1 |
Měření parametrů lidského operátora / Measuring Parameters of Human OperatorBecová, Lucia January 2019 (has links)
This work focuses on evaluating the parameters of the human operator as the driver of the vehicle simulator. In the first part, the thesis focuses on the examination of human operator parameters evaluation. In the second part of the thesis is a proposal of various scenarios focused on a specific area of measurement. At the end, the work focuses on the processing and evaluation of measured data obtained from the drivers tested.
|
2 |
Método de uso de simuladores de tráfego linear móvel de pista para a determinação de comportamento e previsão de desempenho de pavimentos asfálticos. / Mobile linear traffic simulator method to forecast behavior and performance of asphalt pavements.Vale, André Felipe 27 March 2008 (has links)
Os ensaios acelerados de pavimentos em escala real consistem na aplicação controlada de uma carga de roda igual ou acima da carga máxima legal permitida, em uma estrutura de pavimento, seja este um pavimento-teste ou uma via existente, para se determinar a resposta do sistema e o seu desempenho sob condições controladas e aceleradas de acúmulo de danos num espaço limitado de tempo (METCALF, 1996). Esses ensaios podem ser realizados hoje, tanto por simuladores instalados em campos de prova destinados a este único fim, quanto por simuladores móveis, cuja composição é rebocável ou autopropelida e pode ser posicionada no local a ser pesquisado, o que se mostra especialmente vantajoso no estudo de materiais e técnicas de restauração de pavimentos por preservar as condições de contorno. Apresentam-se os resultados dos primeiros testes acelerados em pavimentos com simulador de tráfego linear móvel no Brasil e suas contribuições para o desenvolvimento das técnicas, processos de projeto e planejamento rodoviários. Apresenta-se também uma síntese dos ensaios acelerados de pavimentos em escala real com simuladores de tráfego lineares móveis, com o objetivo de mostrar o estágio atual do conhecimento nessa área, a partir de uma revisão bibliográfica e associando esses conhecimentos a casos práticos. Como contribuição para futuros trabalhos, com base na análise das pesquisas já finalizadas e dos resultados já obtidos, foi elaborada uma proposta de método para a realização de simulação em pista e de ensaios a serem conduzidos antes, durante e após o término da simulação, dependendo do objetivo específico dos ensaios acelerados. / Full-scale accelerated pavement testing is defined as the controlled application of a wheel load in a pavement structure to determine the pavement system response and its performance under accelerated conditions of accumulated damage in a compressed time period (METCALF, 1996). Loads at or above the legal maximum allowed by highway agencies can be applied at test tracks, using simulators designed solely for this purpose, or at existent roads using mobile simulators positioned right at the road pavement structure. This layout provides an interesting advantage in the study of materials and pavement rehabilitation techniques by preserving field conditions, specially structural and environmental characteristics. This research describes the results from the first accelerated pavement tests with mobile linear traffic simulator in Brazil and their contribution for the development of design procedures, distress monitoring methods, and road planning. As part of this research, a wide literature review was done associated with practical case studies, the current stage of knowledge in this area, and a real scale synthesis of accelerated pavement experiments with linear mobile traffic simulators. This research proposes a simulation method for testing pavement sections and the evaluation tests to be performed according to the objective of the accelerated pavement test study. This research is a contribution to the state of practice of this type of accelerated pavement testing in Brazil and outlines the path for future applications of this technology in the country.
|
3 |
Vehicle Dynamics Testing in Advanced DrivingSimulators Using a Single Track ModelThellman, Jonas January 2012 (has links)
The purpose of this work is to investigate if simple vehicle models are realisticand useful in simulator environment. These simple models have been parametrisedby the Department of Electrical Engineering at Linköping University and havebeen validated with good results. The models have been implemented in a simulatorenvironment and a simulator study was made with 24 participants. Eachtest person drove both slalom and double lane change manoeuvres with the simplemodels and with VTI’s advanced model. The test persons were able to successfullycomplete double lane changes for higher velocities with the linear tyre modelcompared to both the non-linear tyre model and the advanced model. The wholestudy shows that aggressive driving of a simple vehicle model with non-linear tyredynamics is perceived to be quite similar to an advanced model. It is noted significantdifferences between the simple models and the advanced model when drivingunder normal circumstances, e.g. lack of motion cueing in the simple model suchas pitch and roll.
