• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Varieties and Clones of Relational Structures / Varietäten und Klone relationaler Strukturen

Grabowski, Jens-Uwe 26 June 2002 (has links) (PDF)
We present an axiomatization of relational varieties, i.e., classes of relational structures closed under formation of products and retracts, by a certain class of first-order sentences. We apply this result to categorically equivalent algebras and primal algebras. We consider the relational varieties generated by structures with minimal clone, rigid structures and two-element structures.
2

Varieties and Clones of Relational Structures

Grabowski, Jens-Uwe 07 June 2002 (has links)
We present an axiomatization of relational varieties, i.e., classes of relational structures closed under formation of products and retracts, by a certain class of first-order sentences. We apply this result to categorically equivalent algebras and primal algebras. We consider the relational varieties generated by structures with minimal clone, rigid structures and two-element structures.
3

Rakouská versus německá němčina. Jednoduchý jazykový management v interakcích mezi rakouskými a německými rodilými mluvčími / Austrian versus German German. Simple Language Managenent in Interactions between Austrian and German Native Speakers

Grycová, Petra January 2013 (has links)
Since at least 1986, from the International German Teachers conference in Bern, the German language has been recognized among linguists as a pluricentric language. Therefore, it is possible to speak about more language centres, and also about national and equal varieties of one language. In connection with the decentralization of power and regionalization in the world, as well as the accession of Austria to the European Union, which brought above all the "Protocol Nr. 10" with 23 specific Austrian words, the nineties experienced a boom in the production of pluricentric oriented literature. Many papers were also being focused on the research of the Austrian German. However, despite the declared equality of national varieties, their speakers are often not sure about the existence of more standard varieties, their characteristics or equality. These views, attitudes and evaluations as well as potential problems associated with the national varieties, will be described and analyzed by using the tools of the Language Management Theory. The starting points are authentic interviews of Austrian and German native speakers. An important focus of the research is also the way in which the pluricentric concept works at the micro level and how and what national varieties the speakers themselves are constructing....
4

On non-square order Tate-Shafarevich groups of non-simple abelian surfaces over the rationals

Keil, Stefan 13 February 2014 (has links)
Bei elliptischen Kurven E/K über einem Zahlkörper K zwingt die Cassels-Tate Paarung die Ordnung der Tate-Shafarevich Gruppe Sha(E/K) zu einem Quadrat. Ist A/K eine prinzipal polarisierte abelschen Varietät, so ist bewiesen, daß die Ordnung von Sha(A/K) ein Quadrat oder zweimal ein Quadrat ist. William Stein vermutet, daß es für jede quadratfreie positive ganze Zahl k eine abelsche Varietät A/Q gibt, mit #Sha(A/Q)=kn². Jedoch ist es ein offenes Problem was zu erwarten ist, wenn die Dimension von A/Q beschränkt wird. Betrachtet man ausschließlich abelsche Flächen B/Q, so liefern Resultate von Poonen, Stoll und Stein Beispiele mit #Sha(B/Q)=kn², für k aus {1,2,3}. Diese Arbeit studiert tiefgehend nicht-einfache abelsche Flächen B/Q, d.h. es gibt elliptische Kurven E_1/Q und E_2/Q und eine Isogenie phi: E_1 x E_2 -> B. Relativ zur quadratischen Ordnung der Tate-Shafarevich Gruppe von E_1 x E_2 soll die Ordnung von Sha(B/Q) bestimmt werden. Um dieses Ziel zu erreichen wird die Isogenie-Invarianz der Vermutung von Birch und Swinnerton-Dyer ausgenutzt. Für jedes k aus {1,2,3,5,6,7,10,13,14} wird eine nicht-einfache, nicht-prinzipal polarisierte abelsche Fläche B/Q konstruiert, mit #Sha(B/Q)=kn². Desweiteren wird computergestützt berechnet wie oft #Sha(B/Q)=5n², sofern die Isogenie phi: E_1 x E_2 -> B zyklisch vom Grad 5 ist. Es stellt sich heraus, daß dies bei circa 50% der ersten 20 Millionen Beispielen der Fall ist. Abschließend wird gezeigt, daß wenn phi: E_1 x E_2 -> B zyklisch ist und #Sha(B/Q)=kn², so liegt k in {1,2,3,5,6,7,10,13}. Bei allgemeinen Isogenien phi: E_1 x E_2 -> B bleibt es unklar, ob k nur endlich viele verschiedene Werte annehmen kann. Im Anhang wird auf abelsche Flächen eingegangen, welche isogen zu der Jacobischen J einer hyperelliptischen Kurve über Q sind. Mit den in dieser Arbeit entwickelten Techniken können, anhand gewisser zyklischer Isogenien phi: J -> B, für jedes k in {11,17,23,29} Beispiele mit #Sha(B/Q)=kn² gegeben werden. / For elliptic curves E/K over a number field K the Cassels-Tate pairing forces the order of the Tate-Shafarevich group Sha(E/K) to be a perfect square. It is known, that if A/K is a principally polarised abelian variety, then the order of Sha(A/K) is a square or twice a square. William Stein conjectures that for any given square-free positive integer k there is an abelian variety A/Q, such that #Sha(A/Q)=kn². However, it is an open question what to expect if the dimension of A/Q is bounded. Restricting to abelian surfaces B/Q, then results of Poonen, Stoll and Stein imply that there are examples such that #Sha(B/Q)=kn², for k in {1,2,3}. In this thesis we focus in depth on non-simple abelian surfaces B/Q, i.e. there are elliptic curves E_1/Q and E_2/Q and an isogeny phi: E_1 x E_2 -> B. We want to compute the order of Sha(B/Q) with respect to the order of the Tate-Shafarevich group of E_1 x E_2, which has square order. To achieve this goal, we explore the invariance under isogeny of the Birch and Swinnerton-Dyer conjecture. For each k in {1,2,3,5,6,7,10,13,14} we construct a non-simple non-principally polarised abelian surface B/Q, such that #Sha(B/Q)=kn². Furthermore, we compute numerically how often the order of Sha(B/Q) equals five times a square, for cyclic isogenies phi: E_1 x E_2 -> B of degree 5. It turns out that this happens to be the case in approx. 50% of the first 20 million examples we have checked. Finally, we prove that if there is a cyclic isogeny phi: E_1 x E_2 -> B and #Sha(B/Q)=kn², then k is in {1,2,3,5,6,7,10,13}. For general isogenies phi: E_1 x E_2 -> B it remains unclear, whether there are only finitely many possibilities for k. In the appendix, we briefly consider abelian surfaces B/Q being isogenous to Jacobians J of hyperelliptic curves over Q. The techniques developed in this thesis allow to understand certain cyclic isogenies phi: J -> B. For each k in {11,17,23,29}, we provide an example with #Sha(B/Q)=kn².
5

