Spelling suggestions: "subject:"visar computacional"" "subject:"visat computacional""
51 |
Sistema de visão computacional aplicado a um robô cilíndrico acionado pneumaticamenteMedina, Betânia Vargas Oliveira January 2015 (has links)
O reconhecimento da posição e orientação de objetos em uma imagem é importante para diversos segmentos da engenharia, como robótica, automação industrial e processos de fabricação, permitindo às linhas de produção que utilizam sistemas de visão, melhorias na qualidade e redução do tempo de produção. O presente trabalho consiste na elaboração de um sistema de visão computacional para um robô cilíndrico de cinco graus de liberdade acionado pneumaticamente. Como resultado da aplicação do método desenvolvido, obtêm-se a posição e orientação de peças a fim de que as mesmas possam ser capturadas corretamente pelo robô. Para a obtenção da posição e orientação das peças, utilizou-se o método de cálculo dos momentos para extração de características de uma imagem, além da relação entre suas coordenadas em pixels com o sistema de coordenadas do robô. O desenvolvimento do presente trabalho visou também a integrar a esse sistema de visão computacional, um algoritmo de planejamento de trajetórias do robô, o qual, após receber os valores das coordenadas necessárias, gera a trajetória a ser seguida pelo robô, de forma que este possa pegar a peça em uma determinada posição e deslocá-la até outra posição pré-determinada. Também faz parte do escopo deste trabalho, a integração do sistema de visão, incluindo o planejamento de trajetórias, a um algoritmo de controle dos atuadores com compensação de atrito e a realização de testes experimentais com manipulação de peças. Para a demonstração da aplicação do método através de testes experimentais, foi montada uma estrutura para suportar as câmeras e as peças a serem manipuladas, levando em conta o espaço de trabalho do robô. Os resultados obtidos mostram que o algoritmo proposto de visão computacional determina a posição e orientação das peças permitindo ao robô a captação e manipulação das mesmas. / The recognition of the position and orientation of objects in an image is important for several technological areas in engineering, such as robotics, industrial automation and manufacturing processes, allowing production lines using vision systems, improvements in quality and reduction in production time. The present work consists of the development of a computer vision system for a pneumatically actuated cylindrical robot with five degrees of freedom. The application of the proposed method furnishes the position and orientation of pieces in a way that the robot could properly capture them. Position and orientation of the pieces are determined by means of a technique based on the method of calculating the moments for an image feature extraction and the relationship between their pixels coordinates with the robot coordinate system. The scope of the present work also comprises the integration of the computer vision system with a (previously developed) robot trajectory planning algorithm that use key-point coordinates (transmitted by the vision system) to generate the trajectory that must be followed by the robot, so that, departing from a given position, it moves suitably to another predetermined position. It is also object of this work, the integration of both vision system and trajectory planning algorithm with a (also previously developed) nonlinear control algorithm with friction compensation. Aiming at to demonstrate experimentally the application of the method, a special apparatus was mounted to support cameras and the pieces to be manipulated, taking into account the robot workspace. To validate the proposed algorithm, a case study was performed, with the results showing that the proposed computer vision algorithm determines the position and orientation of the pieces allowing the robot to capture and manipulation thereof.
