• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 46
  • 40
  • 27
  • 14
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 634
  • 634
  • 559
  • 148
  • 139
  • 125
  • 93
  • 87
  • 85
  • 79
  • 76
  • 73
  • 72
  • 64
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Steps toward the creation of a carbon nanotube single electron transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
192

Characterization of Cubic Boron Nitride Interfaces with in situ Photoelectron Spectroscopy

January 2016 (has links)
abstract: Cubic boron nitride (c-BN) has potential for electronic applications as an electron emitter and serving as a base material for diodes, transistors, etc. However, there has been limited research on c-BN reported, and many of the electronic properties of c-BN and c-BN interfaces have yet to be reported. This dissertation focused on probing thin film c-BN deposited via plasma enhanced chemical vapor deposition (PECVD) with in situ photoelectron spectroscopy (PES). PES measurements were used to characterize the electronic properties of c-BN films and interfaces with vacuum and diamond. First, the interface between c-BN and vacuum were characterized with ultraviolet PES (UPS). UPS measurements indicated that as-deposited c-BN, H2 plasma treated c-BN, and annealed c-BN post H2 plasma treatment exhibited negative electron affinity surfaces. A dipole model suggested dipoles from H-terminated N surface sites were found to be responsible for the NEA surface. Then, Si was introduced into c-BN films to realize n-type doped c-BN. The valence structure and work function of c-BN:Si films were characterized with XPS and UPS measurements. Measurements were unable to confirm n-type character, and it is concluded that silicon nitride formation was the primary effect for the observations. Finally, XPS measurements were employed to measure the band offsets at the c-BN/diamond interface. Measurements indicated the valence band maximum (VBM) of c-BN was positioned ~0.8 eV above the VBM of diamond. / Dissertation/Thesis / Doctoral Dissertation Physics 2016
193

Thermal stability of plasma enhanced chemical vapor deposited silicon nitride thin films

Jehanathan, Neerushana January 2007 (has links)
[Truncated abstract] This study investigates the thermal stability of Plasma Enhanced Chemical Vapor Deposited (PECVD) silicon nitride thin films. Effects of heat-treatment in air on the chemical composition, atomic bonding structure, crystallinity, mechanical properties, morphological and physical integrity are investigated. The chemical composition, bonding structures and crystallinity are studied by means of X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) Spectroscopy and Transmission Electron Microscopy (TEM). The mechanical properties, such as hardness and Young’s modulus, are determined by means of nanoindentation. The morphological and physical integrity are analyzed using Scanning Electron Microscopy (SEM) . . . The Young’s modulus (E) and hardness (H) of the film deposited at 448 K were measured to have E=121±1.8 GPa and H=11.7±0.25 GPa. The film deposited at 573 K has E=150±3.6 GPa and H=14.7±0.6 GPa. For the film deposited at 573 K, the Young’s modulus is not affected by heating up to 1148 K. Heating at 1373 K caused significant increase in Young’s modulus to 180∼199 GPa. This is attributed to the crystallization of the film. For the film deposited at 448 K, the Young’s modulus showed a moderate increase, by ∼10%, after heating to above 673 K. This is consistent with the much lower level of crystallization in this film as compared to the film deposited at 573 K. In summary, low temperature deposited PECVD SiNx films are chemically and structurally unstable when heated in air to above 673 K. The main changes include oxidation to SiO2, crystallization of Si3N4 and physical cracking. The film deposited at 573 K is more stable and damage and oxidation resistant than the film deposited at 448 K.
194

Studies On CVD And ALD Of Thin Films Of Substituted And Composite Metal Oxides, Including Potential High-k Dielectrics

