11 |
Caracterização da capacidade fotossintética e da condutância estomática em árvores de Pinus caribaea var. hondurensis e de Pinus taeda em Itatinga, São Paulo / Characterization of photosynthetic capacity and stomatal conductance in trees of Pinus caribaea var. hondurensis and Pinus taeda in Itatinga, São PauloCarneiro, Rafaela Lorenzato 26 August 2013 (has links)
Realizaram-se campanhas em árvores de cinco anos de idade de Pinus caribaea var. hondurensis e Pinus taeda em parcelas controle (sem fertilização e sem irrigação) e parcelas fertilizadas e irrigadas, durante o verão e o inverno de 2012 visando caracterizar as seguintes variáveis fisiológicas: i) Capacidade máxima fotossintética (Amax); ii) Fotossíntese ao longo do dia (A); iii) Variação da condutância estomática (gs) em relação ao aumento do déficit de pressão de vapor (DPV); e iv) Taxas máximas de carboxilização (Vcmax) e de transporte de elétrons (Jmax) via curvas A/Ci. O estudo foi realizado no projeto Produtividade Potencial do Pinus no Brasil, localizado na Estação Experimental da ESALQ/USP em Itatinga-SP.Foram escolhidas três árvores médias por parcela para as avaliações fisiológicas, realizadas com o LiCor 6400XT. A mensuração da Amax foi realizada no terço médio da copa, em dois galhos por árvore e em duas posições por galho, sendo realizada das 8 às 10 horas, e o comportamento da A, gs com o aumento do DPV, ocorreram de hora em hora, das 11 às 15 horas. Ao final, as acículas foram coletadas para a determinação da área foliar específica (AFE) e do nitrogênio foliar. As curvas A/Ci foram realizadas nas três árvores, um galho por árvore e duas posições por galho, entre 8 e 12 horas. Aos cinco anos o Pinus caribaea var. hondurensis apresenta o dobro do volume de madeira do que o Pinus taeda. As duas avaliações fisiológicas mostraram valores similares entre tratamentos, para cada espécie. Os valores de Amax foram maiores durante o verão e o Pinus caribaea var. hondurensis mostrou grande sensibilidade, comparativamente ao Pinus taeda. Ao analisar os dados de A e gs ao longo do dia, observa-se também maiores variações do Pinus caribaea var. honduresis. Os valores médios de Amax para o verão e o inverno foram 8,2 e 4,8 ?mol m-2 s-1 e 6,8 e 6,3 ?mol m-2 s-1 para o Pinus caribaea var. hondurensis e o Pinus taeda, respectivamente. Ocorreu redução dos valores de A e gs com o aumento do DPV, para ambas as campanhas em relação ao Pinus caribaea var. hondurensis e somente no inverno para o Pinus taeda. As duas espécies apresentaram relação positiva entre fotossíntese e transpiração, sendo que o Pinus caribaea var. hondurensis apresenta maior eficiência no uso da água. As médias da AFE e nitrogênio foliar foram de 9,6 m²kg-1, 10,1g Kg-1 e 10,0 m²kg-1, 13,4g Kg-1, para o Pinus caribaea var. hondurensis e Pinus taeda, respectivamente. Em relação aos parâmetros fotossintéticos o Pinus taeda se destacou em ambas as campanhas, com valores médios de Vcmax e Jmax maiores que o Pinus caribaea var. hondurensis, relacionado à maiores concentrações de nitrogênio foliar. Não houve relação entre o crescimento em biomassa das árvores e as medições da fotossíntese a nível foliar, indicando que outros processos a nível de copa, uso e alocação de fotossintetizados devem ser investigados para explicar a diferença de crescimento. / The campaigns were conducted in trees with five years old of Pinus caribaea var. hondurensis and Pinus taeda in control plots (no fertilization and no irrigation) and fertilized and irrigated plots during summer and winter of 2012 to characterize the physiological variables: i) maximum photosynthetic capacity (Amax), ii) Photosynthesis throughout the day (A); iii) Changes in stomatal conductance (gs) in relation to the increase in vapor pressure deficit (VPD), and iv) Maximum rates of carboxilization (Vcmax) and maximum rates of electron transport (Jmax) based on A/Ci curves. The study was conducted in the project Potential Productivity of Pinus in Brazil, located at the Experimental