l’upconversion (UCNPs) visant à réaliser de l’imagerie médicale par fluorescence. L’intérêt de ces nano-objets s’appuie sur l’excitation et l’émission conjointe dans le domaine du proche infrarouge, permettant de travailler dans la fenêtre thérapeutique des tissus. Une première partie présente l’élaboration des nanoparticules sphériques de NaYF 4 , dont le taux de dopage a permis de mettre en avant les conversions possibles grâce aux phénomènes optiques d’upconversion (IR → NIR, IR → visible et IR → UV). De plus, l’étude d’hydrophilisation, primordiale pour des applications médicales, a montré un fort intérêt pour l’enrobage par échange de ligands et plus particulièrement par des molécules dendritiques. Dès lors que les nano-objets ont été validés et stabilisés dans un milieu aqueux, ces derniers ont été testés in vitro et ont permis de montrer une cytotoxicité faible. La dernière partie a permis d’adapter l’équipement IVIS SPECTRUM® à nos conditions optimales d’utilisation des UCNPs. Cette installation a validé la preuve de concept de nos UCNPs in vivo, permettant ainsi d’être imagées chez le petit animal. Ce dispositif, encore unique en Europe ouvre ainsi la voie pour des études plus approfondies de l’utilisation des UCNPs pour la détection de tissus spécifiques, tels que les tissus tumoraux. / The aim of this PhD work deals with the design of upconverting nanoparticles (UCNPs) to perform medical imaging by fluorescence. The interest of these nano-objects is based on both excitation andemission in the near infrared range, allowing the work in the therapeutic window of tissue. The first part presents the development of spherical nanoparticles of NaYF 4 , which the doping concentration has highlighted the transitions permits through upconversion phenomena (IR → NIR, IR → visible and IR → UV). In addition, the hydrophilization part, necessary for medical application, has shown a strong interest in the coating by ligand exchange and particularly by dendritic molecules. Since the nanoparticles have been validated and stabilized in aqueous medium, they were tested in vitro and have shown low cytotoxicity. The last part was to adapt the IVIS SPECTRUM® equipment to our optimal conditions of use of UCNPs. This installation has validated the proof of concept of our UCNPs in vivo, which is to image in small animals. This device, also unique in Europe, opens the way for further use of UCNPs studies for the detection of specific tissues such as tumor tissues.
22

Propriedades magnéticas e ópticas de nanopartículas / Magnetic and optical properties of nanoparticles