|
4 |
Método de uso de simuladores de tráfego linear móvel de pista para a determinação de comportamento e previsão de desempenho de pavimentos asfálticos. / Mobile linear traffic simulator method to forecast behavior and performance of asphalt pavements.André Felipe Vale 27 March 2008 (has links)
Os ensaios acelerados de pavimentos em escala real consistem na aplicação controlada de uma carga de roda igual ou acima da carga máxima legal permitida, em uma estrutura de pavimento, seja este um pavimento-teste ou uma via existente, para se determinar a resposta do sistema e o seu desempenho sob condições controladas e aceleradas de acúmulo de danos num espaço limitado de tempo (METCALF, 1996). Esses ensaios podem ser realizados hoje, tanto por simuladores instalados em campos de prova destinados a este único fim, quanto por simuladores móveis, cuja composição é rebocável ou autopropelida e pode ser posicionada no local a ser pesquisado, o que se mostra especialmente vantajoso no estudo de materiais e técnicas de restauração de pavimentos por preservar as condições de contorno. Apresentam-se os resultados dos primeiros testes acelerados em pavimentos com simulador de tráfego linear móvel no Brasil e suas contribuições para o desenvolvimento das técnicas, processos de projeto e planejamento rodoviários. Apresenta-se também uma síntese dos ensaios acelerados de pavimentos em escala real com simuladores de tráfego lineares móveis, com o objetivo de mostrar o estágio atual do conhecimento nessa área, a partir de uma revisão bibliográfica e associando esses conhecimentos a casos práticos. Como contribuição para futuros trabalhos, com base na análise das pesquisas já finalizadas e dos resultados já obtidos, foi elaborada uma proposta de método para a realização de simulação em pista e de ensaios a serem conduzidos antes, durante e após o término da simulação, dependendo do objetivo específico dos ensaios acelerados. / Full-scale accelerated pavement testing is defined as the controlled application of a wheel load in a pavement structure to determine the pavement system response and its performance under accelerated conditions of accumulated damage in a compressed time period (METCALF, 1996). Loads at or above the legal maximum allowed by highway agencies can be applied at test tracks, using simulators designed solely for this purpose, or at existent roads using mobile simulators positioned right at the road pavement structure. This layout provides an interesting advantage in the study of materials and pavement rehabilitation techniques by preserving field conditions, specially structural and environmental characteristics. This research describes the results from the first accelerated pavement tests with mobile linear traffic simulator in Brazil and their contribution for the development of design procedures, distress monitoring methods, and road planning. As part of this research, a wide literature review was done associated with practical case studies, the current stage of knowledge in this area, and a real scale synthesis of accelerated pavement experiments with linear mobile traffic simulators. This research proposes a simulation method for testing pavement sections and the evaluation tests to be performed according to the objective of the accelerated pavement test study. This research is a contribution to the state of practice of this type of accelerated pavement testing in Brazil and outlines the path for future applications of this technology in the country.
|
5 |
Mechanistic-Empirical Modelling of Flexible Pavement Performance : Verifications Using APT MeasurementsAhmed, Abubeker Worake January 2014 (has links)
Mechanistic-Empirical (M-E) pavement design procedures are composed of a reliable response model to estimate the state of stress in the pavement and distress models in order to predict the different types of pavement distresses due to the prevailing traffic and environmental conditions. One of the main objectives of this study was to develop a response model based on multilayer elastic theory (MLET) with improved computational performance by optimizing the time consuming parts of the MLET processes. A comprehensive comparison of the developed program with two widely used programs demonstrated excellent agreement and improved computational performance. Moreover, the program was extended to incorporate the viscoelastic behaviour of bituminous materials through elastic-viscoelastic correspondence principle. A procedure based on collocation of linear viscoelastic (LVE) solutions at selected key time durations was also proposed that improved the computational performance for LVE analysis of stationary and moving loads. A comparison of the LVE responses with measurements from accelerated pavement testing (APT) revealed a good agreement. Furthermore the developed response model was employed to evaluate permanent deformation models for bound and unbound granular materials (UGMs) using full scale APTs. The M-E Pavement Design Guide (MEPDG) model for UGMs and two relatively new models were evaluated to model the permanent deformation in UGMs. Moreover, for bound materials, the simplified form of the MEPDG model for bituminous bound layers was also evaluated. The measured and predicted permanent deformations were in general in good agreement, with only small discrepancies between the models. Finally, as heavy traffic loading is one of the main factors affecting the performance of flexible pavement, three types of characterizations for heavy traffic axle load spectrum for M-E analysis and design of pavement structures were evaluated. The study recommended an improved approach that enhanced the accuracy and computational performance. / <p>QC 20140512</p>
|
6 |
3D Autoškola / Driving School - Rules of the RoadMelcer, Pavel January 2019 (has links)
This work deals with driving skills training problematics using a driving school 3D simulator, which monitors the observance of road traffic rules. Existing simulators are categorized by characteristics and described. The text contains a list of implemented rules and a summary of suitable tools. The resultant application is based on the Unreal engine and the text describes the various stages of development.
