21 |
[en] THE HIBRID BOUNDARY ELEMENT METHOD APPLIED TO TRANSIENT PROBLEMS / [pt] O MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO APLICADO A PROBLEMAS TRANSIENTESDENILSON RICARDO DE LUCENA NUNES 27 March 2002 (has links)
[pt] Mais de três décadas atrás, Przemieniecki introduziu uma
formulação para análise de elementos de barra e treliça
baseada em uma expansão em série de freqüências.
Recentemente esta formulação foi generalizada para análise
de sistemas elásticos submetidos a carregamento qualquer e
deslocamentos iniciais. Baseado no método da superposição
modal, um sistema acoplado, com equações diferenciais de
movimento de alta ordem, é transformado em um sistema
desacoplado com equações diferenciais de segunda ordem, que
pode ser resolvido por qualquer método conhecido na
literatura. A motivação para este desenvolvimento é o
Método Híbrido dos Elementos de Contorno, que tem sido
desenvolvido para problemas dependentes do tempo e
problemas dependentes da freqüência. Esta formulação, assim
como a introduzida por Pian para o Método dos Elementos
Finitos, obtém uma matriz de rigidez utilizando apenas
integrais de contorno, para um domínio de forma qualquer
contendo vários graus de liberdade. O uso de termos com
freqüências de alta ordem melhora muito a precisão
numérica. A análise modal de um problema dinâmico, conforme
se apresenta, é aplicável a qualquer formulação de
elementos finitos, em geral, desde que a matriz de rigidez
generalizada possa ser obtida. Este trabalho é uma
tentativa de consolidação da formulação teórica proposta,
em que se faz uso de integrais exclusivamente no contorno,
com a discussão de diversos casos particulares e a
conseqüente avaliação numérica: estruturas restringidas ou
não; consideração de deslocamentos e velocidades iniciais,
tanto em termos de valores nodais quanto de campos
prescritos no domínio (incluindo deslocamentos de corpo
rígido); deslocamentos forçados dependentes do tempo;
forças de massa dependentes do tempo; cálculo de resultados
em pontos internos. Vários exemplos acadêmicos para
problemas de potencial bidimensionais ilustram este
trabalho. / [en] More than three decades ago, Przemieniecki introduced a
formulation for the free vibration analysis of bar and beam
elements based on a power series of frequencies. Recently,
this formulation was generalized for the analysis of the
dynamic response of elastic systems submitted to arbitrary
nodal loads as well as initial displacements. Based on the
mode-superposition method, a set of coupled, higher-order
differential equations of motion is transformed into a set
of uncoupled second order differential equations, which may
be integrated by means of standard procedures. Motivation
for this theoretical achievement is the hybrid boundary
element method, which has been developed for time-dependent
as well as frequency-dependent problems. This formulation,
as a generalization of Pian`s previous achievements for
finite elements, yields a stiffness matrix for which only
boundary integrals are required, for arbitrary domain
shapes and any number of degrees of freedom. The use of
higher-order frequency terms drastically improves numerical
accuracy. The introduced modal assessment of the dynamic
problem is applicable to any kind of finite element for
which a generalized stiffness matrix is available. The
present work is an attempt of consolidating this boundary-
only theoretical formulation, in which a series of
particular cases are conceptually outlined and numerically
assessed: Constrained and unconstrained structures; initial
displacements and velocities as nodal values as well as
prescribed domain fields (including rigid body movement);
forced time-dependent displacements; time-dependent body
forces; evaluation of results at internal points. Several
academic examples for 2D problems of potential illustrate
the formulation.