|
52 |
Visualização computacional como apoio à identificação do interesse do aluno em ambientes de EADAmorim, Maurício José Viana January 2012 (has links)
Este estudo apresenta uma investigação de como o uso das técnicas de Visualização Computacional (VC) podem servir no apoio à identificação do interesse do aluno em ambientes de Educação a Distância (EaD). Esta pesquisa se fundamenta nas premissas de que grande parte da comunicação ocorre através da Comunicação Não-Verbal e o estado afetivo de interesse pode ser reconhecido através da visualização interpessoal. Na realização deste trabalho, foi necessária uma revisão da literatura relacionada aos temas Afetividade, especificamente, Estado Afetivo de Interesse, Comportamento Visualizável, Comunicação Não Verbal, Análise de Expressões Faciais, Análise de Gestos e Posturas, Cognição e Técnicas de Sensoriamento Visual. A teoria da Aprendizagem Significativa responde pela concepção epistemológica, metodológica e experimental. Sob sua ótica foram preparados os materiais didáticos que compuseram os experimentos e o objeto de aprendizagem SQLOA. Foram construídos artefatos de software que apoiam a captura dos vídeos dos alunos durante atividades de aprendizagem e que permitiram a realização dos experimentos. Os artefatos desenvolvidos são: um framework, uma ferramenta e um objeto de aprendizagem, assim denominados: WICFramework, QuizWebcamXML e SQLOA. Eles permitem dotar os ambientes de ensino de mecanismos de Visualização Computacional, razão pela qual foram importantes instrumentos para o alcance dos objetivos propostos. Trinta e um alunos, correspondendo a três turmas da disciplina de Administração para Banco de Dados do Curso de Sistema de Informação do Instituto Federal Fluminense, RJ, foram submetidos ao SQLOA e tiveram sua interação capturada em vídeos. A estratégia metodológica compôs-se do levantamento dos Movimentos Corporais Gestuais e Posturais (MCGPs) visualizáveis, e a associação desses aos Estados Afetivos de Interesse e Tédio, testando e definindo os indicadores teóricos que melhor se aplicam a técnicas de VC em ambientes de EaD. A partir da definição dos principais Indicadores de Interesse, construiu-se um Esquema para Identificação do Interesse e um Modelo para Inferência de Interesse, auxiliando profissionais da educação a aplicarem a técnica. / This study presents an investigation on how the use of Computational Visualization (CV) techniques can support the identification of learners’ interest in Virtual Learning Environments (VLEs). The research was based on the premise that communication occurs mostly through non-verbal communication and that the affective state of interest can be identified by interpersonal visualization. For this study, it was necessary to undertake a review of the literature on topics such as Affect, in particular, Affective State of Interest, Visible Behavior, Non-Verbal Communication, Analysis of Facial Expressions, Analysis of Body Gestures and Postures, Cognition, and Visual Sensing Techniques. Principles of the Meaningful Learning Theory were used in the epistemological, methodological and experimental concept of the research theme. This theoretical framework supported the preparation of didactic materials used in the experiments, and the design of the learning object SQLOA. Software artifacts were built to conduct experiments, including video recording of students during learning activities. The following artifacts were developed: a framework (WICFramework), a tool (QuizWebcamXML), and a learning object (SQLOA). Since they can provide VLEs with computational visualization mechanisms, these artifacts were important in reaching the objectives proposed for this study. Thirty-one students, enrolled in the subject Data Bank Management in the Information Systems Course at the Instituto Federal Fluminense, RJ, used SQLOA, and their interaction was captured in videos. The methodological strategy included the observation of Body Gesture and Postural Movements (BGPM), and their association with the Affective States of Interest and Boredom, as well as testing and definition of the theoretical indicators that best support CV techniques in VLEs. Following the definition of the main Indicators of Interest, guidelines were created to assist distance education professionals in the application of such technique.
|
53 |
Reconhecimento automático de padrões em imagens ecocardiográficas / Automatic pattern recognition in echocardiographic imagesSiqueira, Mozart Lemos de January 2010 (has links)
Ecocardiografia fetal é uma importante ferramenta para diagnóstico. Esta tese apresenta um método que provê localização automática de cavidades cardíacas em imagens ecocardiografias fetais, onde o diagnóstico de problemas congênitos do coração pode melhorar os resultados do tratamento. As estruturas de interesse são as quatro cavidades cardíacas (átrio direito, átrio esquerdo, ventrículo direito e ventrículo esquerdo). O método é baseado na busca por cavidades cardíacas através de uma molde de busca (template) para encontrar padrões de interesse. Este molde é calculado usando uma função densidade probabilidade que recebe como parâmetro os níveis de cinza de uma região representativa da cavidade, na imagem. Além disso, em alguns testes também foram utilizadas características espaciais da imagem para cálculo do molde de busca. Nesse sentido a busca é implementada de uma forma hierárquica: (i) primeiro, é localizada a região do coração; e (ii) em seguida, baseando na região do coração a cavidade de interesse á buscada. A comparação do molde de busca e as regiões de interesse na imagem é feita utilizando o Coeficiente de Bhattacharyya, o qual é analisado ao longo dos testes para justificar sua escolha. Uma das principais características do método é a invariância a rotação apresentada pelas estruturas. / Fetal echocardiography is an important tool for diagnosing. This thesis presents a method to provide automatic localization of cardiac cavities in fetal echocardiography images, where the early diagnostics of heart congenital diseases can greatly improve results from medical treatment. The structures of interest are the four cardiac cavities (left and right atrium, left and right ventricle). The method is based in the search of cardiac structures with a mold to find the pattern of interest. This mold is calculated using a probability density function that receives as parameter the gray level of a representative image and also uses spatial features of the images to calculate the mold. A hierarchical search is performed: (i) first, the region of interest is covered to locate the heart; and (ii) based on the position of the heart, the desired structure is found in the image. The comparison of the mold and the candidate image is made using the Bhattacharyya coefficient, which our experimental tests have shown good results. One of the main characteristics of the method is its rotation invariance.