|
7 |
Assessment of Fracture Resistance of Asphalt Overlays through Heavy Vehicle Simulator and Laboratory Testing: Synthetic Fiber and Rubber Modified SMA MixesSalado Martinez, Freddie Antonio 27 May 2020 (has links)
Road administrators have to make decisions regarding the maintenance and rehabilitation of many existing jointed Portland Cement Concrete (PCC) pavements in the road network. Since these pavements are in general expensive to rehabilitate, agencies often opt for overlaying the deteriorated PCC pavement with Hot Mix Asphalt (HMA), resulting in a composite pavement. Unfortunately, the tensile stresses and strains at the bottom of the overlay developed from the movement of the joints, which are caused by the traffic and the changes in temperature, will create cracks on the surface known as reflective cracking.
Reflective cracking can reduce the life of a pavement by allowing water or other particles to get into the underlying layers, which causes the pavement structure to lose strength. To improve the performance of the composite pavement, road agencies have studied mitigations techniques to delay the initiation and propagation of those cracks reflected from the PCC joints and cracks. Traditionally, these studies have relied only on laboratory testing or nondestructive tests. This dissertation expands the traditional approach by adding full-scale Accelerate Pavement Testing (APT) to a laboratory effort to investigate enhanced asphalt overlays that delay the initiation and propagation of cracks reflected from the PCC joints. The study was organized into three complementary experiments.
The first experiment included the first reflective cracking study of hot-mix asphalt (HMA) overlays over jointed Portland cement concrete pavements (PCCP) conducted at the Virginia APT facility. A Heavy Vehicle Simulator (HVS) was used to compare the reflective cracking performance of a Stone Matrix Asphalt (SMA) control mix with a modified mix with a synthetic fiber. The discussion includes the characterization of the asphalt mixes, the pavement structure, construction layout, the equipment used, the instrumentation installed, and lessons learned. Results showed that the fiber-modified mix had a higher resistance to fracture, which increases the pavement life by approximately 50%.
The second experiment compared the cracking resistance of the same control and modified mixes in the laboratory. Four cracking resistance tests were performed on each mix. These four tests are: (1) Indirect Tensile Asphalt Cracking Test (IDEAL-CT), which measures the Cracking Test index (CTindex); (2) Semicircular Bend Test-Illinois (SCB-IL), which measures the critical strain energy release rate (Jc); (3) Semicircular Bend-Louisiana Transportation Research Center (SCB-LTRC), which measures the Flexibility Index (FI); and (4) Overlay Test (OT), which measures the Cracking Propagation Rate (CPR). The results from the four tests showed that the fiber-modified mix had a better resistance to cracking, confirming the APT test results. The laboratory assessment also suggested that the IDEAL-CT and SCB-IL test appear to be the most practical for implementation.
The third phase evaluated the performance of mixes designed with a high content of Reclaimed Asphalt Pavement (RAP) and an enhanced asphalt-rubber extender, which comprises three primary components: plain soft bitumen, fine crumb rubber and an Activated Mineral Binder Stabilizer (AMBS). The experiment evaluated the fracture resistance of nine mixes designed with different rates of recycled asphalt pavement (RAP) and asphalt-rubber, compare them with a traditional mix, and propose an optimized mixture for use in overlays of concrete pavements. The mixes were designed with different rates of RAP (15, 30, 45%) and asphalt-rubber extender (0, 30, and 45%) following generally, the design requirements for an SMA mix in Virginia. The laboratory test recommended in the second experiment, IDEAL-CT and SCB-IL, were used to determine the fracture resistance of the mixes. The results showed that the addition of RAP decreases fracture resistance, but the asphalt-rubber extender improves it. A mix designed that replaced 30% of the binder with asphalt-rubber extender and 15% RAP had the highest resistance to fracture according to both. Also, as expected, all the mixed had a low susceptibility to rutting. / Doctor of Philosophy / Reflective cracking can reduce the life of a pavement by allowing water or other particles to get into the underlying layers, which causes the pavement structure to lose strength. To improve the performance of the composite pavement, road agencies have studied mitigations techniques that will delay the initiation and propagation of those cracks reflected from the PCC joints. Traditionally, these studies rely only on laboratory testing or nondestructive tests that will assist in the decision-making stage in a short time manner. This dissertation focusses on a reflective cracking study conducted through Accelerate Pavement Testing (APT) using a Heavy Vehicle Simulator (HVS) and laboratory testing.
