• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 115
  • 65
  • 34
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 668
  • 135
  • 121
  • 86
  • 76
  • 73
  • 70
  • 67
  • 64
  • 58
  • 57
  • 56
  • 55
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Analysis of Thick Laminated Composite Beams using Variational Asymptotic Method

Ameen, Maqsood Mohammed January 2016 (has links) (PDF)
An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted, moderately-thick beam having rectangular cross sections and made of transversely isotropic material. The beam is modelled with-out assumptions from 3-D elasticity. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method (VAM) is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimisation of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
302

Analýza variačních metod pro segmentaci digitálního obrazu / Variational methods for segmentation of digital images

Kotera, Jan January 2011 (has links)
The text covers the theory of the Mumford and Shah model for digital image segmentation. The strong and weak formulation is presented and the questions of existence, uniqueness, and solution regularity is answered. Then, a particular variant of the model called `active contours without edges' is numerically implemented. This implementation is tested on several images, the results are presented in detail and theoretically explained.
303

[en] A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS / [pt] UM MÉTODO FAST MULTIPOLE PARA ELEMENTOS DE CONTORNO DE ALTA ORDEM

HELVIO DE FARIAS COSTA PEIXOTO 10 August 2018 (has links)
[pt] Desde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional. / [en] The Fast Multipole Method (FMM) has been used since the 1990s with the Boundary Elements Method (BEM) for the simulation of large-scale problems. This method relies on Taylor series expansions of the underlying fundamental solutions to cluster the nodes on the discretised boundary of a domain, aiming to reduce the computational time required to carry out the simulation. It has become an important tool for the BEMs, as they present matrices that are full and nonsymmetric, so that the improvement of storage allocation and execution time is not a simple task. The application of the FMM to the BEM ends up with a very intricate code, and usually changing from one problem s fundamental solution to another is not a simple matter. This work presents a kernel-independent formulation of the FMM, here called the General Fast Multipole Method (GFMM), which is also able to deal with high order, curved boundary elements in a straightforward manner. This is an important feature, as the fast multipole implementations reported in the literature only apply to constant elements. All necessary aspects of this method are presented, starting with the mathematical basics of both FMM and BEM, carrying out some numerical assessments, and ending up with the solution of large potential problems. The application of the GFMM to both potential and elasticity problems is discussed and validated in the context of BEM. Furthermore, the formulation of the GFMM with the Simplified Hybrid Boundary Elements Method (SHBEM) is presented. Several numerical assessments show that the GFMM is highly efficient and may be as accurate as arbitrarily required, for problems with up to many millions of degrees of freedom. The literature proposes that the FMM is capable of reducing the time complexity of the BEM algorithms from O(N2) to O(N), where N is the number of degrees of freedom. In fact, it is shown that the GFMM is able to arrive at such time reduction without resorting to techniques of computational optimisation.
304

Existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / Existence of multiple positive solutions for a class of quaselinear elliptic problems.

MENESES, João Paulo Formiga de. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T18:38:15Z No. of bitstreams: 1 JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) / Made available in DSpace on 2018-08-13T18:38:15Z (GMT). No. of bitstreams: 1 JOÃO PAULO FORMIGA DE MENESES - DISSERTAÇÃO PPGMAT 2016..pdf: 1613708 bytes, checksum: 5f49f16ec6b9bdf21a073af08bdf1006 (MD5) Previous issue date: 2016-11-25 / Neste trabalho, utilizando sub e supersoluções e métodos variacionais sobre espaços de Orlicz-Sobolev, estudamos a existência de múltiplas soluções positivas para uma classe de problemas elípticos quaselineares. / In this work, using sub and supersolutions and variational methods on Orlicz-Sobolev spaces, we study the existence of multiple positive solutions for a class of quasilinear elliptic problems.
305

Variational problems arising in classical mechanics and nonlinear elasticity

Spencer, Paul January 1999 (has links)
No description available.
306

Small Blob Detection in Medical Images

January 2015 (has links)
abstract: Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background. This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2015
307

Existência e multiplicidade de solução para uma classe de equações elípticas via teoria de Morse. / Existence and multiplicity of solution for a class of elliptic equations via Morse theory.