Station of ESALQ/USP in Itatinga-SP. Three average trees per plot were chosen for physiological evaluations, performed with the LiCor 6400XT. The Amax measurement was performed in the middle third of the crown, in two branches per tree and two positions per branch, taken from 8 to 10am. To get the response of A and gs with increasing VPD, the measurements continued every hour, from 11 am to 3 pm. At the end of the measurements, the needles were collected for determination of specific leaf area (SLA) and leaf nitrogen (N). The A/Ci curves were performed in three trees, one branch per tree and two positions per branch were taken from 8 am to 12 pm. At five years, the Pinus caribaea var. hondurensis showed two-fold the wood volume of Pinus taeda. Both physiological measurements showed similar results between treatments for each species. Amax values were higher during summer, and Pinus caribaea var. hondurensis shower greater sensitivity compared to Pinus taeda. A and gs throughout the day showed higher variation in Pinus caribaea var. hondurensis. The average values of Amax for summer and winter were 8.2, 4.8 ?mol m-2 s-1 and 6.75, 6.3 ?mol m-2 s-1 for Pinus caribaea var. hondurensis and Pinus taeda, respectively. There was a reduction of A and gs with the increasing of DPV, for both campaigns for the Pinus caribaea var. hondurensis and only in winter campaign for Pinus taeda. Thus, the two species have different behaviors in response to climatic changes. The two species showed a positive relationship between photosynthesis and transpiration, with Pinus caribaea var. hondurensis showing greater water use efficiency. The average SLA and needle nitrogen were 9.6 m² kg-1, 10.1g kg-1 and 10 m² kg-1, 13.4g kg-1 for Pinus caribaea var. hondurensis and Pinus taeda, respectively. Photosynthetic parameters in Pinus taeda was higher in both campaigns, with average values of Vcmax and Jmax greater than in Pinus caribaea var. hondurensis, related to higher concentration of needle nitrogen. There was no relationship between tree biomass growth and leaf-level measurements of photosynthesis, indicating that other processes at crown level, use and allocation of photosynthates should be investigated to explain the difference in growth.
|
12 |
A comparison of Brine evaporation rates under controlled conditions in a laboratoryBent, Denzil January 2018 (has links)
Magister Scientiae - MSc (Environ & Water Science) / There are growing concerns around the environmental issues related to processed water as the
demand for potable water is on the increase in South Africa. Effluents discharged from
various sectors such as water treatment facilities pose a constant threat to the environment
and natural water resources, including rivers and groundwater due to their poor chemical and
physical composition. As a result, the demand for predicting the elevated concentrations of
salts in a spatial and temporal dimension is constantly growing. The effluent at the
eMalahleni water reclamation plant in Mpumalanga, South Africa, is being processed through
a triple reverse osmosis that improves the water quality of the mine water to potable
standards. Two water quality streams emerge from this process, i.e. a potable standard and
the other a brine concentrate which is stored in ponds. Brine ponds are used for inland brine
disposal in the eMalahleni water reclamation plant. The large volumes and limited capacity to
store brines has placed great emphasis on enhanced evaporation rates to increase the
efficiency of the ponds. In order to improve the rate of brine evaporation in the pond, an
understanding of the effect of brine salt content and other parameters affecting the rate of
evaporation is required. This study aimed at establishing the physical and chemical behaviour
of the brine from the eMalahleni plant in a controlled environment. The investigation
incorporated actual brine from the eMalahleni plant as well as synthetic salts typical of the
major components of the eMalahleni brine.