The first task used an HVS to evaluate reflective cracking of a Stone Matrix Asphalt (SMA) control mix and a modified mix with synthetic fiber. One lane was constructed with two layers of 1.5-inches of a control Stone Matrix Asphalt (SMA) mix and the second lane with an SMA mix modified with the synthetic fiber. Results from APT demonstrated that the modified SMA has a higher resistance to fracture which increases the pavement life by approximately 50%.
The second task estimated the fracture resistance of the mixes studied in task one following the laboratory test: Indirect Tension Asphalt Cracking Test (IDEAL-CT), Texas Overlay Test (OT), Semi-Circular Bend-Louisiana Transportation Research Center (SCB-LTRC) and Semi-Circular Bend-Illinois (SCB-IL) to estimate the Cracking Test Index (CTindex), Cracking Propagation Rate (CPR), critical strain energy release rate (Jc) and Flexibility Index (FI), respectively. Results showed that the modified mix had a better resistance to cracking, confirming the APT test results. Specifically, CTindex results showed that the modified mix is more resistant than the control, with indices of 268.72 and 67.86. The estimated Jc indicated that less energy is required to initiate a crack for the control mix that achieved 0.48 kJ/m2 compared to the modified mix with synthetic fibers 0.54 kJ/m2. FI results for the control and fibers were 2.16 and 10.71, respectively. The calculated CPR showed that the control mix propagates a crack at a higher rate of 0.188 compared to the modified mix with a CPR of 0.152.
The third phase evaluated the performance of mixes designed with a high content of Reclaimed Asphalt Pavement (RAP) and an enhanced asphalt-rubber extender, which comprises three primary components: plain soft bitumen, fine crumb rubber and an Activated Mineral Binder Stabilizer (AMBS). The experiment evaluated the fracture resistance of nine mixes designed with different rates of recycled asphalt pavement (RAP) and asphalt-rubber, compare them with a traditional mix, and propose an optimized mixture for use in overlays of concrete pavements. The mixes were designed with different rates of RAP (15, 30, 45%) and asphalt-rubber extender (0, 30, and 45%) following generally, the design requirements for an SMA mix in Virginia. The laboratory test recommended in the second experiment, IDEAL-CT and SCB-IL, were used to determine the fracture resistance of the mixes. The results showed that the addition of RAP decreases fracture resistance, but the asphalt-rubber extender improves it. A mix designed that replaced 30% of the binder with asphalt-rubber extender and 15% RAP had the highest resistance to fracture according to both. Also, as expected, all the mixed had a low susceptibility to rutting.
|
8 |
Performance Analysis and Modeling of Pavements with a Cold Central Plant Recycled Base under Accelerated Loading TestingZimmerman, Cory Tyler 18 September 2017 (has links)
Cold Central Plant Recycling (CCPR) has been used by many state highway agencies to save material, money, time, and energy in pavement construction and rehabilitation. The objectives of this thesis were to: (1) perform an instrumented verification analysis, (2) evaluate the response and performance of two pavement configurations with a CCPR base layer through accelerated pavement testing (APT), and (3) construct models using mechanistic-empirical pavement design software for comparison with the APT results. The pavement configurations featured a 5-inch CCPR mixture with either a 3-inch or 1.5-inch SM-9.5D surface mixture. Each section was instrumented with strain gauges, pressure cells, and thermocouples. A heavy vehicle simulator (HVS) was used to load three replicate test sections in each lane, with the temperature controlled at 39°C at a depth of 1.5 inches.
Results from the instrument verification analysis showed that the strain gauges and pressure cells used in the experiment recorded pavement responses with a high degree of repeatability. In addition, the loading condition variables (speed, wheel load, and tire inflation pressure) affected the response following the expected trends and did not affect the repeatability of the instruments. The average CV of all strain gauge and pressure cell signals was approximately 0.009 or 0.9%, and 0.004 or 0.4%, respectively.
In terms of the rutting comparison, the sections with the 3-inch surface layer outperformed the sections with the thinner 1.5-inch surface layer. However, the age of the pavement at the start of testing significantly affected the rutting performance. After adjusting for the pavement age at the time of testing, the section with the thicker surface showed approximately half of the rutting of the section with the thinner surface.