|
54 |
Detecção e contagem de veículos em vídeos de tráfego urbano / Detecting and counting vehicles in urban traffic videoBarcellos, Pablo Roberlan Manke January 2014 (has links)
Este trabalho apresenta um novo método para o rastreamento e contagem de veículos em vídeos de tráfego urbano. Usando técnicas de processamento de imagens e de agrupamentos de partículas, o método proposto usa coerência de movimento e coerência espacial para agrupar partículas, de modo que cada grupo represente veículos nas sequências de vídeo. Uma máscara contendo os objetos do primeiro plano é criada usando os métodos Gaussian Mixture Model e Motion Energy Images para determinar os locais onde as partículas devem ser geradas, e as regiões convexas dos agrupamentos são então analisadas para verificar se correspondem a um veículo. Esta análise leva em consideração a forma convexa dos grupos de partículas (objetos) e a máscara de foreground para realizar a fusão ou divisão dos agrupamentos obtidos. Depois que um veículo é identificado, ele é rastreado utilizando similaridade de histogramas de cor em janelas centradas nas partículas dos agrupamentos. A contagem de veículos acontece em laços virtuais definidos pelo usuário, através da interseção dos veículos rastreados com os laços virtuais. Testes foram realizados utilizando seis diferentes vídeos de tráfego, em um total de 80000 quadros. Os resultados foram comparados com métodos semelhantes disponíveis na literatura, fornecendo, resultados equivalentes ou superiores. / This work presents a new method for tracking and counting vehicles in traffic videos. Using techniques of image processing and particle clustering, the proposed method uses motion coherence and spatial adjacency to group particles so that each group represents vehicles in the video sequences. A foreground mask is created using Gaussian Mixture Model and Motion Energy Images to determine the locations where the particles must be generated, and the convex shapes of detecting groups are then analyzed for the potential detection of vehicles. This analysis takes into consideration the convex shape of the particle groups (objects) and the foreground mask to merge or split the obtained groupings. After a vehicle is identified, it is tracked using the similarity of color histograms on windows centered at the particle locations. The vehicle count takes place on userdefined virtual loops, through the intersections of tracked vehicles with the virtual loops. Tests were conducted using six different traffic videos, on a total of 80.000 frames. The results were compared with similar methods available in the literature, providing results equivalent or superior.
|
55 |
[en] PEOPLE COUNTING SYSTEM / [pt] SISTEMA DE CONTAGEM DE PESSOASPRISCILA MARQUES DIAS 11 October 2005 (has links)
[pt] Atualmente, a preocupação com segurança vem crescendo dia
após dia.
Vários trabalhos abordando o desenvolvimento de sistemas
de supervisão já
foram realizados. Esta dissertação propõe um método
automático capaz de
determinar o número de pessoas em uma área monitorada por
uma câmera de
vídeo, assim como detectar mudanças na imagem
potencialmente causadas por
atitudes ilícitas. Uma aplicação típica seria a segurança
de galpões durante a
noite, em finais de semana ou em qualquer momento onde o
acesso de pessoas
é permitido, mas o movimento de cargas não. Mais
precisamente, a intenção é
detectar se uma pessoa que está passando pelo ambiente
carrega consigo um
objeto pertencente ao local ou deixa um objeto no local,
quando apenas o
movimento de pessoas é admitido na área. Além disto, o
sistema determina o
número de pessoas na cena. O método consiste na aplicação
de quatro etapas
em seqüências de vídeo: a) separação de fundo / primeiro
plano, b) atualização
dinâmica da estimativa de fundo, c) localização / contagem
de pessoas, e d)
detecção de atitudes suspeitas. Os algoritmos de separação
de fundo / primeiro
plano e de estimativa de fundo toleram variações pequenas
de iluminação e
efeitos de sombra. Já a contagem / localização de pessoas
explora informações
de cor e coerência de movimento. Soluções para atender
estes aspectos são
encontradas na literatura, porém nenhuma delas atende
todos eles juntos. O
método foi avaliado por experimentos realizados através de
um protótipo e
apresentou resultados encorajadores. / [en] There is worldwide an increasing concern about security
issues. A great
deal of efforts have been undertaken in order to provide
surveillance systems.