|
22 |
[en] THE HYBRID BOUNDARY ELEMENT METHOD APPLIED TO SYMMETRIC AND ANTISYMMETRIC PROBLEMS / [pt] O MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO APLICADO A PROBLEMAS COM SIMETRIA E ANTISSIMETRIAMAURICIO COELHO ALVES 09 May 2002 (has links)
[pt] Este trabalho trata o Método Híbrido dos Elementos de
Contorno com vista à análise de problemas que envolvam
simetria ou antissimetria. Nestes casos, apenas uma parte
da estrutura, que pode ser a metade, um quarto ou um
oitavo, deve ser discretizada e capaz de representar o
todo. Os métodos de contorno apresentam a vantagem, quando
comparados com os de domínio, de não ser necessário nenhum
tipo de discretização ao longo dos eixos ou planos de
simetria, sem a introdução de mais aproximações, visto que
apenas o contorno é discretizado. Embora estas
simplificações venham a restringir alguns deslocamentos de
corpo rígido (para problemas de elasticidade), no Método
dos Elementos de Contorno convencional (colocação ou
Galerkin) a ausência de tais deslocamentos não acarreta
alterações na sistemática do método. Nos Métodos Híbridos
de Elementos de Contorno, por outro lado, os deslocamentos
de corpo rígido são necessários direta ou indiretamente
para a aplicação de condições de ortogonalidade e avaliação
das propriedades espectrais que são essenciais na obtenção
da diagonal principal de certas matrizes inerentes ao
método, tais como de flexibilidade, de deslocamentos e de
tensões. Esta necessidade de avaliação é uma característica
de suma importância do método e, quando não houver
possibilidade de fazê-la, deve-se procurar uma forma
substituta conceitualmente equivalente. Verifica-se que,
apesar de este método ser baseado em funções singulares de
Green, é capaz de representar estados simples de tensões,
tanto por trabalhos virtuais quanto por interpolações no
domínio. Como objetivo principal deste trabalho, será
demonstrado que para cada deslocamento de corpo rígido
perdido, devido às restrições impostas pela simetria ou
antissimetria, poderá ser utilizado um estado simples de
tensão (constantes na maioria dos casos), que permitirá o
estabelecimento de propriedades espectrais apropriadas. De
forma a se garantir uma sistemática estruturada para o
trabalho, faz-se uma abordagem de conceitos fundamentais
aplicados a problemas da elastostática e potencial
estacionário, na formulação variacional do Método Híbrido
dos Elementos de Contorno com posteriores considerações
especiais de estados simples de tensão (representados
polinomialmente), para elasticidade tridimensional em
geral, visto que para problemas bidimensionais o caso se
torna uma particularização. Todas as combinações de
simetria e antissimetria são avaliadas com a implementação
numérica. Diversos exemplos de problemas bidimensionais
ilustram a formulação teórica. / [en] The boundary element methods are suited for the analysis of
symmetric and antisymmetric problems - in which only a part
(half, quadrant or octant) of the structure needs to be
explicitly considered - since, as an additional advantage
when compared with a domain discretization method, no
interpolation is required along the symmetry axes (for 2D
problems) or planes (for 3D problems) and, consequently, no
approximations are introduced thereon. Although such
computational simplification may prevent some of the
structures allowable rigid body movements (elasticity
problems considered), this fact may be completely ignored
as concerning the implementation of the traditional
(collocation or Galerkin) boundary element methods. In the
hybrid boundary element methods, on the other hand, special
orthogonality conditions, directly or indirectly related to
rigid body displacements, are required for the evaluation
of elements about the main diagonal of some matrices
(flexibility, displacement and stress matrices). Then, a
central issue in such methods is the assessment of these
matrices spectral properties for any combination of
symmetry and antisymmetry and, most important, the
investigation of conceptually equivalent, substitutive
properties. As presented in this work, the hybrid boundary
element methods, although based on singular Green s
functions, are able to simulate, in terms of both virtual
work and field interpolation, the simplest stress states.
Then, one demonstrates that for every missing rigid body
displacement - brought about by some symmetry or
antisymmetry consideration - one may lay hold of a simple
(in most cases constant) stress state, which enables
establishing appropriate spectral properties. This work
introduces the underlying variational concepts of the
hybrid boundary element method and outlines the special
consideration of simple (polynomial) stress states, as
generally formulated for 3D elasticity, since 2D elasticity
and problems of potential may be dealt with as particular
cases. All combinations of symmetry and antisymmetry are
outlined with the aim of numerical implementation. A series
of 2D examples for problems of potential illustrate the
theoretical
|
23 |
[en] A STUDY OF THE FAST MULTIPOLE METHOD APPLIED TO BOUNDARY ELEMENT PROBLEMS / [pt] UM ESTUDO DO MÉTODO FAST MULTIPOLE PARA PROBLEMAS DE ELEMENTOS DE CONTORNOHELVIO DE FARIAS COSTA PEIXOTO 31 March 2015 (has links)
[pt] Este trabalho faz parte de um projeto para a implementação de um
programa que possa simular problemas com milhões de graus de liberdade em
um computador pessoal. Para isto, combina-se o Método Fast Multipole (FMM)
com o Método Expedito dos Elementos de Contorno (EBEM), além de serem
utilizados resolvedores iterativos de sistemas de equações. O EBEM é
especialmente vantajoso em problemas de complicada topologia, ou que usem
funções fundamentais muito complexas. Neste trabalho apresenta-se uma
formulação para o Método Fast Multipole (FMM) que pode ser usada para,
virtualmente, qualquer função e também para contornos curvos, o que parece ser
uma contribuição original. Esta formulação apresenta um formato mais
compacto do que as já existentes na literatura, e também pode ser diretamente
aplicada a diversos tipos de problemas praticamente sem modificação de sua
estrutura básica. É apresentada a validação numérica da formulação proposta.