The results from preliminary ME Design analysis indicate that the software cannot model the studied APT sections using the default material properties and calibration factors available at the time of analysis. In particular, the software does not seem to be prepared to model the CCPR materials. / Master of Science / Accelerated Pavement Testing (APT) is a useful method for evaluating pavements, validating instrument responses, and developing pavement models. The APT uses a Heavy Vehicle Simulator (HVS) as a loading mechanism to simulate the effects of truck traffic on pavement sections. Strain gauges and pressure cells are installed in the pavement sections to monitor the pavement performance and record key points of strain and pressure. This thesis contains the findings and results of APT testing on two sections of pavement containing a cold central plant recycled (CCPR) base mixture; one section has a 3 inch surface mixture while the other has a 1.5 inch surface mixture. Also, an instrument verification exercise is conducted, and an ME Design model is constructed for comparison with the rutting results of the APT testing.
Results from the instrument verification analysis showed that the strain gauges and pressure cells used in the experiment recorded pavement responses with a high degree of repeatability. In addition, the loading condition variables (speed, wheel load, and tire inflation pressure) affected the response following the expected trends and did not affect the repeatability of the instruments.
In terms of the rutting comparison, the sections with the 3-inch surface layer outperformed the sections with the thinner 1.5-inch surface layer. However, the age of the pavement at the start of testing significantly affected the rutting performance. After adjusting for the pavement age at the time of testing, the section with the thicker surface showed approximately half of the rutting of the section with the thinner surface.
The results from ME Design model indicate that the software cannot model the studied APT sections using the default material properties and calibration factors available at the time of analysis. In particular, the software does not seem to be prepared to model the CCPR materials.
|
9 |
Simulation of a three-wheeled electric vehicle / Simulering av ett trehjuligt elfordonKuan, Dick, Zettel, Lucas Svensson January 2024 (has links)
Vehicle simulators are often built from scratch, using well-established software frameworks with custom vehicle models. Since the development of a simulator is a very time consuming process, the purpose of this thesis paper was to explore a different alternative by evaluating the open-source vehicle system ChaosVehicle (CV) in Unreal Engine 5. The goal was to build a simulator using CV and assess its performance in imitating certain aspects of a three-wheeled electric vehicle, including acceleration, coasting and braking behaviors in a straight line.The simulator was set up according to the data provided by the vehicle manufacturer, OMotion. By comparing the simulations with real world driving data, it was determined that the simulator achieved a relative error below 16% in imitating the coasting behavior of the real vehicle. Further, with regards to the brake performance, the simulator has managed to achieve a relative error of below 15% when not accounting for velocities below 10 km/h. Due to the noise present in the real world driving data, it was inconclusive as to whether the simulator had accurately predicted the acceleration behavior of the real vehicle. After a preliminary analysis of the plugin, it was discussed whether CV was as extensible as hypothesized. While the framework is open-source, it was difficult to fully grasp the system due to incomplete documentation of the source code and the user interface. Further work in mapping how the physics model in CV is integrated to the game engine would shed some light on this matter.
|
10 |
Att presentera information i virtuell verklighet : En studie om var och hur information bör presenteras i virtuell verklighet vid användning av en fordonssimulator.Boman, Joel, Forsmark, Markus, Schagerström, Waldemar January 2017 (has links)
When talking about how to present information in virtual reality, the possibilities are countless, but there are also many problems surrounding the spatial location of the information. This study aims to examine where and how the instructions in a vehicle training simulator should be presented in a future implementation of the interface in virtual reality. To find this out, a gameplay was created in which four different placements of the instructions were made. Three options were based on earlier studies made by Smith (2015) and Jose (2016) and the fourth was based on the existing information in the vehicle training simulator. These gameplays were presented as a movie to a number of interviewees and followed up by questions after each movie. The interviewees were asked to give the movies three ratings from 1-5, valuing how they perceived the presentation of the instructions. To get further opinions, comments was collected from the interviewees throughout each session. In this two ways, we got answers to which of the four options the interviewees thought was best. The study showed that there were two options that stood out among the others and both were based on the concept of a head-up display, also known as a HUD. One was represented in the bottom of the windshield and the other one in the top. The result of which one of them who were perceived as best is too close to say, although the study is considered to have reached its goal, which was to help the developers on their way to a decision that will eventually be implemented.
|
Page generated in 0.0798 seconds