• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

Giriat, Gaetan January 2012 (has links)
The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-ray diffraction (SXD) studies at low temperature (LT) and the other three HP devices are designed for a Magnetic Property Measurement System (MPMS), two of which are suitable for dc susceptibility studies and the other one is aimed at high frequency ac susceptibility measurements. HP crystallographic studies are routinely carried out in diamond anvil cells (DAC) at room temperature while ambient pressure SXD studies are often conducted at LT to reduce atomic vibrations and obtain more precise structural data as well as to study LT phases. Combining HP with LT gives access to a whole new area on the phase diagrams but due to the size of the existing DACs this is generally achieved by cooling down the cells inside a cryostat and it is mainly possible at synchrotrons where dedicated facilities exist. A miniature DAC which can be used with commercially available laboratory cry-flow cooling systems and achieves pressures in excess of 10 GPa has been developed. The design of the pressure cell is based on the turnbuckle principle and therefore it was called TX-DAC. Its dimensions have been minimised using Finite Element Analysis (FEA) and the final version of the cell weighs only 2.4 g. The cell is built around a pair of 600 μm culet Boehler-Almax anvils which have large conical openings for the diffracted beam. The TX-DAC is made of beryllium copper (BeCu) alloy which has good thermal conductivity and allows quick thermal equilibration of the cell. The MPMS from Quantum Design is the most popular instrument for studies of magnetic properties of materials. It is designed to measure ac and dc magnetic susceptibility of sample with detectable signals as low as 10-8 emu. The MPMS has a sample chamber bore of 9 mm in diameter and this puts a constraint on the dimensions of the pressure cells. However, several types of clamp piston-cylinder cells and DACs have been designed for the MPMS. The former are used for measurements at pressure up to 2 GPa and the later can be used for studies at higher pressure. Taking advantage of the turnbuckle principle, a DAC (TM-DAC) and a piston-cylinder cell (TM-PCC) for dc magnetic studies were built. They allow HP measurements to be performed at the full sensitivity of MPMS. Both pressure cells are made of BeCu and their small dimensions combined with symmetrical design is the key to an ideal background signal correction. The TM-DAC is 7 mm long and 7 mm in diameter, it weighs 1.5 g and with 800 μm culet anvils it can generate a sample pressure of 10 GPa. Inherently the sample volume is limited to approximately 10-3 mm3 and the signal corresponding to this volume of some weakly magnetic material remains below the sensitivity of the MPMS. This constraint led us to the development of the TM-PCC – a piston-cylinder variant of the turnbuckle design. With a 4 mm3 sample volume it allows the study of weakly magnetic samples in the range 0-1.9 GPa. The TM-PCC uses two zirconia pistons of 2.5 mm in diameter; it is 10 mm long, 7 mm in diameter and weights 2.7 g. Conventional metallic pressure cells perform well in dc mode however in ac susceptibility measurements, the Eddy currents set in the cells’ body lead to a screening effect which can significantly obscure the signal from the sample. This problem was solved by designing a composite piston-cylinder cell made with Zylon fibre and epoxy resin. The sample is located in the middle of the cell in the 2.5 mm bore and the pressure is transmitted through zirconia pistons. Keeping the metallic parts away from the sample resolves any interference issue. The composite cell performs well in a pressure range of 0-1 GPa. The performance of the pressure cells developed within this project is illustrated by studies of various systems at high pressure.
2

Iron based pnictide and chalcogenide superconductors studied by muon spin spectroscopy

Shermadini, Zurab 17 July 2014 (has links) (PDF)
In the present thesis the superconducting properties of the Iron-based Ba_{1-x}Rb_{x}Fe_{2}As_{2} arsenides, and A_{x}Fe_{2-y}Se_{2} (A = Cs, Rb, K) chalcogenides are investigated by means of Muon Spin Rotation Spectroscopy. The temperature and pressure dependence of the magnetic penetration depth is obtained form muSR experiments and analyzed to probe the superconducting gap-symmetries for each samples. The Ba_{1-x}Rb_{x}Fe_{2}As_{2} system is described within the multi-gap s+s-wave scenario and results are discussed in the light of the suppression of inter-band processes upon hole doping. Due to the lowered upper critical field Bc2 and reduced Tc, a large section of B-T-p phase diagram is studied for the hole-overdoped x=1 case. By applying hydrostatic pressure, the RbFe_{2}As_{2} system exhibits a classical BCS superconducting characteristics. The A_{x}Fe_{2-y}Se_{2} chalcogenide represents a system containing magnetically ordered and superconducting phases simultaneously. In all investigated chalcogenide samples, about 90% of the total volume show the strong antiferromagnetic phase and 10% exhibit a paramagnetic behavior. Magnetization measurements reveal a 100% Meissner effect, while muSR clearly indicates that the paramagnetic phase is a perfect superconductor. Up to now, there is no clear evidence whether the antiferromagnetic phase is also superconducting. The microscopic coexistence and/or phase separation of superconductivity and magnetism is discussed. Moreover, a new hydrostatic double-wall pressure cell is developed and produced, satisfying the demands of muSR experiments. The designs and characteristics of the new pressure cell are reviewed in the present thesis.
3