|
13 |
Caracterização da capacidade fotossintética e da condutância estomática em árvores de Pinus caribaea var. hondurensis e de Pinus taeda em Itatinga, São Paulo / Characterization of photosynthetic capacity and stomatal conductance in trees of Pinus caribaea var. hondurensis and Pinus taeda in Itatinga, São PauloRafaela Lorenzato Carneiro 26 August 2013 (has links)
Realizaram-se campanhas em árvores de cinco anos de idade de Pinus caribaea var. hondurensis e Pinus taeda em parcelas controle (sem fertilização e sem irrigação) e parcelas fertilizadas e irrigadas, durante o verão e o inverno de 2012 visando caracterizar as seguintes variáveis fisiológicas: i) Capacidade máxima fotossintética (Amax); ii) Fotossíntese ao longo do dia (A); iii) Variação da condutância estomática (gs) em relação ao aumento do déficit de pressão de vapor (DPV); e iv) Taxas máximas de carboxilização (Vcmax) e de transporte de elétrons (Jmax) via curvas A/Ci. O estudo foi realizado no projeto Produtividade Potencial do Pinus no Brasil, localizado na Estação Experimental da ESALQ/USP em Itatinga-SP.Foram escolhidas três árvores médias por parcela para as avaliações fisiológicas, realizadas com o LiCor 6400XT. A mensuração da Amax foi realizada no terço médio da copa, em dois galhos por árvore e em duas posições por galho, sendo realizada das 8 às 10 horas, e o comportamento da A, gs com o aumento do DPV, ocorreram de hora em hora, das 11 às 15 horas. Ao final, as acículas foram coletadas para a determinação da área foliar específica (AFE) e do nitrogênio foliar. As curvas A/Ci foram realizadas nas três árvores, um galho por árvore e duas posições por galho, entre 8 e 12 horas. Aos cinco anos o Pinus caribaea var. hondurensis apresenta o dobro do volume de madeira do que o Pinus taeda. As duas avaliações fisiológicas mostraram valores similares entre tratamentos, para cada espécie. Os valores de Amax foram maiores durante o verão e o Pinus caribaea var. hondurensis mostrou grande sensibilidade, comparativamente ao Pinus taeda. Ao analisar os dados de A e gs ao longo do dia, observa-se também maiores variações do Pinus caribaea var. honduresis. Os valores médios de Amax para o verão e o inverno foram 8,2 e 4,8 ?mol m-2 s-1 e 6,8 e 6,3 ?mol m-2 s-1 para o Pinus caribaea var. hondurensis e o Pinus taeda, respectivamente. Ocorreu redução dos valores de A e gs com o aumento do DPV, para ambas as campanhas em relação ao Pinus caribaea var. hondurensis e somente no inverno para o Pinus taeda. As duas espécies apresentaram relação positiva entre fotossíntese e transpiração, sendo que o Pinus caribaea var. hondurensis apresenta maior eficiência no uso da água. As médias da AFE e nitrogênio foliar foram de 9,6 m²kg-1, 10,1g Kg-1 e 10,0 m²kg-1, 13,4g Kg-1, para o Pinus caribaea var. hondurensis e Pinus taeda, respectivamente. Em relação aos parâmetros fotossintéticos o Pinus taeda se destacou em ambas as campanhas, com valores médios de Vcmax e Jmax maiores que o Pinus caribaea var. hondurensis, relacionado à maiores concentrações de nitrogênio foliar. Não houve relação entre o crescimento em biomassa das árvores e as medições da fotossíntese a nível foliar, indicando que outros processos a nível de copa, uso e alocação de fotossintetizados devem ser investigados para explicar a diferença de crescimento. / The campaigns were conducted in trees with five years old of Pinus caribaea var. hondurensis and Pinus taeda in control plots (no fertilization and no irrigation) and fertilized and irrigated plots during summer and winter of 2012 to characterize the physiological variables: i) maximum photosynthetic capacity (Amax), ii) Photosynthesis throughout the day (A); iii) Changes in stomatal conductance (gs) in relation to the increase in vapor pressure deficit (VPD), and iv) Maximum rates of carboxilization (Vcmax) and maximum rates of electron transport (Jmax) based on A/Ci curves. The study was conducted in the project Potential Productivity of Pinus in Brazil, located at the Experimental Station of ESALQ/USP in Itatinga-SP. Three average trees per plot were chosen for physiological evaluations, performed with the LiCor 6400XT. The Amax measurement was performed in the middle third of the crown, in two branches per tree and two positions per branch, taken from 8 to 10am. To get the response of A and gs with increasing VPD, the measurements continued every hour, from 11 am to 3 pm. At the end of the measurements, the needles were collected for determination of specific leaf area (SLA) and