Spelling suggestions: "subject:"visar computacional"" "subject:"visat computacional""
71 |
Reconstrução tridimensional digital de objetos à curta distância por meio de luz estruturadaReiss, Mário Luiz Lopes January 2007 (has links)
Neste trabalho apresenta-se o desenvolvimento e avaliação de um sistema de reconstrução 3D por luz estruturada. O sistema denominado de Scan3DSL é baseado em uma câmara digital de pequeno formato e um projetor de padrões. O modelo matemático para a reconstrução 3D é baseado na equação paramétrica da reta formada pelo raio de luz projetado combinado com as equações de colinearidade. Uma estratégia de codificação de padrões foi desenvolvida para permitir o reconhecimento dos padrões projetados em um processo automático. Uma metodologia de calibração permite a determinação dos vetores diretores de cada padrão projetado e as coordenadas do centro de perspectiva do projetor de padrões. O processo de calibração é realizado com a aquisição de múltiplas imagens em um plano de calibração com tomadas em diferentes orientações e posições. Um conjunto de algoritmos de processamento de imagens foi implementado para propiciar a localização precisa dos padrões e de algumas feições, como o centro de massa e quinas. Para avaliar a precisão e as potencialidades da metodologia, um protótipo foi construído, integrando uma única câmara e um projetor de padrões. Experimentos mostram que um modelo de superfície pode ser obtido em um tempo total de processamento inferior a 10 segundos, e com erro absoluto em profundidade em torno de 0,2 mm. Evidencia-se com isso a potencialidade de uso em várias aplicações. / The purpose of this work is to present a structured light system developed. The system named Scan3DSL is based on off-the-shelf digital cameras and a projector of patterns. The mathematical model for 3D reconstruction is based on the parametric equation of the projected straight line combined with the collinearity equations. A pattern codification strategy was developed to allow fully automatic pattern recognition. A calibration methodology enables the determination of the direction vector of each pattern and the coordinates of the perspective centre of the pattern projector. The calibration processes are carried out with the acquisition of several images of a flat surface from different distances and orientations. Several processes were combined to provide a reliable solution for patterns location. In order to assess the accuracy and the potential of the methodology, a prototype was built integrating in a single mount a projector of patterns and a digital camera. The experiments using reconstructed surfaces with real data indicated a relative accuracy of 0.2 mm in depth could be achieved, in a processing time less than 10 seconds.
|
72 |
Visão computacional para veículos inteligentes usando câmeras embarcadas / Computer vision for intelligent vehicles using embedded camerasPaula, Maurício Braga de January 2015 (has links)
O uso de sistemas de assistência ao motorista (DAS) baseados em visão tem contribuído consideravelmente na redução de acidentes e consequentemente no auxílio de uma melhor condução. Estes sistemas utilizam basicamente uma câmera de vídeo embarcada (normalmente fixada no para-brisa) com o propósito de extrair informações acerca da rodovia e ajudar o condutor num melhor processo de dirigibilidade. Pequenas distrações ou a perda de concentração podem ser suficientes para que um acidente ocorra. Este trabalho apresenta uma proposta para o desenvolvimento de algoritmos para extrair informações sobre a sinalização em rodovias. Mais precisamente, serão abordados algoritmos de calibração de câmera explorando a geometria da pista, de extração da marcação de pintura (sinalização horizontal) e detecção e identificação de placas de trânsito (sinalização vertical). Os resultados experimentais indicam que o método de calibração de câmera alcançou bons resultados na obtenção dos parâmetros extrínsecos com erros inferiores a 0:5 . O erro médio encontrado nos experimentos com relação a estimativa da altura da câmera foi em torno de 12 cm (erro relativo aproximado de 10%), permitindo explorar o uso da realidade aumentada como uma possível aplicação. A acurácia global para a detecção e reconhecimento da sinalização horizontal (marcas seccionadas, contínuas e mistas) foi acima de 96% perante uma diversidade de situações