Lesseux, Guilherme Gorgen, 1989- 05 June 2013 (has links)
Orientadores: Carlos Rettori, Pascoal José Giglio Pagliuso / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-22T06:56:36Z (GMT). No. of bitstreams: 1 Lesseux_GuilhermeGorgen_M.pdf: 14003739 bytes, checksum: b737fc7f0d847cdc75e895351974e1e2 (MD5) Previous issue date: 2013 / Resumo: Compostos nanoestruturados têm atraído cada vez mais atenção do ponto de vista tecnológico devido às inúmeras possibilidades em termos de aplicação nas mais diversas áreas. Além da motivação em termos de aplicação, o aumento da proporção de átomos na superfície em relação ao volume e a redução da dimensionalidade nestes compostos trazem consigo novas questões em física. Com base nisso, o estudo científico sistemático destas questões é fundamental para o desenvolvimento da nanociência e da nanotecnologia de forma geral. No presente trabalho são estudadas propriedades magnéticas de três tipos de nanopartículas (NPs): i) NPs de Au assistidas por óxidos do tipo R2O3 (R = Er e Y) que exibem propriedades ferromagnéticas; ii) NPs metálicas, Au e Ag, com a impureza magnética Er3+ diluída permitindo assim a sondagem microscópica de propriedades físicas por Ressonância de Spin Eletrônico; iii) E, por fim, NPs de NaYF4 mono e codopadas com os íons de terras raras RE = Yb3+, Er3+ e Tm3+ nas quais foi possível verificar o fenômeno de upconversion. Com base em adaptação de métodos estabelecidos na literatura, [1_3] foi desenvolvida uma rota química para a obtenção de NPs de Au com propriedades ferromagnéticas acentuadas pela incorporação de óxidos. A partir da magnetização de saturação em 2 K e baseado em uma análise termogravimétrica (TGA) estimou-se um momento magnético efetivo de aproximadamente 0.2 µB por átomos de Au na superfície das NPs. Além da caracterização magnetometrica típica, observou-se uma linha intensa de ESR em banda-X desde 370 K até 4.2 K. Esta ressonância possui intensidade praticamente constante caracterizando a ressonância observada como ferromagnética (FMR). Estes resultados são interpretados com base na ligação entre a capa orgânica (capping), o óxido R2O3 e os átomos de Au gerando uma hibridização efetiva dos orbitais 5d-6s dos elétrons do Au. Esta hibridização seria, então, responsável por tornar a camada 5d do Au magnética devido a spins não compensados nos orbitais 5d. As NPs metálicas com impurezas de Er3+ foram obtidas por uma variação do método utilizado para as NPs de Au ferromagnéticas. Os valores de g e as estruturas hiperfinas observadas indicam que o íon Er3+ está em um sítio cúbico tanto nas partículas de Ag como nas de Au. Os espectros de ESR mostram que não há deslocamento de g e relaxação tipo Korringa devido à interação de troca entre os spins do Er3+ e os dos elétrons de condução, sugerindo assim que esta interação de troca não ocorre em NPs metálicas. Por fim, as NPs de NaYF4 dopadas com RE = Yb3+, Er3+ e Tm3+ foram obtidas por um método estabelecido na literatura. [4, 5] A incorporação, o estado de oxidação e a concentração dos íons magnéticos Er3+ e Yb3+ foram confirmados por medidas de magnetização dc e de ESR. Observou-se emissão visível no verde e no azul para amostras codopadas com 20%Yb3+ / 2%Er3+ e 30%Yb3+ / 0.5%Tm3+, respectivamente, devido ao fenômeno conhecido como upconversion / Abstract: Nanostructured compounds have attracted growing attention from the technological point of view due to numerous possibilities in terms of application in several areas. Besides, the large surface/volume atoms ratio and the reduced dimensionality of these nanocompounds raised new fundamental physical issues. Therefore, a detailed and systematic scientific study regarding these phenomena is crucial for the sake of nanoscience and nanotechnology development. In this dissertation, we thoroughly investigated the magnetic properties of three different types of nanoparticles (NPs): i) Au NPs assisted by oxides R2O3 (R = Er and Y) which present unexpected ferromagnetic properties; ii) diluted magnetic Er3+ impurities in Ag and Au NPs, which allow Electron Spin Resonance to study several microscopic local physical properties and, finally, iii) single and co-doped Yb3+, Er3+ and Tm3+ NaYF4 NPs that allowed to verify the up-conversion phenomena in these NPs. After adapting and improving already established methods reported in the literature, [1_3] we developed a novel chemical route to obtain Au-NPs with enhanced ferromagnetic properties by oxide incorporation. Based on the saturation magnetization at 2 K and thermogravimetric analysis (TGA), we estimated an effective magnetic moment of µeff ¿ 0.2 µB per Au atom on the surface of the NPs. Besides the typical magnetometric characterization, we also carried out X-band ESR experiments. An intense ESR line was observed in the range of 4.2K = T = 370K with an integrated signal intensity which is almost constant in the entire T-range. Based on our results, the observed ESR signal is attributed to a ferromagnetic resonance (FMR). These results are discussed in terms of bonds between the NP-capping ligands and the Au atoms, which give rise to an effective hybridization between the 5d-6s electrons at the surface of the AuNPs. This hybridization might be the responsible mechanism for the Au 5d shell to become magnetic due to uncompensated spins in the 5d orbitals. The metallic Er3+ doped Ag and Au NPs were obtained by a slightly modified method used to get the ferromagnetic Au -NPs. The ESR g-values and observed hyperfine splitting indicate a cubic symmetry for the Er3+ ions in the Ag and Au NPs. Furthermore, we observed no g-shift and Korringa relaxation due to the exchange interaction between the magnetic rare-earth impurities and the conduction electron spins. This fact suggests that such an exchange interaction is negligible in metallic NPs. Finally, the Er3+, Yb3+ and Tm3+ doped NaYF4 NPs were obtained by a method already established in the literature. [4, 5] The incorporation of the Er3+ and Yb3+ ions as well as their oxidation state and concentration were confirmed by T-dependent magnetization and ESR measurements. For the co-doped NaYF4 NPs, we observed by naked eye the expected green and blue emitted lights of Yb/Er and Yb/Tm, respectively, due to a phenomenon known as upconversion / Mestrado / Física / Mestre em Física
23