This work proposes an automatic method to determine the
number of people
moving in an area monitored by a video camera, as well as
to detect image
changes, which are potentially due to illicit attitudes. A
typical application is the
security of warehouses during the night, on weekends or at
any time when
people access is allowed but no load movement is
admissible. Specifically it
focuses on detecting when a person passing by the
environment carries any
object belonging to the background away or leaves any
object in the background,
while only people movement is allowed in the area. Besides
it estimates the
number of people on scene. The method consists of
performing four main tasks
on video sequences: a) background and foreground
separation, b) background
estimative dynamic update, c) people location and
counting, and d) suspicious
attitudes detection. The proposed background and
foreground separation and
background estimative update algorithms deal with
illumination fluctuation and
shade effects. People location and counting explores
colour information and
motion coherence. Solutions meeting these requirements are
proposed in the
literature, but no one deals with all of them together.
The method has been
validated by experiments carried out on a prototype and
produced encouraging results.
|
56 |
[en] USE OF ARTIFICIAL NEURAL NETWORKS IN THE RECOGNITION OF BI-DIMENSION IMAGES / [pt] REDES NEURAIS APLICADAS AO RECONHECIMENTO DE IMAGENS BI-DIMENSIONAISGUY PERELMUTER 05 July 2006 (has links)
[pt] Esta dissertação investiga a aplicação de Redes Neurais
Artificiais no reconhecimento de imagens bi-dimensionais. O
trabalho de tese foi dividido em quatro partes principais:
um estudo sobre a importância da Visão Computacional e
sobre os benefícios da aplicação das técnicas da
Inteligência Computacional na área; um estudo da estrutura
dos sistemas de reconhecimento de imagens encontrados na
literatura; o desenvolvimento de dois sistemas de
reconhecimento de imagens baseados em redes neurais; e o
estudo de caso e a análise de desempenho dos sistemas
desenvolvidos. A Visão Computacional tem se beneficiado das
principais técnicas de Inteligência Computacional (redes
neurais, algoritmos genéticos e lógica nebulosa) na
implementação de sistemas de reconhecimento de imagens.
Neste trabalho estudou-se a aplicação de diversos tipos de
redes neurais na classificação de imagens Back-Propagation,
Competitivas, RBF e Hierárquicas. Além disso, foi realizado
um estudo das áreas de aplicação da Visão Computacional. A
estrutura básica utilizada por diversos sistemas de Visão
Computacional encontrada na literatura foi analisada. Esta
estrutura é tipicamente composta por três módulos
principais: um pré-processador, um extrator de
características e um classificador. Dois sistemas de
reconhecimento de imagens, denominados de XVision e
SimpleNet, foram desenvolvidos neste trabalho. O sistema
XVision segue a estrutura descrita acima, enquanto que o
sistema SimpleNet utiliza a informação da imagem bruta para
realizar a classificação. O módulo de pré-processamento do
sistema XVision executa uma série de transformações na
imagem, extraindo suas características intrínsecas para que
seja obtida uma representação da imagem invariante a
aspectos como rotação, translação e escalonamento. Este Pré-
Processador é baseado em um trabalho previamente realizado
no campo de Processamento de Sinais. A etapa de extração de
características visa detectar as informações mais
relevantes contidas na representação da imagem intrínseca
obtida na etapa anterior. Foram investigados extratores
baseados em técnicas estatísticas (utilizando o
discriminante de Fisher) e em técnicas inteligentes
(utilizando algoritmos genéticos). Para o módulo de
classificação das imagens foram utilizados diversos tipos
de redes neurais artificiais: Back-Propagation,
Competitivas, RBFs e Hierárquicas. No sistema SimpleNet, o
pré-processamento limita-se à redução das dimensões da
imagem a ser classificada. Como os próprios pixels da
imagem são utilizados para a classificação, não foi