leaf nitrogen (N). The A/Ci curves were performed in three trees, one branch per tree and two positions per branch were taken from 8 am to 12 pm. At five years, the Pinus caribaea var. hondurensis showed two-fold the wood volume of Pinus taeda. Both physiological measurements showed similar results between treatments for each species. Amax values were higher during summer, and Pinus caribaea var. hondurensis shower greater sensitivity compared to Pinus taeda. A and gs throughout the day showed higher variation in Pinus caribaea var. hondurensis. The average values of Amax for summer and winter were 8.2, 4.8 ?mol m-2 s-1 and 6.75, 6.3 ?mol m-2 s-1 for Pinus caribaea var. hondurensis and Pinus taeda, respectively. There was a reduction of A and gs with the increasing of DPV, for both campaigns for the Pinus caribaea var. hondurensis and only in winter campaign for Pinus taeda. Thus, the two species have different behaviors in response to climatic changes. The two species showed a positive relationship between photosynthesis and transpiration, with Pinus caribaea var. hondurensis showing greater water use efficiency. The average SLA and needle nitrogen were 9.6 m² kg-1, 10.1g kg-1 and 10 m² kg-1, 13.4g kg-1 for Pinus caribaea var. hondurensis and Pinus taeda, respectively. Photosynthetic parameters in Pinus taeda was higher in both campaigns, with average values of Vcmax and Jmax greater than in Pinus caribaea var. hondurensis, related to higher concentration of needle nitrogen. There was no relationship between tree biomass growth and leaf-level measurements of photosynthesis, indicating that other processes at crown level, use and allocation of photosynthates should be investigated to explain the difference in growth.
|
14 |
Vapour Pressure Studies Of Precursors And Atomic Layer Deposition Of Titanium OxidesKunte, Girish V 09 1900 (has links)
This thesis describes the deposition of thin films of titanium oxide and Magnéli phases of titanium oxide by atomic layer deposition (ALD) using a novel β-ketoesterate precursor. Titanium oxide is a promising candidate for the high-k dielectric gate oxide layer for CMOS devices in microelectronic circuits. The Magnéli phases of titanium oxide are difficult to grow and stabilize, especially in the thin film form, and have useful properties. The thin film deposition of oxides by CVD/ALD requires suitable precursors, which are often metalorganic complexes. The estimation of vapour pressure using thermogravimetry is described, and employed, using an approach based on the Langmuir equation. This data is important for the evaluation of the suitability of these complexes as CVD precursors.
The first chapter gives a brief introduction to the topics that will be discussed in this thesis. Part one of the thesis deals with the synthesis, characterization, and studies of the vapour pressure and partial pressures of the precursors for CVD. This part comprises of the second, third and fourth chapter. The second chapter deals with the synthesis and characterization of the various metalorganic complexes that have been synthesized and characterized to evaluate their suitability as precursors for CVD. The third chapter describes the derivation of vapour pressure of precursors for CVD and ALD, from rising temperature thermogravimetric analysis (TGA) data, using the Langmuir equation. The fourth chapter deals with the determination of partial pressure of CVD precursors using data from low-pressure thermogravimetry.
Part Two of the thesis reports the deposition of titanium oxide thin films by ALD, and the detailed investigation of their properties, for application as high-k dielectric materials. Chapters five, six and seven constitute this part. The fifth chapter deals with the deposition of titanium oxide thin films by ALD. Chapter six describes the electrical characterization of the thin films of titanium oxide, for applications as high-k dielectric gate oxide layers for CMOS circuits. In the seventh chapter, the deposition of Magnéli phases of titanium by ALD is described. The dielectric properties of the films are studied.
|
15 |
Characteristic behaviour of pebble bed high temperature gas-cooled reactors during water ingress events / Samukelisiwe Nozipho Purity KhozaKhoza, Samukelisiwe Nozipho Purity January 2012 (has links)
The effect of water ingress in two pebble bed high temperature gas-cooled reactors
i.e. the PBMR-200 MWthermal and the PBMR-400 MWthermal were simulated and
compared using the VSOP 99/05 suite of codes.
