• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 115
  • 65
  • 34
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 668
  • 135
  • 121
  • 86
  • 76
  • 73
  • 70
  • 67
  • 64
  • 58
  • 57
  • 56
  • 55
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Variational analysis of a nonlinear Klein-Gordon equation

Weyand, Tracy K. 01 January 2008 (has links)
Many nonlinear Klein-Gordon equations have been studied numerically, and in a few cases, analytical solutions have been found. We used the variational method to study three different equations in this family. The first one to be studied here was the linear equation, Utt - Uzz + U = 0, where U is a real Klein-Gordon field. Attempts to find non-stationary radiative-type solutions of this equation were not successful. Next we studied the nonlinear equation Utt - U:= ± IUl 2U = O, with U complex, which represents a nonlinear massless scalar field. Here we searched for possible stationary solutions using the variational approximation, however to no avail. Next, we added a linear term to this second equation, which then became Utt - Uzll: ± IUl2U + µU = 01 whereµ can always be scaled to ±1. Here we found that we can find approximate variational solutions of the form A(t)e^i{k(x-z0(t))+a)e / 2w2(z) . This third equation is a generalization of the tf,4 equation, which has many physical applications. However, the variational solution found required different signs on the coefficients of this equation than are found in the O4 equation. Properties and features of this variational solution will be discussed.
252

Skalenübergreifende Modellierung magneto-aktiver Polymere auf Grundlage energie-basierter Variationsprinzipien

Gebhart, Philipp 30 October 2024 (has links)
Die vorliegende Arbeit befasst sich mit der Entwicklung physikalisch fundierter, variations-basierter Modelle zur Beschreibung von magneto-aktiven Polymeren bei finiten Deformationen. Die Erarbeitung einer theoretisch und numerisch instruktiven Abhandlung zur Modellierung von nicht-dissipativen sowie dissipativen magneto-mechanischen Systemen stellt dabei einen zentralen Aspekt dieser Arbeit dar. Die konstitutive Modellierung erfolgt in kanonischer Form im Rahmen einer Theorie erster Ordnung auf Basis zweier skalarwertiger Tensorfunktionen -- der totalen Energiedichtefunktion und dem Dissipationspotential -- welche das komplexe konstitutive Verhalten des Systems vollständig charakterisieren. Die Entwicklung fundierter, konstitutiver Makroskalenmodelle für nicht-dissipative sowie dissipative magneto-aktive Polymere erfolgt dabei mikrostrukturgeleitet und im Falle nicht-dissipativer magneto-aktiver Polymere explizit auf Basis eines umfangreichen -- mittels numerischer Homogenisierung erzeugten -- Datensatzes. Das im Rahmen der konstitutiven Modellierung genutzte energie-basierte Setting stellt die natürliche Umgebung für Stabilitätsbetrachtungen dar und erlaubt die Diskussion der materiellen Stabilität der entwickelten konstitutiven Modelle auf Grundlage verallgemeinerter Konvexitätskonzepte. Im Mittelpunkt der numerischen Behandlung der vorliegenden Problemstellungen steht die Konstruktion primaler Variationsprinzipien auf Basis der entwickelten konstitutiven Funktionen in Verbindung mit deren konformen Finite-Elemente-Approximationen. Die zugehörigen diskreten Variationsformulierungen zeichnen sich durch ihre Minimaleigenschaften aus, wodurch diese nicht durch die diskrete inf-sup Stabilitätsbedingung eingeschränkt sind. Die Leistungsfähigkeit und Validität der entwickelten Modelle wird anhand von Benchmark- und Konvergenzstudien im Detail untersucht. Der Fokus weiterer numerischer Studien liegt auf der makrostrukturellen Analyse des magnetostriktiven und magnetorheologischen Effektes. / The present work covers the development of physically motivated, variational-based models for the description of magneto-active polymers at finite deformations. A key aspect of this thesis is to develop a unified theoretical and computational framework for the modeling of non-dissipative and dissipative magneto-active polymers. Within a classical first order theory, a strong emphasis is put on a unifying constitutive modeling framework based on two scalar valued tensor functions, namely the total energy density function and the dissipation potential. This two potential ansatz allows the canonical derivation of thermodynamically consistent constitutive models for a broad spectrum of complex systems in a mathematically elegant manner. The development of a family of constitutive macroscale models for non-dissipative and dissipative magneto-active polymers is based on a microstructure-guided approach, whereby the parametrization of the developed non-dissipative constitutive model is explicitly based on a comprehensive material data set generated via computational homogenization. The energy-based setting provides the natural environment for stability analysis and allows the discussion of the material stability of the developed constitutive models based on generalized notions of convexity. The focus of the variational and computational framework lies on the construction of primal variational principles and their conforming finite element approximations. The associated discrete variational formulations are characterized by their minimization structure and are therefore not restricted by the discrete inf-sup stability condition. The performance and validity of the developed models are investigated in detail by benchmark and convergence studies. The main emphasis of further numerical studies lies on the macrostructural analysis of the magnetostrictive and magnetorheological effect.
253