implementado um módulo de extração de características. Na
etapa de classificação foram empregadas redes neurais Back-
Propagation e Competitivas. O sistema XVision apresentou
resultados promissores para dois conjuntos distintos de
objetos bi-dimensionais: o primeiro composto por peças
mecânicas e o segundo por objetos triviais. As amostras
utilizadas nos testes apresentavam características
diferentes daquelas com as quais as redes neurais foram
treinadas - não apenas com rotações, translações e
escalonamentos, mas com diferenças estruturais. O
classificador conseguiu taxas de acerto superiores a 83% em
ambos os conjuntos de objetos. O sistema SimpleNet também
mostrou-se eficiente na diferenciação de imagens
semelhantes (cartões telefônicos e radiografias de
pulmões), obtendo taxas de acerto superiores a 80%. O
desenvolvimento destes sistemas demonstrou a viabilidade da
aplicação de redes neurais na classificação de objetos bi-
dimensionais. Devido ao grande interesse na utilização de
sistemas de Visão em aplicações de tempo real, mediu-se o
tempo gasto nos processos de reconhecimento. Desta forma
foram detectados os garagalos dos sistemas, facilitando
assim sua otimização. / [en] This work investigates the use of Artificial Neural
Networks in the recognition of bi-dimensional images. The
work was divided in four main parts: a survey on the
importance of Computational Vision and on the benefits of
the application of intelligent techniques in the fiels; a
survey on the structure of image recognition systems found
in the literature; the development of two image recognition
systems based on neural networks; and an analysis of the
performance of the developed systems.
Computational Vision has benefited from the main
Computational Intelligence techniques (neural networks,
genetic algoritms and fuzzy logic) to implement image
recognition systems. In this work, the usage of different
Kinds of neural networks in image classification was
studied: Back-Propagation, Competitive, RBF and
Hierarchical. Besiades that, a survey on the fields of
application of Computational Vision was made.
The basic structure is typically composed of three modules:
a pre-processor, a characteristics extractor and a
classifier.
In this work, two image recognition systems, called Xvision
and SimpleNet, were developed. The XVision system follows
the structure described above, while the SimpleNet system
performs the classification using the information present
in the raw picture.
The pre-processing module of the Xvision system executes a
series of transforms over the image, extracting its
essential characteristics so that an invariant
representation of the image can be obtained. This pre-
processor is based on a previous work in the fiels of
Signal Processing.
The characteristcs extractor aims to detect the most
relevant information present in the image representation
obtained after the previous step. Two kinds of extractors
were investigated: one based on statistical tecniques
(applyng the Fisher`s discriminant) and another based on
intelligent techniques (applyng genetic algorithms).
The classification module was implementede through several
Kinds of neural networks: Back-Propagation, Competitive,
RBF and Hierarchical.
The pre-processing of the SimpleNet system simply reduces
the image`s dimensions. Since the image`s pixels are used
for the classification process, no characteristics
extractor module was implemented. In the classification
module, Back-Propagation and Competitive neural networks
were employed.
The Xvision system yielded promising results for two sets
of objects: the first one composed of mechanical parts and
the second one composed of trivial objects. The samples
used during the tests presented different characteristics
from those samples used during the training process - not
only rotated, translated and scaled, but also with
structural differences. The classifier obtained a hit ratio
above 83% with both sets. The SimpleNet system also showed
a good performance in the differentiation of similar
objects (telephone cards and X-rays of lungs), achieving
hit ratios of more than 80%.