To investigate the effect of this event on reactivity, power profiles and thermal
neutron flux profiles, the addition of partial steam vapour pressures in stages up to
400 bar into the primary circuit for the PBMR-400 and up to 300 bar for the PBMR-
200 was simulated for both reactors. During the simulation, three scenarios were
simulated, i.e. water ingress into the core only, water ingress into the reflectors only
and water ingress into both the core and reflectors. The induced reactivity change
effects were compared for these reactors.
An in-depth analysis was also carried out to study the mechanisms that drive the
reactivity changes for each reactor caused by water ingress into the fuel core only,
the riser tubes in the reflectors only and ingress into both the fuel core and the riser
tubes in the reflectors.
The knowledge gained of these mechanisms and effects was used in order to
propose design changes aimed at mitigating the reactivity increases, caused by
realistic water ingress scenarios. Past results from simulations of water ingress into
Pebble Bed Reactors were used to validate and verify the present simulation
approach and results. The reactivity increase results for both reactors were in
agreement with the German HTR-Modul calculations. / Thesis (MSc (Engineering Sciences in Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013
|
16 |
Characteristic behaviour of pebble bed high temperature gas-cooled reactors during water ingress events / Samukelisiwe Nozipho Purity KhozaKhoza, Samukelisiwe Nozipho Purity January 2012 (has links)
The effect of water ingress in two pebble bed high temperature gas-cooled reactors
i.e. the PBMR-200 MWthermal and the PBMR-400 MWthermal were simulated and
compared using the VSOP 99/05 suite of codes.
To investigate the effect of this event on reactivity, power profiles and thermal
neutron flux profiles, the addition of partial steam vapour pressures in stages up to
400 bar into the primary circuit for the PBMR-400 and up to 300 bar for the PBMR-
200 was simulated for both reactors. During the simulation, three scenarios were
simulated, i.e. water ingress into the core only, water ingress into the reflectors only
and water ingress into both the core and reflectors. The induced reactivity change
effects were compared for these reactors.
An in-depth analysis was also carried out to study the mechanisms that drive the
reactivity changes for each reactor caused by water ingress into the fuel core only,
the riser tubes in the reflectors only and ingress into both the fuel core and the riser
tubes in the reflectors.
The knowledge gained of these mechanisms and effects was used in order to
propose design changes aimed at mitigating the reactivity increases, caused by
realistic water ingress scenarios. Past results from simulations of water ingress into
Pebble Bed Reactors were used to validate and verify the present simulation
approach and results. The reactivity increase results for both reactors were in
agreement with the German HTR-Modul calculations. / Thesis (MSc (Engineering Sciences in Nuclear Engineering))--North-West University, Potchefstroom Campus, 2013
|
17 |
Separation process modelling:highlighting the predictive capabilities of the models and the robustness of the solving strategiesKangas, J. (Jani) 04 March 2014 (has links)
Abstract
The aim of this work was to formulate separation process models with both predictive capabilities and robust solution strategies. Although all separation process models should have predictive capabilities, the current literature still has multiple applications in which predictive models having the combination of a clear phenomenon base and robust solving strategy are not available. The separation process models investigated in this work were liquid-liquid phase separation and membrane separation models.
The robust solving of a liquid-liquid phase separation model typically demands the solution of a phase stability analysis problem. In addition, predicting the liquid-liquid phase compositions reliably depends on robust phase stability analysis. A phase stability analysis problem has multiple feasible solutions, all of which have to be sought to ensure both the robust solving of the model and predictive process model. Finding all the solutions with a local solving method is difficult and generally inexact. Therefore, the modified bounded homotopy methods, a global solving method, were further developed to solve the problem robustly. Robust solving demanded the application of both variables and homotopy parameter bounding features and the usage of the trivial solution in the solving strategy. This was shown in multiple liquid-liquid equilibrium cases.
In the context of membrane separation models, predictive capabilities are achieved with the application of a Maxwell-Stefan based model. With the Maxwell-Stefan approach, multicomponent separation can be predicted based on pure component permeation data alone. On the other hand, the solving of the model demands a robust solving strategy with application-dependent knowledge. These issues were illustrated in the separation of a H2/CO2 mixture with a high-silica MFI zeolite membrane at high pressure and low temperature. Similarly, the prediction of mixture adsorption based on pure component adsorption data alone was successfully demonstrated.