Iron based pnictide and chalcogenide superconductors studied by muon spin spectroscopy

Shermadini, Zurab 15 July 2014 (has links)
In the present thesis the superconducting properties of the Iron-based Ba_{1-x}Rb_{x}Fe_{2}As_{2} arsenides, and A_{x}Fe_{2-y}Se_{2} (A = Cs, Rb, K) chalcogenides are investigated by means of Muon Spin Rotation Spectroscopy. The temperature and pressure dependence of the magnetic penetration depth is obtained form muSR experiments and analyzed to probe the superconducting gap-symmetries for each samples. The Ba_{1-x}Rb_{x}Fe_{2}As_{2} system is described within the multi-gap s+s-wave scenario and results are discussed in the light of the suppression of inter-band processes upon hole doping. Due to the lowered upper critical field Bc2 and reduced Tc, a large section of B-T-p phase diagram is studied for the hole-overdoped x=1 case. By applying hydrostatic pressure, the RbFe_{2}As_{2} system exhibits a classical BCS superconducting characteristics. The A_{x}Fe_{2-y}Se_{2} chalcogenide represents a system containing magnetically ordered and superconducting phases simultaneously. In all investigated chalcogenide samples, about 90% of the total volume show the strong antiferromagnetic phase and 10% exhibit a paramagnetic behavior. Magnetization measurements reveal a 100% Meissner effect, while muSR clearly indicates that the paramagnetic phase is a perfect superconductor. Up to now, there is no clear evidence whether the antiferromagnetic phase is also superconducting. The microscopic coexistence and/or phase separation of superconductivity and magnetism is discussed. Moreover, a new hydrostatic double-wall pressure cell is developed and produced, satisfying the demands of muSR experiments. The designs and characteristics of the new pressure cell are reviewed in the present thesis.
4

Validation of a Sapphire Gas-Pressure Cell for Real-Time In Situ Neutron Diffraction Studies of Hydrogenation Reactions

Finger, Raphael, Hansen, Thomas C., Kohlmann, Holger 08 May 2023 (has links)
A gas-pressure cell, based on a leuco-sapphire single-crystal, serving as a pressure vessel and sample holder, is presented for real time in situ studies of solid-gas hydrogenation reactions. A stainless steel corpus, coated with neutron absorbing varnish, allows alignment for the single-crystal sample holder for minimizing contributions to the diffraction pattern. Openings in the corpus enable neutron scattering as well as contactless temperature surveillance and laser heating. The gas-pressure cell is validated via the deuteration of palladium powder, giving reliable neutron diffraction data at the high-intensity diffractometer D20 at the Institut Laue-Langevin (ILL), Grenoble, France. It was tested up to 15.0 MPa of hydrogen pressure at room temperature, 718 K at ambient pressure and 584 K at 9.5 MPa of hydrogen pressure.
5

INFLUENCE OF PRESSURE ON FAST DYNAMICS IN POLYMERS

Begen, Burak January 2007 (has links)
No description available.
6

Performance Analysis and Modeling of Pavements with a Cold Central Plant Recycled Base under Accelerated Loading Testing