Sua utilização em um contexto do EBEM permite que um programa prescinda de
integrações sobre segmentos – mesmo curvos – do contorno quando estes estão
distantes do ponto fonte. / [en] This is part of a larger project that aims to develop a program able to
simulate problems with millions of degrees of freedom on a personal computer.
The Fast Multipole Method (FMM) is combined with the Expedite Boundary
Element Method (EBEM) for integration, in the project s final version, with
iterative equations solvers. The EBEM is especially advantageous when applied
to problems with complicated topology as well as in the case of highly complex
fundamental solutions. In this work, a FMM formulation is proposed for the use
with virtually any type of fundamental solution and considering curved
boundaries, which seems to be an original contribution. This formulation
presents a more compact format than the ones shown in the technical literature,
and can be directly applied to different kinds of problems without the need of
manipulation of its basic structure, being numerically validated for a few
applications. Its application in the context of the EBEM leads to the
straightforward implementation of higher-order elements for generally curved
boundaries that dispenses integration when the boundary segment is relatively
far from the source point.
|
24 |
[pt] MATRIZ DE ESPELHAMENTO DE OBSTÁCULOS CILÍNDRICOS DE ALTURA VARIÁVEL EM GUIAS DE ONDAS RETANGULARES / [en] SCATTERING MATRIZ OF CYLINDRICAL POSTS WITH VARIABLE HEIGHT IN RECTANGULAR WAVEGUIDES16 August 2006 (has links)
[pt] Neste trabalho obtém-se a matriz de espalhamento de
obstáculos cilíndricos em guias de ondas retangulares. O
método de análise utilizado é o método dos momentos
juntamente com o método das imagens.
São analisadas descontinuidades formadas por um poste
vertical inteiro, postes verticais contendo um gap
central, postes horizontais contendo um gap central e
postes localizados nas quatro paredes do guia de ondas
retangular.
Os resultados obtidos são comparados com valores
experimentais para as 4 geometrias descritas acima. Além
disso é feita a comparação dos resultados obtidos com os
do método variacional para o caso do poste vertical
inteiro. / [en] In this work the scattering matrix of cylindrical
obstacles in rectangular wavwguides is obtained. The
analysis method adopted is the moment method in junction
with the image method.
Discontinuities formed by a single vertivcal post, vetical
posts with a central gap, horizontal posts with a central
gap, and posts on the four waveguides walls are analyzed.
The results are compared with experimental data for the
four geometries described above. Moreover the results are
also compared with those obtained by variational method in
the case of the single vertical post.
|
25 |
Entanglement and Topology in Quantum Many-Body DynamicsPastori, Lorenzo 01 October 2021 (has links)
A defining feature of quantum many-body systems is the presence of entanglement among their constituents. Besides providing valuable insights on several physical properties, entanglement is also responsible for the computational complexity of simulating quantum systems with variational methods. This thesis explores several aspects of entanglement in many-body systems, with the primary goal of devising efficient approaches for the study of topological properties and quantum dynamics of lattice models.
The first focus of this work is the development of variational wavefunctions inspired by artificial neural networks. These can efficiently encode long-range and extensive entanglement in their structure, as opposed to the case of tensor network states. This feature makes them promising tools for the study of topologically ordered phases, quantum critical states as well as dynamical properties of quantum systems. In this thesis, we characterize the representational power of a specific class of artificial neural network states, constructed from Boltzmann machines. First, we show that wavefunctions obtained from restricted Boltzmann machines can efficiently parametrize chiral topological phases, such as fractional quantum Hall states. We then turn our attention to deep Boltzmann machines. In this framework, we propose a new class of variational wavefunctions, coined generalized transfer matrix states, which encompass restricted Boltzmann machine and tensor network states. We investigate the entanglement properties of this ansatz, as well as its capability of representing physical states.