Effiziente Lösung reeller Polynomialer Gleichungssysteme

Mbakop, Guy Merlin 24 September 1999 (has links)
Diese Arbeit beinhaltet {\it geometrische Algorithmen} zur L\"osung reeller polynomialer Gleichungssysteme mit rationalen Koeffizienten, wobei die Polynome eine reduzierte regul\"are Folge bilden (vgl. Abschnitt \ref{abschgeo}). Unter reellem L\"osen verstehen wir hier die Bestimmung eines Punktes in jeder Zusammenhangskomponente einer kompakten glatten reellen Variet\"at $V:=W \cap \R^n$.\\ Im Mittelpunkt steht die Anwendung des f\"ur den algebraisch abgeschlossenen Fall ver\"offentlichten symbolischen geometrischen Algorithmus nach \cite{gh2} und \cite{gh3}. Die Berechenungsmodelle sind {\em Straight--Line Programme} und {arithmetische Netzwerke} mit Parametern in $\; \Q$. Die Input--Polynome sind durch ein Straight--Line Programm der Gr\"o{\ss}e $L$ gegeben. Eine geometrische L\"osung des Input--Glei\-chungs\-sys\-tems besteht aus einem primitiven Element der Ringerweiterung, welche durch die Nullstellen des Systems beschrieben ist, aus einem mininalen Polynom dieses primitiven Elements, und aus den Parametrisierungen der Koordinaten. Diese Darstellung der L\"osung hat eine lange Geschichte und geht mindestens auf Leopold Kronecker \cite{kron} zur\"uck. Die Komplexit\"at des in dieser Arbeit begr\"undeten Algorithmus erweist sich als linear in $L$ und polynomial bez\"uglich $n, d, \delta$ bzw. $\delta \;'$, wobei $n$ die Anzahl der Variablen und $d$ eine Gradschranke der Polynome im System ist. Die Gr\"o{\ss}en $\delta$ und $\delta \; '$ sind geometrische Invarianten, die das Maximum der {\em Grade des Inputsystems} und geeigneter {\em polarer Variet\"aten} repr\"asentieren (bzgl. des ({\em geometrischen}) Grades vgl. \cite{he}). Die Anwendung eines Algorithmus \"uber den komplexen Zahlen auf das L\"osen von polynomialen Gleichungen im Reellen wird durch die Einf\"urung polarer Variet\"aten m\"oglich (vgl. \cite{bank}). Die polaren Variet\"aten sind das Kernst\"uck und das vorbereitende Werzeug zur effizienten Nutzung des oben erw\"ahnten geometrischen Algorithmus. Es wird ein inkrementelles Verfahren zur Auffindung reeller Punkte in jeder Zusammenhangskomponente der Nullstellenmenge des Inputsystems abgeleitet, welches einen beschr\"ankten glatten (lokalen) vollst\"andigen Durchschnitt in $\R^n$ beschreibt. Das Inkrement des Algorithmus ist die Kodimension der polaren Variet\"aten. Die Haupts\"atze sind Satz $\ref{theorem12}$ auf Seite $\pageref{theorem12}$ f\"ur den Hyperfl\"achenfall, und Satz $\ref{theoresult}$ auf Seite $\pageref{theoresult}$, sowie die Aussage in der Einf\"uhrung dieser Arbeit, Seite $\pageref{vollres}$ f\"ur den vollst\"andigen Durchschnitt. / This dissertation deals with {\em geometric algorithms} for solving real multivariate polynomial equation systems, that define a reduced regular sequence (cf. subsection $\ref{abschgeo}$). Real solving means that one has to find at least one real point in each connected component of a real compact and smooth variety $V := W \cap \R^n$. \\ The main point of this thesis is the use of a complex symbolic geometric algorithm, which is designed for an algebraically closed field and was published in the papers \cite{gh2} and \cite{gh3}. The models of computation are {\em straight--line programms} and {\em arithmetic Networks} with parameters in $\; \Q$. Let the polynomials be given by a division--free straight--line programm of size $L$. A geometric