Nanobâtonnets de NaYF4 à upconversion : synthèse, dispersion colloïdale et propriétés électro-optiques / NaYF4 nanorods with upconversion luminescence : synthesis, colloidal dispersion and electro-optical properties

Thiriet, Maud 27 October 2016 (has links)
Les nanoparticules de fluorures dopées avec des ions lanthanides ont connu un développement croissant ces dernières années. Elles présentent en effet des propriétés optiques d’upconversion remarquables et très intéressantes pour de multiples applications allant du photovoltaïque à l’imagerie médicale. Dans cette thèse, on a élaboré des nanobâtonnets de NaYF4 dopés Yb/Er/Gd, aux propriétés d’émission optimisées. Leur alignement par un champ électrique a ensuite été étudié, nous permettant de tirer parti de leur anisotropie et des propriétés physiques en découlant : biréfringence et luminescence polarisée.Les nanocristaux sont synthétisés par voie solvothermale, à haute température (200 °C) et sous haute pression (20 bars). Leur morphologie et leur structure cristalline sont contrôlées par un choix approprié des paramètres de synthèse comme le dopage en gadolinium ou les conditions de chauffage. A l’issue de la synthèse, l’état d’agrégation des particules de NaYF4 produites limite leur dispersion dans les solvants organiques usuels. Une fonctionnalisation bien spécifique avec des ligands possédant des groupements carboxylate ou phosphonate se révèle alors indispensable. Le greffage des particules avec un ion citrate ou une molécule d’alendronate permet d’obtenir des suspensions colloïdales très stables dans le DMSO. Par ailleurs, la réactivité de l’amine porté par l'alendronate nous a permis de greffer une deuxième molécule active : une rhodamine B, un colorant test, ainsi qu’un cristal liquide cyanobiphényl à tête carboxylique. Grâce à cette fonctionnalisation, de nouveaux matériaux hybrides organo-minéraux ont été développés. La réponse électro-optique des suspensions colloïdales soumises à un champ électrique haute fréquence suit une loi de type effet Kerr, avec une relation quadratique entre la biréfringence induite et l’amplitude du champ appliqué. Les constantes de Kerr sont de l’ordre de 10 8 m/V2 en cohérence avec ce qui a été observé sur d’autres systèmes. La biréfringence observée est majoritairement induite par la structure cristalline anisotrope des particules. Le mécanisme de réorientation de nos particules sous champ est largement dominé par la polarisation de leur nuage électronique. Une luminescence polarisée est finalement décrite, ouvrant la voie à l’usage des nanobâtonnets de NaYF4 comme sondes d’orientation dans des systèmes biologiques ou au sein de fluides en écoulement. / Fluorides nanoparticles doped with lanthanides have seen an increase in interest the last years. They offer outstanding optical properties with a very attractive upconversion for multiple applications from photovoltaics to medical imaging. In this work, we use NaYF4 nanorods doped with Yb/Er/Gd and optimized emission properties. Their alignment by an electric field allows us to access their anisotropic physical properties like polarized luminescence and birefringence.Nanocrystals are synthesized by a hydrothermal route, at high temperature (200 °C) and high pressure (20 bar). Morphology and crystalline structure can be controlled by varying gadolinium doping and heating conditions. At the end of the synthesis, the aggregation of the particles limits their dispersion in all common organic solvents. A particular functionalization with ligands having carboxylate or phosphonate functions is shown to be necessary. The grafting of particles with ions like citrate or alendronate allows to obtain very stable colloidal suspensions in DMSO. Furthermore, the reactivity of the amine function carried by alendronate enables us to graft a second active dye like rhodamine B or a cyanobiphenyl liquid crystal with a carboxylic group. New organo-mineral materials can be produced with this functionalization. The electro-optical response of colloidal suspensions submitted to a high-frequency electric field follows the Kerr law, with a quadratic relation between induced birefringence and the amplitude of the applied field. The system exhibits Kerr constants of the order of 108 m/V2, in agreement with the literature. The birefringence is induced by the anisotropic crystalline structure of the colloid, not by its shape. The mechanism of reorientation of colloids under an electric field is widely dominated by the polarization of their ionic cloud. A polarized luminescence is finally described, which will allow the use of NaYF4 nanorods as orientation probes in biological systems or fluid flows.
24