The development of both systems demonstrated the viability
of the use of neural networks in the classification of bi-
dimensional objects. Due to the interest of applying Vision
systems in real-time, the time spent in the recognition
process was measured. This allowed the detection of the
systems` bottlenecks, making their optimization easier.
|
57 |
[pt] DETECÇÃO DE PADRÕES EM IMAGENS BIDIMENSIONAIS: ESTUDO DE CASOS / [en] PATTERN DETECTION IN BIDIMENSIONAL IMAGENS: CASES STUDYGUILHERME LUCIO ABELHA MOTA 10 November 2005 (has links)
[pt] A presente dissertação estudo dois problemas de detecção
de padrões em imagens com fundo complexo, casos onde os
algoritmos de segmentação convencionais não podem
proporcionar bons resultados: a localização de Unidades
Estruturais (UE`s) em imagens obtidas por Microscópio
Eletrônico de Transmissão em Alta Resolução, e a detecção
de faces frontais na posição vertical em imagens. Apesar
de serem abordados problemas diferentes, as metodologias
empregadas na solução de ambos os problemas possuem
semelhanças. Uma operação de vizinhança é aplicada a
imagem de entrada em busca de padrões de interesse. Sendo
cada região extraída desta imagem submetida a um operador
matemático composto por etapas de pré-processamento,
redução de dimensionalidade e classificação.
Na detecção de UE`s foram empregados três métodos
distintos de redução de dimensionalidade - Análise de
Componentes Principais (PCA), PCA do conjunto de
treinamento equilibrado (PCAEq), e um método inédito,
eixos que maximizam a distância ao centróide de uma classe
(MAXDIST) - e dois modelos de classificador -
classificador baseado na distância euclideana (EUC) e rede
neural back-propagation (RN). A combinação PCAEq/RN
forneceu taxa de detecção de 88% para 25 componentes. Já a
combinação MAXDIST/EUC com apenas uma atributo forneceu
82% de detecção com menos falsas detecções. Na detecção de
faces foi empregada uma nova abordagem, que utiliza uma
rede neural back-propagation como classificador. Aplica-se
a sua entrada recebe a representação no subespaço das
faces e o erro de reconstrução. Em comparação com os
resultados de referência da literatura na área, o método
proposto atingiu taxas de detecção similares. / [en] This dissertation studies two pattern detection problems
in images with complex background, in which standard
segmentation techniques do not provide good results: the
detection of structural units (SU`s) in images obtained
through High resolution transmission Electron Microscopy
and the detection of frontal human faces in images.
The methods employed in the solution of both
problems have many similarities - a neighborhood operator,
basically composed of pre-processing, dimensionality
reduction and classification steps, scans the input image
searching for the patterns of interest.
For SU detection three dimensionality reduction
methods - Principal Component Analysis (PCA), PCA of the
balanced training set (PACEq), and a new method, axis that
maximize the distance to a given class centroid
(MAXDIST) -, and two classifiers - Euclidean Distance
(EUC) and back-propagation neural network (RN). The
MAXDIST/EUC combination, with just one component, provided
a detection rate of 82% with less false detections.
For face detection a new approach was employed,
using a back-propagation neural network as classifier. It
takes as input a representation in the so-called face
space and the reconstruction error (DFFS). In comparison
with benchmark results from the literature, the proposed
method reached similar detection rates.
|
58 |
[en] VISION BASED IN-SITU CALIBRATION OF ROBOTS WITH APPLICATION IN SUBSEA INTERVENTIONS / [pt] CALIBRAGEM VISUAL IN SITU DE MANIPULADORES ROBÓTICOS COM APLICAÇÃO EM INTERVENÇÕES SUBMARINASTROND MARTIN AUGUSTSON 08 May 2008 (has links)
[pt] A maioria dos robôs industriais da atualidade são
programados para seguir
uma trajetória pré-definida. Isto é suficiente quando o
robô está trabalhando em
um ambiente imutável onde todos os objetos estão em uma
posição conhecida
em relação à base do manipulador. No entanto, se a posição
da base do robô é
alterada, todas as trajetórias precisam ser reprogramadas
para que ele seja capaz
de cumprir suas tarefas. Outra opção é a teleoperação, onde
um operador
humano conduz todos os movimento durante a operação em uma
arquitetura
mestre-escravo. Uma vez que qualquer erro de posicionamento
pode ser
visualmente compensado pelo operador humano, essa
configuração não requer
que o robô possua alta precisão absoluta. No entanto, a
desvantagem deste
enfoque é a baixa velocidade e precisão se comparado com um
sistema
totalmente automatizado. O manipulador considerado nesta
dissertação está fixo
em um ROV (Remote Operating Vehicle) e é trazido até seu
ambiente de
trabalho por um teleoperador. A cada vez que a base do
manipulador é
reposicionada, este precisa estimar sua posição e
orientação relativa ao ambiente
de trabalho. O ROV opera em grandes profundidades, e há
poucos sensores que
podem operar nestas condições adversas. Isto incentiva o
uso de visão
computacional para estimar a posição relativa do
manipulador. A diferença entre
a posição real e a desejada é estimada através do uso de
câmeras submarinas. A
informação é enviada aos controladores para corrigir as
trajetórias préprogramadas.