Zimmerman, Cory Tyler 18 September 2017 (has links)
Cold Central Plant Recycling (CCPR) has been used by many state highway agencies to save material, money, time, and energy in pavement construction and rehabilitation. The objectives of this thesis were to: (1) perform an instrumented verification analysis, (2) evaluate the response and performance of two pavement configurations with a CCPR base layer through accelerated pavement testing (APT), and (3) construct models using mechanistic-empirical pavement design software for comparison with the APT results. The pavement configurations featured a 5-inch CCPR mixture with either a 3-inch or 1.5-inch SM-9.5D surface mixture. Each section was instrumented with strain gauges, pressure cells, and thermocouples. A heavy vehicle simulator (HVS) was used to load three replicate test sections in each lane, with the temperature controlled at 39°C at a depth of 1.5 inches. Results from the instrument verification analysis showed that the strain gauges and pressure cells used in the experiment recorded pavement responses with a high degree of repeatability. In addition, the loading condition variables (speed, wheel load, and tire inflation pressure) affected the response following the expected trends and did not affect the repeatability of the instruments. The average CV of all strain gauge and pressure cell signals was approximately 0.009 or 0.9%, and 0.004 or 0.4%, respectively. In terms of the rutting comparison, the sections with the 3-inch surface layer outperformed the sections with the thinner 1.5-inch surface layer. However, the age of the pavement at the start of testing significantly affected the rutting performance. After adjusting for the pavement age at the time of testing, the section with the thicker surface showed approximately half of the rutting of the section with the thinner surface. The results from preliminary ME Design analysis indicate that the software cannot model the studied APT sections using the default material properties and calibration factors available at the time of analysis. In particular, the software does not seem to be prepared to model the CCPR materials. / Master of Science / Accelerated Pavement Testing (APT) is a useful method for evaluating pavements, validating instrument responses, and developing pavement models. The APT uses a Heavy Vehicle Simulator (HVS) as a loading mechanism to simulate the effects of truck traffic on pavement sections. Strain gauges and pressure cells are installed in the pavement sections to monitor the pavement performance and record key points of strain and pressure. This thesis contains the findings and results of APT testing on two sections of pavement containing a cold central plant recycled (CCPR) base mixture; one section has a 3 inch surface mixture while the other has a 1.5 inch surface mixture. Also, an instrument verification exercise is conducted, and an ME Design model is constructed for comparison with the rutting results of the APT testing. Results from the instrument verification analysis showed that the strain gauges and pressure cells used in the experiment recorded pavement responses with a high degree of repeatability. In addition, the loading condition variables (speed, wheel load, and tire inflation pressure) affected the response following the expected trends and did not affect the repeatability of the instruments. In terms of the rutting comparison, the sections with the 3-inch surface layer outperformed the sections with the thinner 1.5-inch surface layer. However, the age of the pavement at the start of testing significantly affected the rutting performance. After adjusting for the pavement age at the time of testing, the section with the thicker surface showed approximately half of the rutting of the section with the thinner surface. The results from ME Design model indicate that the software cannot model the studied APT sections using the default material properties and calibration factors available at the time of analysis. In particular, the software does not seem to be prepared to model the CCPR materials.
7

Determina??o de dados de equil?brio l?quido-vapor a altas press?es para sistemas de hidrocarbonetos assim?tricos

Guerra Neto, Dival de Brito 22 December 2010 (has links)
Made available in DSpace on 2014-12-17T15:01:24Z (GMT). No. of bitstreams: 1 DivalBGN_DISSERT.pdf: 2637921 bytes, checksum: 83fbea74e9888e52417cea5286defdaa (MD5) Previous issue date: 2010-12-22 / Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented / O petr?leo bruto ? uma complexa mistura l?quida de compostos org?nicos e inorg?nicos em que predominam os hidrocarbonetos, desde os alcanos mais simples at? os arom?ticos mais complexos. Nessa mistura encontram-se presentes derivados como gasolina, diesel, ?lcool, querosene, nafta, g?soleos, etc., estes derivados s?o extra?dos de qualquer petr?leo, por?m, somente os com uma qualidade bastante elevada, ou seja, com teor de hidrocarbonetos de baixo peso molecular alto s?o realmente vi?veis a produ??o destes compostos. A American Petroleum Institute (API) desenvolveu um sistema de classifica??o dos tipos de petr?leo. No Brasil a qualidade da maioria dos petr?leos retirado dos po?os ? muito baixa, sendo assim, ? necess?rio obter novos conhecimentos a fim de desenvolver melhores pr?ticas de refino com o intuito de produzir derivados de petr?leo de alto valor comercial. Para isso se faz necess?rio o estudo de equil?brio termodin?mico de seus derivados. Esta disserta??o de mestrado consiste em determinar dados de equil?brio l?quido-vapor dos sistemas Fenilciclohexano - CO2 e Fenilciclohexano - Ciclohexano e CO2 a alta press?o e temperaturas entre 30 a 70 graus Celsius. Compara??es entres os dados experimentais de equil?brio liquidovapor encontrados no laborat?rio e na literatura foram realizadas em rela??o aos valores obtidos pelo modelo termodin?mico molecular de Peng-Robinson usando o programa computacional SPECS IVCSEP v5.60, com dois par?metros de intera??o ajust?veis, para fins de modelagem e simula??o. Al?m disso, ? apresentado o desenvolvimento de um equipamento de alta press?o no laborat?rio para determina??o de dados de equil?brio de fases
8