Gairola, Anshita 09 1900 (has links) (PDF)
The work carried out as a part of this thesis has been focussed on understanding different aspects of the chemical vapor deposition process namely, ALD / MOCVD. A large part of the thesis is aimed at solving the problem of a single-source precursor for the MOCVD process to obtain substituted metal oxide thin films. For a chemical vapor deposition technique, it is important to understand the requisite salient features of precursor for deposition of thin films. For this purpose, not only is the structural characterization of the chemical precursor is required but also an in-depth thermal analysis of the precursor to know its vapor pressure. Vapor pressure of a metalorganic complex is one of the important properties to evaluate the applicability of a metalorganic complex as a MOCV/ALD precursor. The thesis discusses a novel approach to use thermal analysis as a tool to gauge the viability of substituted metal “single source” precursor for MOCVD/ALD. The other half deals with material characterization of thin films grown by an ALD process using hydrogen and Ti(OiPr)2(tbob)2 as precursors. The films were further studied for their potential application as high-k dielectric in DRAM applications. The first chapter is an overview of topics that are relevant to the work carried out in this thesis. The chapter focuses on the description of techniques used for thin film deposition. A detailed review of CVD-type techniques (ALD/ MOCVD) is then given. Chapter1 reviews the various process parameters involved in ALD,i.e. film growth(specifically as a function of the reactant pulse length, the nature of the chemical reactant/precursor and that of the metal precursor, and purge length) and growth temperature. Following the discussion of ALD, CVD and its growth kinetics are also discussed. Chapter 1 then outlines a holistic understanding of precursors, followed the differences in requirement for using them in ALD and MOCVD. Further, an introduction to the titanium oxide (Stoichiometric titanium dioxide and various Magneli phases) system, its phase diagram, oxide properties and their applications is given. Chapter 1 concludes by delineating the scope of the work carried out which is presented in the thesis. The second chapter deals with the synthesis of a series of substituted metal “single source” precursors to be used for MOCVD of substituted metal oxides thin films. The precursor complexes were of the type AlxCr1-x (acac)3 where 0<x<1. The complexes were synthesized using the novel approach of co-synthesis and were characterized by various spectroscopic techniques. Single crystal X-ray diffraction at low temperature was carried out to understand the substitution of metal in the complex crystallographically. The substituted metal complexes synthesized and characterized in chapter 2 were further evaluated for their viability as single source precursors for MOCVD application, using thermo-gravimetry as discussed in chapter 3. Vapor pressure of these complexes was determined by using the Langmuir equation, while the enthalpies of submission and evaporation were calculated using the Clausius-Clapeyron equation. One of the composition of the series of substituted metal complexes, viz., Al0.9Cr0.1(acac)3, was employed on MOCVD reactor as precursor to obtain thin films on three substrates, Si(100), fused silica, and polycrystalline x- alumina, simultaneously. The resultant thin films were characterized using XRD, electron microscopy, FTIR, EDS, X-ray mapping, and UV-vis spectroscopy. Chapter 4 deals with the growth of titanium oxide thin films using ALD. The metal precursor used was Ti(OiPr)2(tbob)2 and the reactant gas was hydrogen. Hydrogen, a reducing gas, was deliberately used to obtain the reduced defect oxide phases of titanium, commonly called Magneli phases. The growth rate of films grown on p-Si(100) was studied with respect to the substrate temperature, vaporizer temperature, pulse duration of metal precursor and pulse duration of the reactive gas. Also, the concept of complementarity of a reaction and self-limiting behavior in a true ALD process was illustrated. The deposition conditions such as substrate temperature and reactive gas flows have been varied to optimize the phase content and the morphology of the films. The films grown were characterized to determine the various phases of titanium oxide present using XRD, TEM, FTIR spectroscopy, Raman spectroscopy, and UV-vis spectroscopy. The presence of carbon was revealed by Raman spectroscopy. By using these characterization techniques, it was concluded that the film grown is a composite made of stiochiometric TiOx matrix embedded with crystallites of (reduced) Magneli phases. Chapter 5 deals with the electrical properties of the composite thin films grown in chapter 4. the films behave as percolative capacitor which could be used for application as novel high-k dielectric material for DRAM. The effect of change in flow rates of reactive gas (H2) on the dielectric constant (k) and leakage current of the film were studied. It was found that phase composition of the film plays an important role in tuning the dielectric properties of the film was also studied. The effect of thickness of the film also studied on the dielectric properties of the film. The trend observed was correlated to the morphology of the film as a function of its thickness and the grain growth mechanism as observed from high resolution scanning electron microscopy. Further, the effect of change in substrate temperature, metal precursor pulse length, and of the metal used as top electrode, on C-V and I-V characteristics were studied. It was interesting to see that the presence of the more conductingTi5O9 (than Ti3O5) enhances the dielectric constant, which is a requisite for a high-k material for DRAM application. On the other hand, the presence of Ti5O9 also increased the leakage current in the film, which was not desirable. It therefore suggested itself that an optimum embedment of Ti5O9 in the composite helps in enhancing the dielectric constant, while maintaining a low leakage current. Under optimum conditions, a dielectric constant of 210 at 1MHz was measured with a leakage current of 17 nA. The effect of the presence of carbon in the film was studied using Raman Spectroscopy, and it was found that a high leakage was associated with films having greater carbon content. In this chapter, electrical properties of composite thin films were also compared with those of stoichiometric titanium dioxide (a known dielectric). Further, a multilayer sandwich structure was proposed, such that it had a 53 mm thick stoichiometric TiO2 layer followed by 336nm thick composite film and again a 53nm thick stoichiometric titanium dioxide layer. The dielectric characteristics of this structure were found to be better than those of either of the other two.viz., stoichiometric titanium dioxide film or the composite thin film of titanium oxide.
195