solution for the system of equations given by the regular sequence consists in a {\em primitiv element} of the ring extension associated with the system, a minimal polynomial of this primitive element and a parametrization of the coordinates. This representation has a long history going back to {\em Leopold Kronecker} \cite{kron}. The time--complexity of our algorithms turns out to be linear in $L$ and polynomial with respect to $n, d, \delta$ or $\delta '$, respectively. Here $n$ denotes the number of variables, $d$ is an upper bound of the degrees of the polynomials involved in the system, $\delta$ and $\delta '$ are geometric invariants representing the maximum of the {\em affine (geometric) degree} of the system under consideration and the affine (geometric) degree of suitable {\em polar varieties} (cf. \cite{he} for the ({\em geometric}) degree). The application of an algorithm running in the complex numbers to solve polynomial equations in the real case becomes possible by the introduction of polar varieties (cf. \cite{bank}). The polar varieties introduced for this purpose prove to be the corner--stone and the preliminary tool for the efficient use of the geometric algorithm mentioned above. An incremental algorithm is designed to find at least one real point on each connected component of the zero set defined by the input under the assumption that the given semialgebraic set $V = W \cap \R^n$ is a bounded, smooth (local) complete intersection manifold in $\R^n$. The increment of the new algorithm is the codimension of the polar varieties under consideration. The main theorems are Theorem $\ref{theorem12}$ on page $\pageref{theorem12}$ for the hypersurface case, and Theorem $\ref{theoresult}$ on page $\pageref{theoresult}$ for the complete intersection as well as the statement in the introduction of this thesis on page $\pageref{vollres}$.
6

On the lattice of varieties of almost-idempotent semirings / Über den Varietätenverband fast-idempotenter Halbringe

Michalski, Burkhard 30 January 2018 (has links) (PDF)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.
7

On the lattice of varieties of almost-idempotent semirings

Michalski, Burkhard 01 December 2017 (has links)
Die Arbeit beschäftigt sich mit fast-idempotenten Halbringen, die eine Verallgemeinerung der idempotenten Halbringe darstellen. Es werden - ausgehend von Halbringen mit zwei Elementen - bis auf isomorphe Bilder sämtliche fast-idempotente Halbringe mit drei Elementen generiert, diejenigen Halbringe, die schon in durch zweielementige Halbringe erzeugten Varietäten liegen, aussortiert und die in den verbleibenden elf Halbringen gültigen Gleichungen charakterisiert. Der Verband L(IA3) der Varietäten generiert durch fast-idempotente Halbringe mit maximal drei Elementen wird mit Hilfe eines Kontexts mit 21 Halbringen als Attribute und 28 trennenden Gleichungen als Objekte vollständig bestimmt und besteht aus 19.901 Varietäten. Im Anschluss richtet sich der Fokus der Arbeit auf den Verband L(IA) der fast-idempotenten Halbringe. In diesem werden insbesondere die Varietät V = [xy = yx, xy = xy+x] und deren Untervarietäten V_k = [x^k = x^(k+1)], k >= 2; untersucht. Für all diese Varietäten wird jeweils eine Konstruktionsmethode für eine abzählbare Kette an Untervarietäten der gegebenen Varietät eingeführt und somit schließlich gezeigt, dass der Verband L(IA) aus mindestens abzählbar unendlich vielen Varietäten besteht.

Page generated in 0.0403 seconds