In the context of membrane separation models, predictive capabilities are achieved with the application of a Maxwell-Stefan based model. With the Maxwell-Stefan approach, multicomponent separation can be predicted based on pure component permeation data alone. On the other hand, the solving of the model demands a robust solving strategy with application-dependent knowledge. These issues were illustrated in the separation of a H2/CO2 mixture with a high-silica MFI zeolite membrane at high pressure and low temperature. Similarly, the prediction of mixture adsorption based on pure component adsorption data alone was successfully demonstrated. / Tiivistelmä
Työn tavoitteena oli muotoilla prosessin käyttäytymisen ennustamiseen kykeneviä erotusprosessimalleja ja niiden ratkaisuun käytettäviä luotettavia strategioita. Vaikka kaikkien erotusprosessimallien tulisi olla ennustavia, on tällä hetkellä useita kohteita, joissa prosessin käyttäytymistä ei voida ennustaa siten, että käytettävissä olisi sekä ilmiöpohjainen malli että ratkaisuun soveltuva luotettava strategia. Tässä työssä erotusprosessimalleista kohteina tarkasteltiin neste-neste-erotuksen ja membraanierotuksen kuvaukseen käytettäviä malleja.
Neste-neste-erotusmallien luotettava ratkaisu vaatii yleensä faasistabiilisuusongelman ratkaisua. Lisäksi faasien koostumusten luotettava ennustaminen pohjautuu faasistabiilisuusanalyysiin. Faasistabiilisuusongelmalla on useita mahdollisia ratkaisuja, jotka kaikki tulee löytää, jotta voitaisiin varmistaa luotettava mallin ratkaisu sekä prosessimallin ennustuskyvyn säilyminen. Kaikkien ratkaisujen löytäminen on sekä vaikeaa että epätarkkaa paikallisesti konvergoituvilla ratkaisumenetelmillä. Tämän vuoksi globaaleihin ratkaisumenetelmiin kuuluvia modifioituja rajoitettuja homotopiamenetelmiä kehitettiin edelleen, jotta faasistabiilisuusongelma saataisiin ratkaistua luotettavasti. Ratkaisun luotettavuus vaati sekä muuttujien että homotopiaparametrin rajoittamista ja ongelman triviaalin ratkaisun käyttöä ratkaisustrategiassa. Tämä käyttäytyminen todennettiin useissa neste-nestetasa-painoa kuvaavissa esimerkeissä.
Membraanierotusta tarkasteltaessa ennustava malli voidaan muotoilla käyttämällä Maxwell-Stefan pohjaista mallia. Maxwell-Stefan lähestymistavalla voidaan ennustaa monikomponenttiseosten erotusta perustuen puhtaiden komponenttien membraanin läpäisystä saatuun mittausaineistoon. Toisaalta mallin ratkaisu vaatii luotettavan ratkaisustrategian, jossa hyötykäytetään kohteesta riippuvaa tietoa. Näitä kysymyksiä havainnollistettiin H2/CO2 seoksen erotuksessa MFI-zeoliitti-membraanilla korkeassa paineessa. Samoin seosten adsorboitumiskäyttäytymistä ennustettiin onnistuneesti pelkästään puhtaiden komponenttien adsorptiodatan pohjalta.
Kokonaisuutena voidaan todeta, että tarkasteltujen erotusprosessimallien ennustavuutta voidaan parantaa yhdistämällä malli, jolla on selkeä ilmiöpohja ja luotettava ratkaisustrategia. Lisäksi mallien käytettävyys erotusprosessien suunnittelussa on parantunut työn tulosten pohjalta.