Dye sensitzation effects on lanthanide upconversion nanoparticles

Bäck, Dag Albin, Jörgensen, Andreas January 2022 (has links)
In this report we studied the properties of the dye IR806 and possible mechanisms of the dye sensitization effect on ytterbium-erbium co-doped upconversion nanoparticles. We found that the dye IR806 has two primary emission peaks in the NIR spectral range at around 850 nm and at around 950 nm. The intensity of these peaks were observed to be affected by the concentration of the dye and the addition of Gadolinium(III) chloride and Yttrium(III) chloride. Specifically increases in the intensity of the 950 nm peak relative to the 850 nm were of interest since ytterbium readily absorbs 950 nm and transfers this energy in the upconversion process. Our hypothesis is that the change in the intensity of the 850 nm and the 950 nm peak is associated with aggregation of the dye IR806 and the amount of monomers and dimers. Results from adding ytterbium-erbium co-doped upconversion nanoparticles in IR806-ethanol solution points to the picture of dimers being formed on the surface on the nanoparticles. This analysis is however based on the assumption that the 850 nm emission peak of IR806 is associated with monomers and that the 950 peak is associated with dimers, which is yet to be confirmed and further studies are therefore needed.
25

Materials modification strategies to improve praseodymium-doped visible-to-ultraviolet upconversion systems for environmental applications

Cates, Stephanie 27 May 2016 (has links)
UV radiation is utilized in a number of environmental technologies, most notably for the disinfection of water, air, and surfaces through the use of UVC fluorescent lamps. Recently, our group developed a luminescent material that could emit germicidal UVC simply by irradiating it with a household fluorescent lamp, thus introducing a new type of antimicrobial surface powered by low-intensity visible light. The materials were doped with praseodymium ions (Pr3+) which have the unique capability of converting visible light to higher energy UV using an optical mechanism called upconversion. While visible-to-UV upconversion materials appeared promising for environmental application—particularly because solar irradiation could be used for their activation—their practical application was thwarted by low light conversion efficiencies. Herein we discuss the pursuit of new material forms and modifications designed to improve the efficiency of Pr3+-based upconversion systems. These enabled successful enhancement of antimicrobial activity and led to a proof of concept for upconversion-sensitized TiO2 photocatalysis. Correlations between material properties and optical behavior will be presented, followed by commentary on how these strategies might be used to further advance upconversion systems toward environmental application.
26

Applications of Optical Properties from Nanomaterials for Enhanced Activity of a Titania Photocatalyst under Solar Radiation

Pickering, Jon W. 16 September 2015 (has links)
In recent years, employing advanced oxidation processes (AOPs) as a means of wastewater remediation has emerged as a promising route towards maintaining a sustainable global water management program. The heterogeneous photocatalytic oxidation process has been of particular interest due to the prospective of utilizing solar radiation as the driving force behind the degradation of pollutants. Of the photocatalyst studied to date, TiO2 remains the most attractive material for environmental applications due to its affordability, stability, biocompatibility and high quantum yield. A key draw back however is roughly only 5% of solar radiation incident on earth can provide the energy required (3.0-3.2 eV) to generate the electron-hole pairs necessary for photo-oxidation. As a means to improve the process under solar irradiance, optical properties such as surface plasmon resonance of metallic nanoparticles and upconversion luminescence of rare earth ions have been exploited for improved light harvesting as well as the generation of more usable UV light from lower energy photons. In order to explore these phenomena and their role in the enhancement of this AOP, the photocatalytic degradation of organic dyes was studied under various conditions employing Degussa P25 TiO2 as the photocatalyst. Ag nanocubes, Ag-Pd core-shell nanoparticles and YAG:Yb+3,Er+3 served as the dopants for the various studies which resulted in enhanced degradation rates, insight into the applicability of utilizing Yb+3 as sensitizing ion under solar radiation and a novel core-shell nanoparticle synthesis.
27