[pt] ESTUDO REOLÓGICO DA FORMAÇÃO DE HIDRATO DE GÁS DE ETANO A PARTIR DE EMULSÃO MODELO ÁGUA EM ÓLEO EM UMA CÉLULA DE ALTA PRESSÃO / [en] RHEOLOGICAL STUDY OF ETHANE GAS HYDRATES FORMATION FROM WATER-IN-MODEL OIL EMULSION IN A HIGH PRESSURE CELL

ANA CAROLINA GUIMARAES A REBELLO 06 July 2023 (has links)
[pt] Na indústria de óleo e gás, a paralisação da produção e do transporte nas linhas de fluxo causadas pela deposição de compostos orgânicos e inorgânicos rendem enormes perdas financeiras e preocupações ambientais. Um dos fatores mais comuns e críticos na deposição orgânica está relacionado com a formação de hidratos de gás, que são sólidos cristalinos de base aquosa, fisicamente semelhantes ao gelo, formados em condições de alta pressão e baixas temperaturas. Devido a esses fatos preocupantes, fenômenos relacionados aos hidratos, como formação, dissociação e formas de mitigação, vêm sendo estudados há anos por pesquisadores. Neste trabalho foram realizados experimentos para analisar a formação de hidrato de gás de etano em emulsões água em óleo, através de uma análise reológica baseada na variação de pressão, taxa de cisalhamento e fração de volume de água, e usando as geometrias vane e de cilindros concêntricos. Testes de varredura de tempo de alta pressão foram realizados, e os resultados foram apresentados através de curvas de viscosidade e pressão. A quantidade de água convertida em hidrato também foi estimada através da equação de estado e relacionada com a viscosidade das pastas de hidratos formadas. Os resultados obtidos mostram que o período de indução foi reduzido pelo aumento do subresfriamento, corte de água e taxa de cisalhamento. Quanto maior a fração de volume de água, maior o nível atingido pela viscosidade quando identificada a formação de hidratos. A viscosidade relativa, após a formação do hidrato, foi estudada. Esse conhecimento proporcionou uma compreensão mais efetiva de algumas diferenças observadas entre as duas geometrias. E para complementar o estudo, foram realizadas rampas de taxa de cisalhamento mostrando semelhanças entre os três resultados com cilindros concêntricos, mas diferenças entre os resultados com geometria vane. Ambas as geometrias, vane e cilindros concêntricos, foram consideradas adequadas para estudar a formação de hidratos e resultados qualitativos semelhantes foram obtidos. / [en] In the oil and gas industry, the stoppage of the production and transportation flowlines caused by the deposition of organic and inorganic compounds yields huge financial losses and environmental concerns. One of the most common and critical inorganic deposition is related with gas hydrates, which are crystalline water-based solids, physically similar to ice, formed in conditions of high pressure and low temperatures. Due to the worrying facts, phenomena related to hydrates, as formation, dissociation, and forms to its mitigation have been studied for years by researchers. In this work, experiments were carried out to analyze ethane gas hydrate formation in water-in-model oil emulsions, through a rheological analysis based on the variation of pressure, shear rate and water volume fraction, and using the vane and concentric cylinder geometries. High pressure time sweep tests were performed, and the results were presented through viscosity and pressure curves. The amount of water converted to hydrate was also estimated through the equation of state and related to the viscosity of the hydrate slurries formed. The results obtained showed that the induction period was reduced by increasing the subcooling, water cut, and shear rate. The higher the water volume fraction, the higher the level reached by viscosity when hydrate formation is identified. The relative viscosity after hydrate formation was studied. This knowledge provided a more effective understanding of some differences observed between the two geometries. And to complement the study, shear rate ramps were performed showing similarities between results with concentric cylinders but differences with vane. Both geometries, vane and concentric cylinders, seem to be adequate to study hydrate formation and similar qualitative results were obtained.
9