Os comandos de movimento do manipulador podem então ser
programados off-line por um sistema de CAD, sem a
necessidade de ligar o robô,
permitindo rapidez na validação das trajetórias. Esse
trabalho inclui a calibragem
tanto da câmera quanto da estrutura do manipulador. As
melhores precisões
absolutas obtidas por essas metodologias são combinadas
para obter calibração
in-situ da base do manipulador. / [en] The majority of today`s industrial robots are programmed
to follow a
predefined trajectory. This is sufficient when the robot
is working in a fixed
environment where all objects of interest are situated in
a predetermined position
relative to the robot base. However, if the robot`s
position is altered all the
trajectories have to be reprogrammed for the robot to be
able to perform its
tasks. Another option is teleoperation, where a human
operator conducts all the
movements during the operation in master-slave
architecture. Since any
positioning errors can be visually compensated by the
human operator, this
configuration does not demand that the robot has a high
absolute accuracy.
However, the drawback is the low speed and low accuracy
of the human
operator scheme. The manipulator considered in this
thesis is attached to a ROV
(Remote Operating Vehicle) and is brought to its working
environment by the
ROV operator. Every time the robot is repositioned, it
needs to estimate its
position and orientation relative to the work
environment. The ROV operates at
great depths and there are few sensors which can operate
at extreme depths. This
is the incentive for the use of computer vision to
estimate the relative position of
the manipulator. Through cameras the differences between
the actual and desired
position of the manipulators is estimated. This
information is sent to controllers
to correct the pre-programmed trajectories. The
manipulator movement
commands are programmed off-line by a CAD system, without
need even to turn
on the robot, allowing for greatest speed on its
validation, as well as problem
solving. This work includes camera calibration and
calibration of the structure of
the manipulator. The increased accuracies achieved by
these steps are merged to
achieve in-situ calibration of the manipulator base.
|
59 |
Sistema de visión computacional estereoscópico aplicado a un robot cilíndrico accionado neumáticamenteRamirez Montecinos, Daniela Elisa January 2017 (has links)
In the industrial area, robots are an important part of the technological resources available to perform manipulation tasks in manufacturing, assembly, the transportation of dangerous waste, and a variety of applications. Specialized systems of computer vision have entered the market to solve problems that other technologies have been unable to address. This document analyzes a stereo vision system that is used to provide the center of mass of an object in three dimensions. This kind of application is mounted using two or more cameras that are aligned along the same axis and give the possibility to measure the depth of a point in the space. The stereoscopic system described, measures the position of an object using a combination between the 2D recognition, which implies the calculus of the coordinates of the center of mass and using moments, and the disparity that is found comparing two images: one of the right and one of the left. This converts the system into a 3D reality viewfinder, emulating the human eyes, which are capable of distinguishing depth with good precision.The proposed stereo vision system is integrated into a 5 degree of freedom pneumatic robot, which can be programmed using the GRAFCET method by means of commercial software. The cameras are mounted in the lateral plane of the robot to ensure that all the pieces in the robot's work area can be observed.For the implementation, an algorithm is developed for recognition and position measurement using open sources in C++. This ensures that the system can remain as open as possible once it is integrated with the robot. The validation of the work is accomplished by taking samples of the objects to be manipulated and generating robot's trajectories to see if the object can be manipulated by its end effector or not. The results show that is possible to manipulate pieces in a visually crowded space with acceptable precision. However, the precision reached does not allow the robot to perform tasks that require higher accuracy as the one is needed in manufacturing assembly process of little pieces or in welding applications. / En el área industrial los robots forman parte importante del recurso tecnológico disponible para tareas de manipulación en manufactura, ensamble, manejo de residuos peligrosos y aplicaciones