Dynamical multi-configuration generalized coherent states approach to many-body bosonic quantum systems

Qiao, Yulong 18 June 2024 (has links)
This doctoral thesis presents an extensive study on the applications of generalized coherent states (GCS) for the quantum dynamics of many-body systems. The research starts with exploring the fundamental properties of generalized coherent states, which are created by generators of the SU($M$) group acting on an extreme state, and demonstrating their role in representing ideal quantum condensates. A significant feature is the relationship between generalized coherent states and the more standard Glauber coherent states (CS). Similarities in their overcomplete and non-orthogonal nature are shown, alongside crucial differences with respect to $U(1)$ symmetry and entanglement properties, which generalized coherent states solely adhere to. Furthermore, this thesis delves into the nonequilibrium dynamics of GCS as well as Glauber CS under nonlinear interactions. Combining analytical analysis and numerical calculations, it is found that while their two-point correlation functions are equivalent in the thermodynamic limit, their autocorrelation functions exhibit distinctly different characteristics. It is proven analytically that the autocorrelation functions of the evolved GCS relate to the ones of the corresponding Glauber CS through a Fourier series relation, which arises due to the $U(1)$ symmetry of the GCS. A substantial part of this thesis is dedicated to investigating the dynamics of the Bose-Hubbard model, incorporating both nonlinear interaction and tunneling term. This investigation introduces a novel approach which employs an Ansatz for the wave function in terms of a linear combination of GCS, where the differential equations of all the variables are determined by the time-dependent variational principle without truncation. This innovative method is adeptly applied to the nonequilibrium dynamics in various scenarios, from the bosonic Josephson Junction model where some fundamental quantum effects can be revealed by a handful of GCS basis functions, to large system size implementations of the Bose-Hubbard model, where the phenomenon of thermalization can be observed. The proposed variational approach provides an alternative way to study the time-dependent dynamics in many-body quantum systems conserving particle number. The final focus of this thesis is on the boson sampling problem within a linear optical network framework. Again adapting a linear combination of GCS, an exact analytical formula for the output state in standard boson sampling scenarios is derived by means of Kan's formula, showcasing a computational complexity that increases less severely with particle and mode number than the super-exponential scaling of the Fock state Hilbert space. The reduced density matrix of the output state is obtained by tracing out one subsystem. This part of the study extends to examining the properties of the subsystem entanglement creation, and offering novel perspectives on entanglement entropy differences between global and local optical networks. This thesis makes several contributions to the field of quantum many-body systems, particularly highlighting the potential applications of GCS. The presented research offers a new variational method to the nonequilibrium dynamics, and paves the way for future explorations and applications in quantum simulations, quantum computing and beyond.
254

First- and Second-Order Conditions for Stability Properties and Error Bounds for Generalized Equations, and Applications

Jelitte, Mario 27 June 2024 (has links)
Many real-world problems can be modeled by generalized equations. The solution of the latter can be a challenging task, and typically requires the use of some efficient numerical procedures, whose convergence analysis often relies on stability properties of a solution in question, and on a suitable over-estimate for the distance of a given point to the solution set of the problem, called error bound. With this thesis, we aim at a unified approach to first- and second-order conditions for stability properties and error bounds for generalized equations. To this end, we study existing and develop new concepts for generalized first-order derivatives of set-valued mappings, and use them to formulate criteria for Lipschitzian stability properties and Lipschitzian error bound conditions. These criteria can all be regarded as the property that a suitable generalized least singular value of a generalized derivative is nonzero. By considering generalized least singular values as an extended real-valued function that depends on arguments of an underlying mapping, we will be able to obtain second-order conditions arising from generalized derivatives of this function to guarantee non-Lipschitzian stability properties and non-Lipschitzian error bound conditions. This allows us to extend the territory covered by some seminal monographs dealing with stability properties and error bounds for generalized equations under first-order conditions. Furthermore, we discuss some specializations of our findings, and work out relations to existing results. Finally, we also investigate correlations between stability properties and error bounds with respect to different problem-formulations of one and the same generalized equation.
255