Understanding how the entanglement properties of a system evolve in time is the second focus of this thesis. In this context, we first investigate the manifestation of topological properties in the unitary dynamics of systems after a quench, using the degeneracy of the entanglement spectrum as a possible signature. We then analyze the phenomenon of entanglement growth, which limits to short timescales the applicability of tensor network methods in out-of-equilibrium problems. We investigate whether these limitations can be overcome by exploiting the dependence of entanglement entropies on the chosen computational basis. Specifically, we study how the spreading of quantum correlations can be contained by means of time-dependent basis rotations of the state, using exact diagonalization to simulate its dynamics after a quench. Going beyond the case of sudden quenches, we then show how, in certain weakly interacting problems, the asymptotic value of the entanglement entropy can be tuned by modifying the velocity at which the parameters in the Hamiltonian are changed. This enables the simulation of longer timescales using tensor network approaches. We present preliminary results obtained with matrix product states methods, with the goal of studying how equilibration affects the transport properties of interacting systems at long times.
|
26 |
Interlaminar Deformation at a Hole in Laminated Composites: A Detailed Experimental Investigation Using Moire InterferometryMollenhauer, David Hilton 22 August 1997 (has links)
The deformation on cylindrical surfaces of holes in tensile loaded laminated composite specimens was measured using new moire interferometry techniques. These new techniques were developed and evaluated using a 7075-T6 aluminum control specimen. Grating replication techniques were developed for replicating high quality diffraction gratings onto the cylindrical surfaces of holes. Replicas of the cylindrical specimen gratings (undeformed and deformed) were fabricated onto circular steel sectors. Narrow angular regions of these sector gratings were directly evaluated in a moire interferometer. This moire interferometry approach eliminated potential sources of error associated with other moire interferometry approaches.
Two composite tensile specimens, fabricated from IM7/5250-4 pre-preg with ply layups of [0₄/90₄]<sub>3s</sub> and [+30₂/-30₂/90₄]<sub>3s</sub>, were examined using the newly developed moire interferometry techniques. Circumferential and thickness direction displacement fringe patterns (each 3 degrees wide) were assembled into 90 degrees wide mosaics around the hole periphery for both composite specimens. Distributions of strain were calculated with high confidence on a sub-ply basis at select angular locations. Measured strain behavior was complex and displayed ply-by-ply trends. Large ply related variations in the circumferential strain were observed at certain angular locations around the periphery of the holes in both composites. Extremely large ply-by-ply variations of the shear strain were also documented in both composites. Peak values of shear strain approached 30 times the applied far-field axial strain. Post-loaded viscoelastic shearing strains were recorded that were associated with the regions of large load-induced shearing strains. Large ply-grouping related variations in the thickness direction strain were observed in the [+30₂/-30₂/90₄]<sub>3s</sub> specimen. An important large-scale trend was observed where the thickness direction strain tended to be more tensile near the outside faces of the laminate than near the mid-ply region. The measured strains were compared with the three-dimensional analysis technique known as Spline Variational Elastic Laminate Technology (SVELT), resulting in a very close match and corroborating the usefulness of SVELT. / Ph. D.
|
27 |
Variational analysis of a nonlinear Klein-Gordon equationWeyand, Tracy K. 01 January 2008 (has links)
Many nonlinear Klein-Gordon equations have been studied numerically, and in a few cases, analytical solutions have been found. We used the variational method to study three different equations in this family. The first one to be studied here was the linear equation, Utt - Uzz + U = 0, where U is a real Klein-Gordon field. Attempts to find non-stationary radiative-type solutions of this equation were not successful. Next we studied the nonlinear equation Utt - U:= ± IUl 2U = O, with U complex, which represents a nonlinear massless scalar field. Here we searched for possible stationary solutions using the variational approximation, however to no avail. Next, we added a linear term to this second equation, which then became Utt - Uzll: ± IUl2U + µU = 01 whereµ can always be scaled to ±1. Here we found that we can find approximate variational solutions of the form A(t)e^i{k(x-z0(t))+a)e / 2w2(z) . This third equation is a generalization of the tf,4 equation, which has many physical applications. However, the variational solution found required different signs on the coefficients of this equation than are found in the O4 equation. Properties and features of this variational solution will be discussed.