apresentadas, tais como: sombras, variação de iluminação, degradação do asfalto e pintura. O uso da câmera calibrada para a detecção da sinalização vertical contribui para delimitar o espaço de varredura da janela deslizante do detector, bem como realizar a procura por placas em uma única escala para cada região de busca, caracterizada pela distância ao veículo. Os resultados apresentados reportam uma taxa global de classificação de aproximadamente 99% para o sinal de proibido ultrapassar, considerando-se uma base de dados limitada a 962 amostras. / The use of driver assistance systems (DAS) based on computer vision has helped considerably in reducing accidents and consequently aid in better driving. These systems primarily use an embedded video camera (usually fixed on the windshield) for the purpose of extracting information about the highway and assisting the driver in a better handling process. Small distractions or loss of concentration may be sufficient for an accident to occur. This work presents the development of algorithms to extract information about traffic signs on highways. More specifically, this work will tackle a camera calibration algorithm that exploits the geometry of the road track, algorithms for the extraction of road marking paint (lane markings) and detection and identification of vertical traffic signs. Experimental results indicate that the proposed method for obtaining the extrinsic parameters achieve good results with errors of less than 0:5 . The average error in our experiments, related to the camera height, were around 12 cm (relative error around 10%). Global accuracy for the detection and classification of road lane markings (dashed, solid, dashed-solid, solid-dashed or double solid) were over 96%. Finally, our camera calibration algorithm was used to reduce the search region and to define the scale of a slidingwindow detector for vertical traffic signs. The use of the calibrated camera for the detection of traffic signs contributes to define the scanning area of the sliding window and perform a search for signs on a unique scale for each region of interest, determined by the distance to the vehicle. The results reported a global classification rate of approximately 99% for the no overtaking sign, considering a limited of 962 samples.
|
73 |
[en] COLLECTIVE BEHAVIOR ON MULTI-AGENT ROBOTIC SYSTEMS USING VIRTUAL SENSORS / [pt] COMPORTAMENTO COLETIVO EM SISTEMAS ROBÓTICOS MULTI-AGENTES USANDO SENSORES VIRTUAIS08 November 2021 (has links)
[pt] Robótica coletiva de enxame é uma abordagem para o controle de sistemas robóticos multi-agentes baseada em insetos sociais e outros sistemas naturais que apresentam características de auto-organização e emergência, com aplicações disruptivas em robótica e inúmeras possibilidades de expansão em outras áreas. Porém, sendo um campo relativamente novo existem poucas plataformas experimentais para seu estudo, e as existentes são, em sua maioria, especialmente desenvolvidas para tarefas e algoritmos específicos. Uma plataforma de estudos genérica para o estudo de sistemas robóticos coletivos é, por si só, uma tarefa tecnológica não trivial além de ser um recurso valioso para um centro de pesquisas interessado em realizar experimentos no assunto. Neste trabalho dois importantes algoritmos de controle colaborativo multi-robôs foram estudados: busca do melhor caminho e transporte coletivo. Uma análise completa dos mecanismos biológicos, dos modelos lógicos e do desenvolvimento dos algoritmos é apresentada. Para realizar os experimentos uma plataforma genérica foi desenvolvida baseada nos robôs móveis “iRobot Create”. Sensores virtuais são implementados em através de um sistema de visão computacional combinado com um simulador em tempo real. O sistema de sensores virtuais permite a incorporação de sensores ideais no sistema experimental, incluindo modelos mais complexos de sensores reais, incluindo a possibilidade da adição de ruído simulador nas leituras. Esta abordagem permite também a utilização de sensores para detecção de objetos virtuais, criados pelo simulador, como paredes virtuais e feromônios virtuais. Cada robô possui um sistema eletrônico embarcado especialmente desenvolvido baseado em micro controlador ARM. A eletrônica adicionada é responsável por receber as leituras dos sensores virtuais através de um link de radio em um protocolo customizado e