Band Theory and Beyond: Applications of Quantum Algorithms for Quantum Chemistry

Sherbert, Kyle Matthew 05 1900 (has links)
In the past two decades, myriad algorithms to elucidate the characteristics and dynamics of molecular systems have been developed for quantum computers. In this dissertation, we explore how these algorithms can be adapted to other fields, both to closely related subjects such as materials science, and more surprising subjects such as information theory. Special emphasis is placed on the Variational Quantum Eigensolver algorithm adapted to solve band structures of a periodic system; three distinct implementations are developed, each with its own advantages and disadvantages. We also see how unitary quantum circuits designed to model individual electron excitations within a molecule can be modified to prepare a quantum states strictly orthogonal to a space of known states, an important component to solve problems in thermodynamics and spectroscopy. Finally, we see how the core behavior in several quantum algorithms originally developed for quantum chemistry can be adapted to implement compressive sensing, a protocol in information theory for extrapolating large amounts of information from relatively few measurements. This body of work demonstrates that quantum algorithms developed to study molecules have immense interdisciplinary uses in fields as varied as materials science and information theory.
256

Couplage Stokes/Darcy dans un cadre Level-set en grandes déformations pour la simulation des procédés d'élaboration par infusion de résine / Stokes-Darcy coupling in a level-set framework in Large deformations to simulate the manufacturing process by resin infusion.

Pacquaut, Guillaume 10 December 2010 (has links)
Ce travail de recherche propose un modèle numérique pour simuler les procédés par infusion de résine en utilisant la méthode des éléments finis. Ce modèle permet de représenter l'écoulement d'une résine liquide dans des préformes poreuses subissant de grandes déformations. Dans cette étude, une modélisation macroscopique est utilisée. Au niveau du procédé, une zone de résine liquide est déposée sur les préformes. Ces dernières étant considérées comme un milieu poreux. Les équations de Stokes et de Darcy sont utilisées pour modéliser l'écoulement de la résine respectivement dans le drainant et dans les préformes. L'originalité du modèle réside dans le fait qu'un seul maillage est utilisé pour les deux milieux. La discrétisation est réalisée avec des éléments mixtes : dans Stokes, des éléments P1+/P1 sont utilisés et dans Darcy, des éléments P1/P1 stabilisés avec une formulation multi-échelle sont employés. Des fonctions distances signées sont utilisées pour représenter l'interface entre Stokes-Darcy et pour représenter le front de résine. Concernant la déformation des préformes, une formulation Lagrangienne réactualisée est utilisée. Dans cette formulation Lagrangienne, le comportement des préformes humides est représenté à l'aide du modèle de Terzaghi dans lequel les préformes sèches ont un comportement élastique non-linéaire. La perméabilité est reliée à la porosité via la relation de Carman-Kozeny. Celle-ci est déterminée à partir de l'équation de conservation de la masse. Ce modèle a été implémenté dans ZéBuLoN. Plusieurs simulations numériques d'infusion de résine sont présentées à la fin de ce manuscrit. / This work proposes a numerical model to simulate the manufacturing processes by resin infusion using the finite element method. This model allows to represent the resin flow into porous preforms, which are themselves subject to large deformations. In this study, a macroscopic description is used. The preforms are considered as a porous medium. The Stokes and the Darcy equations are used respectively to describe the resin flow into the liquid zone and into the preforms.The originality of the model consists in using one single unstructured mesh. The discretization is ensured by using a mixed velocity-pressure formulation. Indeed, a P1/P1 formulation is employed throughout the entire discretized domain, stabilized in the Darcy region with a multi-scale formulation and in the Stokes subdomain with a hierarchical-based bubble, i.e. a P1+/P1 finite element. Signed distance functions are used both to represent the Stokes-Darcy interface and to capture the moving flow front. Concerning the deformations of the preforms, an updated Lagrangian scheme is used. In the Lagrangian formulation, the behavior of the wet preforms is represented by using the Terzaghi model in which the dry preforms have a non-linear elastic behavior. The permeability depends on the porosity through the Carman-Kozeny relationship. This model has been implemented in Zset. Several numerical simulations of manufacturing processes by resin infusion are presented at the end of this manuscript.
257

Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growth

Freitas, Luciana Roze de 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
258

Bilevel programming

Zemkoho, Alain B. 25 June 2012 (has links) (PDF)
We have considered the bilevel programming problem in the case where the lower-level problem admits more than one optimal solution. It is well-known in the literature that in such a situation, the problem is ill-posed from the view point of scalar objective optimization. Thus the optimistic and pessimistic approaches have been suggested earlier in the literature to deal with it in this case. In the thesis, we have developed a unified approach to derive necessary optimality conditions for both the optimistic and pessimistic bilevel programs, which is based on advanced tools from variational analysis. We have obtained various constraint qualifications and stationarity conditions depending on some constructive representations of the solution set-valued mapping of the follower’s problem. In the auxiliary developments, we have provided rules for the generalized differentiation and robust Lipschitzian properties for the lower-level solution setvalued map, which are of a fundamental interest for other areas of nonlinear and nonsmooth optimization. Some of the results of the aforementioned theory have then been applied to derive stationarity conditions for some well-known transportation problems having the bilevel structure.
259

Local FEM Analysis of Composite Beams and Plates : free-Edge effect and Incompatible Kinematics Coupling / Analyse élément finit local des poutres et plaques composite : effet des bords libres et couplages des cinématiques incompatible