|
28 |
Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growthLeuyacc, Yony Raúl Santaria 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.
|
29 |
[en] APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS / [pt] APLICAÇÃO DE TÉCNICAS DE FAST MULTIPOLE NOS MÉTODOS DE ELEMENTOS DE CONTORNOLARISSA SIMOES NOVELINO 19 February 2019 (has links)
[pt] Este trabalho visa à implementação de um programa de elementos de
contorno para problemas com milhões de graus de liberdade. Isto é obtido com a
implementação do Método Fast Multipole (FMM), que pode reduzir o número
de operações, para a solução de um problema com N graus de liberdade, de
O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não
haver o armazenamento de matrizes de grandes dimensões como no caso de
outros métodos numéricos. A implementação proposta é baseada em um
desenvolvimento consistente do convencional, Método de colocação dos
elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM –
para problemas de potencial e elasticidade de larga escala em 2D e 3D. A
formulação é especialmente vantajosa para problemas de topologia complicada
ou que requerem soluções fundamentais complicadas. A implementação
apresentada, usa um esquema para expansões de soluções fundamentais
genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o
FMM diretamente aplicável para diferentes soluções fundamentais. A árvore
hierárquica dos polos é construída a partir de um conceito topológico de
superelementos dentro de superelementos. A formulação é inicialmente acessada
e validada em termos de um problema de potencial 2D. Como resolvedores
iterativos não são necessários neste estágio inicial de simulação numérica, podese
acessar a eficiência relativa à implementação do FMM. / [en] This work aims to present an implementation of a boundary element solver
for problems with millions of degrees of freedom. This is achieved through a
Fast Multipole Method (FMM) implementation, which can lower the number of
operations for solving a problem, with N degrees of freedom, from O(N(2)) to
O(NlogN) or O(N). The memory usage is also very small, as there is no need to
store large matrixes such as required by other numerical methods. The proposed
implementations are based on a consistent development of the conventional,
collocation boundary element method (BEM) - with concepts taken from the
variationally-based hybrid BEM - for large-scale 2D and 3D problems of
potential and elasticity. The formulation is especially advantageous for problems
of complicated topology or requiring complicated fundamental solutions. The
FMM implementation presented in this work uses a scheme for expansions of a
generic fundamental solution about hierarchical levels of source and field poles.
This makes the FMM directly applicable to different kinds of fundamental
solutions. The hierarchical tree of poles is built upon a topological concept of
superelements inside superelements. The formulation is initially assessed and
validated in terms of a simple 2D potential problem. Since iterative solvers are
not required in this first step of numerical simulations, an isolated efficiency
assessment of the implemented fast multipole technique is possible.
|
30 |
Existência de uma solução não trivial para uma classe de problemas elípticos super quadrático / Existence of a nontrivial solution for a class of elliptic problems super quadraticCavalcante, Thiago Rodrigues 13 December 2013 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-08-29T19:24:13Z
No. of bitstreams: 2
Dissertação Corrigida e Finalisada.pdf: 2280692 bytes, checksum: fa3c7d92b5ed8a39139ceeb3abb80551 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-08-29T19:24:13Z (GMT). No. of bitstreams: 2
Dissertação Corrigida e Finalisada.pdf: 2280692 bytes, checksum: fa3c7d92b5ed8a39139ceeb3abb80551 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-12-13 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this dissertation we analyze questions of existence of a weak solution for a class
of superlineares elliptic Dirichlet problems. Here we do not consider the Ambrosseti
Rabinovitz condition , which restricts some nonlinearities. We obtain main results of
this dissertation via Variational Methods, such as Mountain Pass Theorem and Linking
Theorem. Furthermore, weusePalais-Smalecondition(P.S.) or Cerami condition(Ce) / Nesta dissertação analisamos questões de existência de uma solução fraca para uma classe de problemas de Dirichlet elípticos superlineares. Aqui não consideramos a condição deAmbrosetti-Rabinowitz,a qual restringealgumasfunçõesnão lineares. Obtemos os principais resultados desta dissertação via Métodos variacionais, tais como o Teorema do Passo da Montanha e um Teorema de Linking. Além disso, utilizamos a
TeoriaEspectral e ascondições dePalais-Smale(P.S.) eCerami(Ce).
|
Page generated in 0.1207 seconds