Energy transfer enhancement of photon upconversion systems for solar energy harvesting

Kang, Ji-Hwan 02 October 2012 (has links)
Photon energy upconversion (UC), a process that can convert two or more photons with low energy to a single photon of higher energy, has the potential for overcoming the thermodynamic efficiency limits of sunlight-powered devices and processes. An attractive route to lowering the incident power density for UC lies in harnessing energy transfer through triplet-triplet annihilation (TTA). To maximize energy migration in multicomponent TTA-assisted UC systems, triplet exciton diffusivity of the chromophores within an inert medium is of paramount importance, especially in a solid-state matrix for practical device integration. In this thesis, low-threshold sensitized UC systems were fabricated and demonstrated by a photo-induced interfacial polymerization within a coaxial-flow microfluidic channel and in combination with nanostructured optical semiconductors. Dual-phase structured uniform UC capsules allow for the highly efficient bimolecular interactions required for TTA-based upconversion, as well as mechanical strength for integrity and stability. Through controlled interfacial photopolymerization, diffusive energy transfer-driven photoluminescence in a bi-molecular UC system was explored with concomitant tuning of the capsule properties. We believe that this core-shell structure has significance not only for enabling promising applications in photovoltaic devices and photochromic displays, but also for providing a useful platform for photocatalytic and photosensor units. Furthermore, for improving photon upconverted emission, a photonic crystal was integrated as an optical structure consisting of monodisperse inorganic colloidal nanoparticles and polymer resin. The constructively enhanced reflected light allows for the reuse of solar photons over a broad spectrum, resulting in an increase in the power conversion efficiency of a dye-sensitized solar cell as much as 15-20 %.
28

Development of visible-to-ultraviolet upconversion phosphors for light-activated antimicrobial surfaces

Cates, Ezra Lucas Hoyt 01 April 2013 (has links)
A new form of antimicrobial surface was developed, which relies on an optical mechanism rather than chemical inactivation of microorganisms. Through the photoluminescence process of upconversion, low energy photons can be amplified into higher energy photons, and in this case, phosphors capable of converting visible light into germicidal UVC radiation were synthesized. Host crystals were doped with a praseodymium activator ion and shown to emit UVC photons upon excitation by blue or violet light. Surface coatings were prepared and proof-of-concept experiments demonstrated that, under exposure to a household fluorescent lamp, sufficient UVC radiation was emitted from the surfaces to achieve observable inactivation of surface bacterial spores and inhibition of biofilm growth. Material engineering was conducted to achieve higher optical conversion efficiency, wherein lithium codoping and development of alternative oxyfluoride host crystals were found to significantly improve upconversion emission. Implications of polychromatic excitation were investigated by conducting photoluminescence spectroscopy under combined laser beam excitation, while the effects of other application parameters are also discussed. These findings show that upconversion-based antimicrobial materials have strong potential for offering sustainable and effective technology for the prevention of diseases.
29