varias. Los sistemas de visión computacional se han ingresado al mercado como soluciones a problemas que otros tipos de sensores y métodos no han podido solucionar. El presente trabajo analiza un sistema de visión estereoscópico aplicado a un robot. Este arreglo permite la medición de coordenadas del centro de un objeto en las tres dimensiones, de modo que, le da al robot la posibilidad de trabajar en el espacio y no solo en un plano. El sistema estereoscópico consiste en el uso de dos o más cámaras alineadas en alguno de sus ejes, mediante las cuales, es posible calcular la profundidad a la que se encuentran los objetos. En el presente, se mide la posición de un objeto haciendo una combinación entre el reconocimiento 2D y la medición de las coordenadas y de su centro calculadas usando momentos. En el sistema estereoscópico, se añade la medición de la última coordenada mediante el cálculo de la disparidad encontrada entre las imágenes de las cámaras inalámbricas izquierda y derecha, que convierte al sistema en un visor 3D de la realidad, emulando los ojos humanos capaces de distinguir profundidades con cierta precisión. El sistema de visión computacional propuesto es integrado a un robot neumático de 5 grados de libertad el cual puede ser programado desde la metodología GRAFCET mediante software de uso comercial. Las cámaras del sistema de visión están montadas en el plano lateral del robot de modo tal, que es posible visualizar las piezas que quedan dentro de su volumen de trabajo. En la implementación, se desarrolla un algoritmo de reconocimiento y medición de posición, haciendo uso de software libre en lenguaje C++. De modo que, en la integración con el robot, el sistema pueda ser lo más abierto posible. La validación del trabajo se logra tomando muestras de los objetos a ser manipulados y generando trayectorias para el robot, a fin de visualizar si la pieza pudo ser captada por su garra neumática o no. Los resultados muestran que es posible lograr la manipulación de piezas en un ambiente visualmente cargado y con una precisión aceptable. Sin embargo, se observa que la precisión no permite que el sistema pueda ser usado en aplicaciones donde se requiere precisión al nivel de los procesos de ensamblado de piezas pequeñas o de soldadura.
|
60 |
[en] SCENE RECONSTRUCTION USING SHAPE FROM TEXTURE / [pt] RECONSTRUÇÃO DO ESPAÇO TRIDIMENSIONAL A PARTIR DA DEFORMAÇÃO DE TEXTURA DE IMAGENSDIOGO MENEZES DUARTE 11 September 2006 (has links)
[pt] O presente trabalho apresenta um estudo sobre técnicas de
construção de um
modelo tridimensional de objetos a partir unicamente da
informação de textura.
Estas técnicas são baseadas na medida da deformação da
textura ao longo de uma
superfície, obtendo assim a orientação do vetor normal à
superfície em cada
ponto. De posse da orientação é possível construir um
modelo tridimensional do
objeto. São avaliados três métodos. O primeiro emprega
Filtros de Gabor e
momentos de segunda ordem como medida de textura e os
outros dois estimam a
transformação afim entre recortes de igual tamanho na
imagem. A estimativa da
transformação afim tem ênfase especial neste trabalho por
ser um passo
fundamental no algoritmo que mede a deformação da textura.
Os métodos foram
validados em diferentes etapas, de forma a avaliar:
estimativa da transformação
afim; decomposição em ângulos; e reconstrução do modelo 3D
a partir do mapa
de orientação, também conhecido como mapa de agulhas. A
avaliação
experimental foi realizada com imagens sintéticas e fotos
de objetos reais. Os
resultados mostram a aplicabilidade, dificuldades e
restrições dos métodos
analisados. / [en] The current work presents a study about methods for 3D
object shape
reconstruction based on their texture information. These
methods, called Shape
from Texture, measure texture deformation along object
surface, obtaining the
orientation in each point of the image. Having the
orientation in each point (a
needle map) it is possible to construct the object 3D
model. Three methods are
studied in this dissertation. One of these methods uses
Gabor Filters and second
order moments, and other two that estimate the affine
transform between images
patches. The affine estimation problem gets emphasis in
the present work since it
is an essential step in most Shape from Texture
algorithms. The methods were
tested in separate steps: evaluate the affine transform
estimation; the
decomposition of the affine matrix in slant and tilt
angles; and the 3D model
reconstruction using the needle map. Both synthetic and
real images were used on
the experiments. The results clearly show the
applicability, difficulties and
restrictions of the investigated methods.
|
Page generated in 0.093 seconds