|
18 |
The relevance of fog and dew precipitation to succulent plant hydrology in an arid South African ecosystemMatimati, Ignatious January 2009 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / Fog and dew interception and utilization by plant canopies remains one of the least
considered aspects of vegetation studies at any scale yet the few studies that have been conducted point to their considerable influence on ecological processes and a critical role in modulating climate in southern African arid ecosystems. Their relevance to succulent plant hydrology was investigated in this study.The first study measured stable 18O and 2H isotope ratios in samples of rain, fog and dew water and compared these with those assayed monthly in stem xylem water of six
succulent shrub species over a one year period. Negative 18O and 2H ratios were observed in the stem xylem water of all six species signifying a predominance of water derived from fog and dew precipitation which was most conspicuous during the wet winter. This implied that fog and dew are even more important sources of water than rain and corroborated by significant correspondence found between fog and dew frequencies, succulent foliar water
contents and quantum yields of photochemistry.The second study monitored variations in stem diameter at 2-hourly intervals in 8 succulent shrub species of diverse growth form over a 9-month period. Two groups of species were distinguished based on whether their daily amplitudes in stem diameter were
consistently positively correlated with daily fluxes in vapour pressure deficit, which were indicative of a persistent CAM photosynthetic mode, or intermittently correlated with daily fluxes in vapour pressure deficit, which were indicative of mixed CAM and C3 photosynthetic modes. Among species displaying a persistent CAM photosynthetic mode, high nocturnal fog and dew precipitation amounts corresponded with low daily amplitudes in stem diameter, and vice versa, which pointed to reduced nocturnal stomatal water loss. These patterns, which were indistinct among species displaying mixed CAM and C3 photosynthetic modes, were
corroborated by small daily amplitudes in stem diameter also consistently observed in one species displaying a CAM photosynthetic mode in ambient than artificially fog and dew excluded environments.The third study monitored changes in water mass at hourly intervals of quartz gravel substrates with different dwarf succulent species assemblages over an 8-month period.Consistently greater net amounts of water were intercepted daily by quartz gravel substrates containing Agyroderma pearsonii than Cephalophylum spissum plants as well as those without plants. These attributed to a high water repellence of A. pearsonii leaves and less
radiation absorbed by the paler silvery to grey-green leaves of A. pearsonii leaves than the dark green leaves of C. spissum resulting in lower leaf temperatures and less water loss by transpiration. Quartz gravel soils devoid of plants intercepted nearly 5-times greater amounts of precipitation contributed by fog and dew than that contributed by rain. These precipitation amounts exceeding the high percentages of total hydrological input contributed by fog and dew reported in other ecosystems.The study concludes that fog and dew are a vital source of water for succulent shrubs in arid South African ecosystems and imply that diminished fog and dew frequencies associated with elevated night time temperatures accompanying global warming could exacerbate plant drought stress.
|
19 |
Etude des réactions complexes en phase solide pour stockage d'hydrogène / Complex Solid State Reactions for Energy Efficient Hydrogen StorageEl Kharbachi, Abdelouahab 25 March 2011 (has links)
Le stockage d'hydrogène en phase solide sous forme d'hydrures, est l'une des solutions non-polluantes futures pour le stockage et le transport de l'énergie. Parmi les matériaux candidats, LiBH4 a été sélectionné vu sa capacité gravimétrique élevée en hydrogène (jusqu'à 13,6 % H2 en masse). Ce matériaux possède des propriétés thermodynamiques et cinétiques insuffisamment établies pour comprendre son comportement dans les applications futures. Sa décomposition peut être facilitée en présence de l'hydrure MgH2. Ainsi, le composite MgH2-xLiBH4 / Hydrides for solid-state hydrogen storage are one of the future solutions - pollutant free - for the storage and the transport of energy. Among the candidates, LiBH4 was selected considering its high gravimetric hydrogen capacity (up to 13.6 wt.% H2). This material has thermodynamic and kinetic properties insufficiently established to be included in future applications. Its decomposition can be facilitated within the presence of the hydride MgH2. Thus, the composite MgH2-xLiBH4 (0< x< 3.5) reactivated by high energy ball-milling, was studied regarding its microstructural properties and stability of the phases. The desorption reaction of hydrogen, with or without additives, shows the appearance of additional phases accompanying the principal reaction. Heat capacity measurements of LiBH4 revealed the presence of an abnormal behaviour before the polymorphous transition (Ttrs = 386 K), attributed to the increase of crystal defects in agreement with the existence of a hypo-stoichiometric domaine LiBH4-ε observed at higher temperatures. The stability of the three-phase system LiBH4-LiH-B was studied resulting to the principal reaction of decomposition: LiBH4(s,l) → LiH(s) + B(s) + 1,5H2(g). Vapour pressure measurements of LiBH4 showed that H2 is the major component of decomposition with minor species such as B2H6 and BH3. The thermodynamic properties of LiBH4 were critically assessed, gathering the new data with those existing in the literature, in the aim of modelling of reactions occurring in hydride mixtures.