PEREIRA, Denilson da Silva. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T17:05:28Z No. of bitstreams: 1 DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5) / Made available in DSpace on 2018-07-25T17:05:28Z (GMT). No. of bitstreams: 1 DENILSON DA SILVA PEREIRA - DISSERTAÇÃO PPGMAT 2010..pdf: 630527 bytes, checksum: 8a6ec5b5fb5e2a462945183d2180a573 (MD5) Previous issue date: 2010-12 / Neste trabalho estudamos a existência e multiplicidade de soluções para uma certa classe de problemas elípticos. Utilizaremos métodos variacionais juntamente com a teoria de Morse em dimensão infinita. / In this work, we study the existence and multiplicity of solution for a large class of Elliptic problems. The main tools used are variational methods together with the infinite dimensional Morse Theory.
308

Scene Flow Estimation from RGBD Images / Estimation du flot de scène à partir des images RGBD

Quiroga Sepúlveda, Julián 07 November 2014 (has links)
Cette thèse aborde le problème du calcul de manière fiable d'un champ de mouvement 3D, appelé flot de scène, à partir d'une paire d'images RGBD prises à des instants différents. Nous proposons un schéma d'estimation semi-rigide pour le calcul robuste du flot de scène, en prenant compte de l'information de couleur et de profondeur, et un cadre de minimisation alternée variationnelle pour récupérer les composantes rigides et non rigides du champ de mouvement 3D. Les tentatives précédentes pour estimer le flot de scène à partir des images RGBD étaient des extensions des approches de flux optique, et n'exploitaient pas totalement les données de profondeur, ou bien elles formulaient l'estimation dans l'espace 3D sans tenir compte de la semi-rigidité des scènes réelles. Nous démontrons que le flot de scène peut ^etre calculé de manière robuste et précise dans le domaine de l'image en reconstruisant un mouvement 3D cohérent avec la couleur et la profondeur, en encourageant une combinaison réglable entre rigidité locale et par morceaux. En outre, nous montrons que le calcul du champ de mouvement 3D peut être considéré comme un cas particulier d'un problème d'estimation plus général d'un champ de mouvements rigides à 6 dimensions. L'estimation du flot de scène est donc formulée comme la recherche d'un champ optimal de mouvements rigides. Nous montrons finalement que notre méthode permet d'obtenir des résultats comparables à l'état de l'art. / This thesis addresses the problem of reliably recovering a 3D motion field, or scene flow, from a temporal pair of RGBD images. We propose a semi-rigid estimation framework for the robust computation of scene flow, taking advantage of color and depth information, and an alternating variational minimization framework for recovering rigid and non-rigid components of the 3D motion field. Previous attempts to estimate scene flow from RGBD images have extended optical flow approaches without fully exploiting depth data or have formulated the estimation in 3D space disregarding the semi-rigidity of real scenes. We demonstrate that scene flow can be robustly and accurately computed in the image domain by solving for 3D motions consistent with color and depth, encouraging an adjustable combination between local and piecewise rigidity. Additionally, we show that solving for the 3D motion field can be seen as a specific case of a more general estimation problem of a 6D field of rigid motions. Accordingly, we formulate scene flow estimation as the search of an optimal field of twist motions achieving state-of-the-art results.STAR
309

Sobre uma classe de problemas elípticos envolvendo o crescimento do tipo Trudinger-Moser

Felix, Diego Dias 30 July 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T16:10:53Z No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-15T16:10:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2015-07-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we study a class of quasilinear elliptic problem involving nonlinearities with subcritical polynomial growth, subcritical exponential growth and critical exponential growth. Our main focus is to treat nonlinearities which do not satisfy the condition of super-quadratic of Ambrosetti-Rabinowitz. Our main tool is the Mountain Pass Theorem with the Cerami condition. / Neste trabalho, estudamos uma classe de problemas elípticos quase lineares envolvendo não linearidades com crescimento polinomial subcrítico, exponencial subcrítico e exponencial crítico. Nosso foco principal é tratar não linearidades que não satisfazem a condição de superquadraticidade de Ambrosetti-Rabinowitz. A nossa ferramenta é o Teorema do Passo da Montanha com a condição de Cerami.
310

Modelagem matemática da transferência de calor numa placa plana sob o efeito de uma fonte pontual externa de radiação térmica. / Mathematical modeling of the heat transfer phenomenon on a flat body exposed to a punctual source of thermal radiation.

Carlos Daniel Braga Girão Barroso 28 November 2008 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Este trabalho apresenta uma modelagem matemática para o processo de aquecimento de um corpo exposto a uma fonte pontual de radiação térmica. O resultado original que permite a solução exata de uma equação diferencial parcial não linear a partir de uma seqüência de problemas lineares também é apresentado. Gráficos gerados com resultados obtidos pelo método de diferenças finitas ilustram a solução do problema proposto. / This work presents a mathematical model for the heating process on a body exposed to a punctual source of thermal radiation. An original result, that allows the construction of the exact solution for a non-linear partial differential equation by solving a sequence of linear problems, is also presented. Graphic images generated from the results obtained through the Finite Difference Method illustrate the solution of the proposed problem.

Page generated in 0.1238 seconds