Preparation and characterization of an organic-based magnet

Carlegrim, Elin January 2007 (has links)
In the growing field of spintronics there is a strong need for development of flexible lightweight semi-conducting magnets. Molecular organic-based magnets are attractive candidates since it is possible to tune their properties by organic chemistry, making them so-called “designer magnets”. Vanadium tetracyanoethylene, V(TCNE)x, is particularly interesting since it is a semiconductor with Curie temperature above room temperature (TC~400 K). The main problem with these organic-based magnets is that they are extremely air sensitive. This thesis reports on the frontier electronic structure of the V(TCNE)x by characterization with photoelectron spectroscopy (PES) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. It also presents a new and more flexible preparation method of this class of organic-based thin film magnets. The result shows improved air stability of the V(TCNE)x prepared with this method as compared to V(TCNE)x prepared by hitherto used methods.
196

Steps Toward the Creation of a Carbon Nanotube Single Electron Transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
197

Steps Toward the Creation of a Carbon Nanotube Single Electron Transistor

Ferguson, R. Matthew 07 May 2003 (has links)
This report details work toward the fabrication of a single-electron transistor created from a single-walled carbon nanotube (SWNT). Specifically discussed is a method for growing carbon nanotubes (CNTs) via carbon vapor deposition (CVD). The growth is catalyzed by a solution of 0.02g Fe(NO3)3·9H2O, 0.005g MoO2(acac)2, and 0.015g of alumina particles in 15mL methanol. SWNT diameter ranges from 0.6 to 3.0 nm. Also discussed is a method to control nanotube growth location by patterning samples with small islands of catalyst. A novel “maskless” photolithographic process is used to focus light from a lightweight commercial digital projector through a microscope. Catalyst islands created by this method are approximately 400 μm2 in area.
198

Process Development for the Manufacture of an Integrated Dispenser Cathode Assembly Using Laser Chemical Vapor Deposition

Johnson, Ryan William 13 December 2004 (has links)
Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitridemolybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize processshape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multilayered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify ratelimiting regimes. A computational thermalstructural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Techs LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitridemolybdenum composite was also demonstrated. In sum, this work served to both advance the general science of Laser Chemical Vapor Deposition and to elucidate the practicality of fabricating ceramicmetal composites using the process.
199

Preparation and characterization of an organic-based magnet

Carlegrim, Elin January 2007 (has links)
<p>In the growing field of spintronics there is a strong need for development of flexible lightweight semi-conducting magnets. Molecular organic-based magnets are attractive candidates since it is possible to tune their properties by organic chemistry, making them so-called “designer magnets”. Vanadium tetracyanoethylene, V(TCNE)<sub>x</sub>, is particularly interesting since it is a semiconductor with Curie temperature above room temperature (T<sub>C</sub>~400 K). The main problem with these organic-based magnets is that they are extremely air sensitive. This thesis reports on the frontier electronic structure of the V(TCNE)<sub>x</sub> by characterization with photoelectron spectroscopy (PES) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. It also presents a new and more flexible preparation method of this class of organic-based thin film magnets. The result shows improved air stability of the V(TCNE)<sub>x</sub> prepared with this method as compared to V(TCNE)<sub>x</sub> prepared by hitherto used methods.</p>
200

Heterojunction bipolar transistors and ultraviolet-light-emitting diodes based in the III-nitride material system grown by metalorganic chemical vapor deposition

Lochner, Zachary M. 20 September 2013 (has links)
The material and device characteristics of InGaN/GaN heterojunction bipolar transistors (HBTs) grown by metalorganic chemical vapor deposition are examined. Two structures grown on sapphire with different p-InxGa1-xN base-region compositions, xIn = 0.03 and 0.05, are presented in a comparative study. In a second experiment, NpN-GaN/InGaN/GaN HBTs are grown and fabricated on free-standing GaN (FS-GaN) and sapphire substrates to investigate the effect of dislocations on III-nitride HBT epitaxial structures. The performance characteristics of HBTs on FS-GaN with a 20×20 m2 emitter area exhibit a maximum collector-current density of ~12.3 kA/cm2, a D.C. current gain of ~90, and a maximum differential gain of ~120 without surface passivation. For the development of deep-ultraviolet optoelectronics, several various structures of optically-pumped lasers at 257, 246, and 243 nm are demonstrated on (0001) AlN substrates. The threshold-power density at room temperature was reduced to as low as 297 kW/cm2. The dominating polarization was measured to be transverse electric in all cases. InAlN material was developed to provide lattice matched, high-bandgap energy cladding layers for a III-N UV laser structure. This would alleviate strain and dislocation formation in the structure, and also mitigate the polarization charge. However, a gallium auto-doping mechanism was encountered which prevents the growth of pure ternary InAlN, resulting instead in quaternary InAlGaN. This phenomenon is quantitatively examined and its source is explored.

Page generated in 0.0765 seconds