|
20 |
Spatial complexity and microclimatic responses of epiphyte communities and their invertebrate fauna in the canopy of northern rata (Metrosideros robusta A. Cunn.: Myrtaceae) on the West Coast of the South Island, New ZealandAffeld, Kathrin January 2008 (has links)
Rain forest canopies are renowned for their very high biodiversity and the critical role they play in key ecological processes and their influence on global climate. Despite that New Zealand supports one of the most diverse and extensive epiphyte flora of any temperate forest system, few studies have investigated epiphyte communities and their invertebrate fauna along with factors that influence their distribution and composition. This thesis represents the first comprehensive study of entire epiphyte communities and their resident invertebrate fauna in the canopy of New Zealand’s indigenous forests. The aim of this study was to determine spatial patterns of epiphyte and invertebrate species richness, abundance and community composition in relation to abiotic variables, and in particular, the responses of these communities to elevated temperature and rainfall. This study was carried out in coastal lowland podocarp-broadleaved forests at two sites on the West Coast of the South Island of New Zealand. Samples from 120 mat-forming epiphyte assemblages located on inner canopy branches of 40 northern rata (Metrosideros robusta) trees were studied to characterise the component flora and fauna. Additionally, biomass, branch and tree characteristics and community responses to treatments designed to elevate temperature and rainfall to simulate predicted climate change were measured. This investigation revealed astonishing diversity and functional complexity of epiphyte and invertebrate life in this ecosystem. The 30.6 kg (dry weight) of epiphyte material collected contained a total of 567 species, 170 epiphyte and 397 invertebrate (excluding immature specimens and mites) species, including at least 10 species new to science and many undescribed species Epiphyte communities were found to be dominated by non-vascular plants (80 % of the total species richness), particularly liverworts and invertebrate communities were dominated with respect to abundance (~ 80 % of the total individuals) by Acari, Collembola and Hymenoptera (primarily ants) and functionally by scavengers and ants. Epiphyte and invertebrate communities were highly variable with respect to spatial patterning of species richness, abundance and composition across sites, among trees within sites and among branches within trees. Overall, a highly significant proportion, > 75 %, of the variance could be attributed to differences at the branch level, but these differences could not be explained by the environmental factors measured. There were no consistent relationships between the spatial pattern of epiphytes and invertebrates, or between vascular and non-vascular plants. However, there were significant positive correlations between epiphyte biomass and invertebrate species richness (r = 0.472; p < 0.0001) and abundance (r = -0.395; p < 0.0001), as well as non-living epiphyte biomass and scavenger species richness (r = 0.4; p < 0.0001). Microclimatic measurements taken on epiphyte mats were also highly variable with respect to temperature and relative humidity at similar physical locations within the same tree as well as across trees within sites. There was also considerable variation in the intensity and frequency of climatic extremes, although potentially harmful climatic conditions were experienced by all the epiphyte mats for which weather variables were measured. Negative correlations existed between both epiphyte and invertebrate community composition and increased temperatures expressed as cumulative degree days above 5˚C. However, variability was such that there was no direct evidence that increased temperature and rainfall treatments had an effect on invertebrate species richness, abundance or diversity. Northern rata host trees harbour an astonishingly diverse and complex canopy flora and fauna that is characterised by high spatial variability. Such variability highlights that to determine species distribution and community dynamics in canopy habitats in response to disturbance caused either by climate change or invasive species the structure of entire communities at different taxonomic and spatial scales, along with their responses to microclimatic factors, need to be studied. If such complexities are not taken into account, inappropriate interpretation may result in poor decisions concerning the conservation status, vulnerability and subsequent management of such unique ecosystems.
|
Page generated in 0.0555 seconds