Wenzel, Christian 07 October 2014 (has links)
Cette thèse traite des problèmes des concentrations de contraintes locales, en particularité des effets des bords libres dans des structures stratifiés. À l'interface entre deux couches avec des propriétés élastiques différentes, les contraintes ont un comportement singulier dans le voisinage du bord libre en supposant un comportement de matériau élastique linéaire. Par conséquent, ils sont essentiels pour promouvoir le délaminage. Via Formulation unifiée de la Carrera (CUF) différents modèles cinématiques sont testés dans le but de capter les concentrations de contraintes. Dans la première partie de ce travail, les approches de modélisation dimensionnelle réduits sont comparées. Deux classe principale sont présentés: la couche équivalent (ESL) et l'approche par couche, LW. Par la suite leurs capacités à capter les singularités sont comparées. En utilisant une fonction a priori singulière, via une expression exponentielle, une mesure des contraintes singulières est introduite. Seulement deux paramètres décrivent pleinement les composantes des contraintes singulières au voisinage du bord libre. Sur la base des paramètres obtenus les modèles sont comparés et aussi les effets sous des charges d'extension et de flexion et pour différents stratifiés. Les résultats montrent une nécessité des modèles complexes dans le voisinage du bord libre. Cependant loin des bords libres, dans le centre de plaques composite, aucune différence significative ne peut être noté pour les modèles plutôt simples. La deuxième partie de ce travail est donc dédiée au couplage de modèles cinématique incompatibles. Modèles complexes et coûteux sont utilisés seulement dans des domaines locaux d'intérêt, tandis que les modèles économiques simples seront modéliser le domaine global. La eXtended Variational Formulation (XVF) est utilisé pour coupler les modèles de dimensionnalité homogènes mais de cinématique hétérogènes. Ici pas de recouvrement de domaine est présent. En outre, le XVF offre la possibilité d'adapter les conditions imposées à l'interface en utilisant un paramètre scalaire unique. On montre que, pour le problème de dimensionnalité homogène, que deux conditions différentes peuvent être imposées par ce paramètre. Un correspondant à des conditions fortes des Multi Point Constraints (MPC) et un second fournir des conditions faibles. La dernière offre la possibilité de réduire extrêmement le domaine qui utilise le modèle cinématique complexe, sans perte de précision locale. Comme il s'agit de la première application de la XVF vers les structures composites, le besoin d'un nouvel opérateur de couplage a été identifié. Un nouveau formulaire est proposé, testé et sa robustesse sera évaluée. / This work considers local stress concentrations, especially the free-Edge effects of multilayered structures. At the interface of two adjacent layers with different elastic properties, the stresses can become singular in the intermediate vicinity of the free edge. This is valid while assuming a linear elastic material behaviour. As a consequence this zones are an essential delamination trigger. Via the Carrera Unified Formulation (CUF), different kinematical models are testes in order to obtain the correct local stress concentration. In the first part of this work, the reduced dimensional modelling approaches are compared. Two main class are presented: Equivalent Single Layer (ESL) models treating the layered structure like one homogenous plate of equal mechanical proper- ties, and the Layer Wise approach, treating each layer independently. Subsequently their capabilities to capture the appearing singularities are compared. In order to have a comparable measurement of those singularities, the obtained stress distributions will be expressed via a power law function, which has a priori a singular behaviour. Only two parameters fully describe therefore the singular stress components in the vicinity of the free edge. With the help of these two parameters not only the different models capabilities will be compared, but also the free edge effect itself will be measured and compared for different symmetrical laminates and the case of extensional and uniform bending load. The results for all laminates under both load cases confirm the before stated need for rather complex models in the vicinity of the free edge. However far from the free edges, in the composite plates centre, no significant difference can be noted for rather simple models. The second part of this work is therefore dedicated to the coupling of kinematically incompatible models. The use of costly expensive complex models is restricted to local domains of interest, while economic simple models will model the global do- main. The Extended Variational Formulation (XVF) is identified as the most suitable way to couple the kinematically heterogenous but dimensional homogenous models. As it uses a configuration with one common interface without domain overlap, the additional efforts for establishing the coupling are limited. Further the XVF offers the possibility to adapt the conditions imposed at the interface using a single scalar parameter. It will be shown that for the homogenous dimensional problem under consideration only two different conditions can be imposed by this parameter. One matching the strong conditions imposed by the classical Multi Point Constrains (MPC) and a second one providing a weak condition. The last one is shown to provide the possibility to reduce further the domain using the complex kinematical model, without the loss of local precision. As this is the first application of the XVF towards composite structures, the need for a new coupling operator was identified. A new form is proposed, tested and its robustness will be evaluated.
260

Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growth

Luciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory

Page generated in 0.1171 seconds