Studies of crystalline organic molecular materials under extreme conditions

Biggs, Timothy James January 2006 (has links)
This thesis describes investigations into the properties of -phase BEDT-TTF charge transfer salts. Charge transfer salts are mainly studied as they are very useful test beds for fundamental physics due to the tuneability of their proper- ties and ground states. The effects of temperature and pressure on such systems have been studied, as these allow access to a wide range of different states and properties. Transport properties of these systems have been studied to obtain information about the Fermi surface and effective mass, and the effect of deuter- ation and also change of pressure media will be discussed. The interaction of infrared radiation with these systems has also been investigated and simultaneous pressure and temperature measurements will be presented, something not greatly studied due to the large technical challenges. The techniques and approaches for overcoming these are also discussed. Chapter 1 provides an introduction to the organic materials themselves with particular emphasis on the actual compounds studied. Chapter 2 provides the necessary theoretical background for studying organic charge transfer salts using magnetic quantum oscillations and their infrared re- ectivity. Chapter 3 covers the experimental techniques and also discusses some of the challenges encountered and their solutions to aid others working in this area. Chapter 4 describes an investigation into the transport properties of - (ET)2Cu(SCN)2 by studying Shubnikov-de Haas oscillations using both deuter- ated and normal samples and using two different pressure media, and comparing it to work done using a third. Chapter 5 presents an investigation into the pressure dependence of selected phonon modes in -(ET)2Cu(SCN)2 using infrared radiation on a deuterated sam- ple. Chapter 6 presents what is believed to be the first pressure and temperature dependent infrared study of an organic molecular material. In this case the or- ganic molecular material is d8--(ET)2Cu[N(CN)2]Br, but the techniques should be readily transferable to other materials.
10

Correlated low temperature states of YFe2Ge2 and pressure metallised NiS2

Semeniuk, Konstantin January 2018 (has links)
While the free electron model can often be surprisingly successful in describing properties of solids, there are plenty of materials in which interactions between electrons are too significant to be neglected. These strongly correlated systems sometimes exhibit rather unexpected, unusual and useful phenomena, understanding of which is one of the aims of condensed matter physics. Heat capacity measurements of paramagnetic YFe$_{2}$Ge$_{2}$ give a Sommerfeld coefficient of about 100 mJ mol$^{−1}$ K$^{−2}$, which is about an order of magnitude higher than the value predicted by band structure calculations. This suggests the existence of strong electronic correlations in the compound, potentially due to proximity to an antiferromagnetic quantum critical point (QCP). Existence of the latter is also indicated by the non-Fermi liquid T$^{3/2}$ behaviour of the low temperature resistivity. Below 1.8 K a superconducting phase develops in the material, making it a rare case of a non-pnictide and non-chalcogenide iron based superconductor with the 1-2-2 structure. This thesis describes growth and study of a new generation of high quality YFe$_{2}$Ge$_{2}$ samples with residual resistance ratios reaching 200. Measurements of resistivity, heat capacity and magnetic susceptibility confirm the intrinsic and bulk character of the superconductivity, which is also argued to be of an unconventional nature. In order to test the hypothesis of the nearby QCP, resistance measurements under high pressure of up to 35 kbar have been conducted. Pressure dependence of the critical temperature of the superconductivity has been found to be rather weak. μSR measurements have been performed, but provided limited information due to sample inhomogeneity resulting in a broad distribution of the critical temperature. While the superconductivity is the result of an effective attraction between electrons, under different circumstances the electronic properties of a system can instead be dictated by the Coulomb repulsion. This is the case for another transition metal based compound NiS$_{2}$, which is a Mott insulator. Applying hydrostatic pressure of about 30 kbar brings the material across the Mott metal-insulator transition (MIT) into the metallic phase. We have used the tunnel diode oscillator (TDO) technique to measure quantum oscillations in the metallised state of NiS$_{2}$, making it possible to track the evolution of the principal Fermi surface and the associated effective mass as a function of pressure. New results are presented which access a wider pressure range than previous studies and provide strong evidence that the effective carrier mass diverges close to the Mott MIT, as expected within the Brinkman-Rice scenario and predicted in dynamical mean field theory calculations. Quantum oscillations have been measured at pressures as close to the insulating phase as 33 kbar and as high as 97 kbar. In addition to providing a valuable insight into the mechanism of the Mott MIT, this study has also demonstrated the potential of the TDO technique for studying materials at high pressures.

Page generated in 0.0918 seconds