Lanthanide-based dielectric nanoparticles for upconversion luminescence

Barrera Bello, Elixir William 20 February 2013 (has links)
En esta tesis se ha estudia la luminiscencia y la emisión anti-stokes visible por excitación infrarroja a 980 nm, en iones lantánidos embebidos en nanoestructuras de Lu2O3 y KLu(WO4)2, en los cuales los iones lantánidos muestran interesantes propiedades ópticas. Se han producido tres tipos de nanoestructuras con alta cristalinidad a través del método Pechini modificado y síntesis hidrotermal. Se han descrito los mecanismos de fotoluminiscencia, catodoluminiscencia y eficiencia cuántica, en base a las especies adsorbidas en la superficie y la potencia de excitación. Se han sintetizado nanobarras y partículas núcleo-capa que puede ser utilizadas como bloques de construcción de estructuras más complejas en aplicaciones fotónicas. Se ha logrado la generación de luz blanca en nanocristales de (Tm,Ho,Yb)KLu(WO4)2. Estas nanopartículas pueden formar parte de estructuras más complejas en dispositivos emisores de luz o como indicadores para visualización biológica de células. / Nowadays especially attention has been given to materials capable of generating visible light by conversion of near infrared photons (upconversion) for save-energy technologies and reduction of photo-degradation caused by UV high energy photons. Nanoparticles using optically active Ln3+ have shown great potential for use as upconverting luminescent materials in bio-analysis applications, counterfeit fighting and back-lighting. However materials with nanometer dimensions may affect the luminescence dynamics of the Ln3+ ion modifying the emission lifetime, quantum yield, and concentration quenching. This thesis discusses the synthesis and upconversion emission of lanthanide doped nanostructures with Lu2O3 and KLu(WO4)2 as host because they posses high chemical stability; they offer favorable incorporation of Ln3+ ions and high absorption and emission cross sections. Er3+, Ho3+ and Tm3+ are used as emitting ions and Yb3+ as sensitizer. Luminescence dynamics of these ions into these nanostructures and the possibility of white light emission in KLuW nanocrystals are discussed.
30

Hybrid Organic/Inorganic Optical Upconversion Devices

Chen, Jun 13 December 2011 (has links)
The widely available charge coupled device (CCD) and lately CMOS imaging devices have created many applications on a mass scale. However these devices are limited to wavelengths shorter than about 1 μm. Hybrid photon upconversion devices have been developed recently. The end goal is to achieve an alternative technology for imaging in the 1.5-μm region. The hybrid upconversion idea relies on the integration of a photodetector and an organic light emitting diode (OLED). Under a forward bias for the OLED, the detected signal in the Photodetector is sent to the OLED, resulting in an increase in emission at a shorter wavelength and therefore achieving optical up conversion. An OLED device can simply consists of a stack of anode, a hole transport layer (HTL), a light-emitting layer, an electron transport layer (ETL), a cathode layer, and it typically emits visible light. As each organic molecule is a topologically perfect structure, the growth of each organic layer does not require “lattice matching”, which has been the fundamental limit for inorganic semiconductor monolithic devices. Thus, integration of an OLED with a III–V compound semiconductor is a highly feasible and desirable approach for making low-cost, large-area, potentially high efficiency devices. This thesis addresses the physics, fabrication and characterization of hybrid near infrared optical upconverters and their imaging application. Firstly, one novel hybrid optical upconverter structure is presented, which substantially improves the upconversion efficiency by embedding a metal mirror. Efficient carrier injection from the inorganic photodetector to the OLED is achieved by the insertion of a thin Au metal embedded mirror at the inorganic-organic interface. The upconversion efficiency was improved by more than 100%. Secondly, the overall upconversion efficiency can be increased significantly, by introducing a gain mechanism into the Photodetector section of the upconverter. A promising option to implement gain is a heterojunction phototransistor (HPT). An InGaAs-InP HPT was integrated with an OLED, which converts 1.5-μm Infrared light to visible light with a built-in electrical gain (~94). The overall upconversion efficiency was improved to be 1.55 W/W. Thirdly, this upconversion approach can also be used to realize a pixelless imaging device. A pixelless hybrid upconversion device consists of a large-area single-mesa device, where the OLED output is spatially correlated with the input 1.5-µm scene. Only the parts receiving incoming photons will emit output photons. To achieve this functionality, photon-generated carriers must flow mainly along the layer-growth direction when injected from the InGaAs light absorption layer into OLED light emission layer. A prototype of pixelless imaging device based on an i-In0.53Ga0.47As/C60 heterojunction was demonstrated, which minimized lateral current spreading. This thesis presents experimental results of the first organic/inorganic hybrid optical amplifer and the first hybrid near infrared imaging device.

Page generated in 0.0591 seconds