calcular, localmente, o comportamento do robô. Os algoritmos são implementados na linguagem de alto nível Lua. Mesmo com as leituras dos sensores virtuais sendo transmitidas de um sistema centralizado é importante ressaltar que todo o algoritmo de inteligência é executado localmente por cada agente. As versões modificadas e adaptadas dos algoritmos estudados na plataforma com sensores virtuais foram analisadas, juntamente com suas limitações, e se mostraram compatíveis com os resultados esperados e acessíveis na literatura que utiliza sistemas experimentais mais específicos e mais dispendiosos. Portanto a plataforma desenvolvida se mostra capaz como ferramenta para experimentos em controle de sistemas robóticos multi-agentes com baixo custo de implementação, além da inclusão, através do mecanismo de sensores virtuais, de sensores ainda em desenvolvimento ou comercialmente indisponíveis. / [en] Swarm robotics is an approach to multi-robot control based on social insects and other natural systems, which shows self-organization and emergent characteristics, with disruptive applications on robotics and possibilities in a variety of areas. But, being a relatively new field of research, there are few experimental platforms to its study, and most of them are crafted for very specific tasks and algorithms. A general study platform of swarm robotics, by itself, is a non-trivial technological deed and also a very valuable asset to a research center willing to run experiments on the topic. In this work, two important algorithms in multi-robot collaborative control strategies are studied: path finding and collective transport. A complete analysis of the biological mechanisms, models and computer abstractions that resulted in the development of those algorithms is shown. To perform the multi-robot experiments, several “iRobot Create” mobile robots are employed. Virtual sensors and virtual walls are implemented in real time in the experimental system through cameras and especially developed computer vision software. Virtual sensors allow the incorporation of ideal sensors in the experimental system, including complete models of real sensors, with the possibility of adding virtual noise to the measurements. This approach also allows the use of sensors to detect virtually created objects, such as virtual walls or virtual pheromones. Each physical robot has a customized embedded system, based on the ARM microprocessor, which receives the virtual sensors readings through a radio link in an also customized protocol. The behavior of each autonomous agent is locally calculated using the high-level programming language Lua. Even though the virtual sensor readings are transmitted from an external centralized computer system, all behaviors are locally and independently calculated by each agent. The adaptations of the studied algorithms to the platform with virtual sensors are analyzed, along with its limitations. It is shown that the experimental results using virtual sensors are coherent with results from the literature using very specialized and expensive robot/sensor setups. Therefore, the developed platform is able to experimentally study new control strategies and swarm algorithms with a low setup cost, including the possibility of virtually incorporating sensors that are still under development or not yet commercially available.
|
74 |
[pt] CALIBRAÇÃO DE CÂMERA USANDO PROJEÇÃO FRONTAL-PARALELA E COLINEARIDADE DOS PONTOS DE CONTROLE / [en] CAMERA CALIBRATION USING FRONTO PARALLEL PROJECTION AND COLLINEARITY OF CONTROL POINTSSASHA NICOLAS DA ROCHA PINHEIRO 17 November 2016 (has links)
[pt] Imprescindível para quaisquer aplicações de visão computacional ou
realidade aumentada, a calibração de câmera é o processo no qual se obtém
os parâmetros intrínsecos e extrínsecos da câmera, tais como distância
focal, ponto principal e valores que mensuram a distorção ótica da lente.
Atualmente o método mais utilizado para calibrar uma câmera envolve
o uso de imagens de um padrão planar em diferentes perspectivas, a
partir das quais se extrai pontos de controle para montar um sistema de
equações lineares cuja solução representa os parâmetros da câmera, que
são otimizados com base no erro de reprojeção 2D. Neste trabalho, foi
escolhido o padrão de calibração aneliforme por oferecer maior precisão na
detecção dos pontos de controle. Ao aplicarmos técnicas como transformação
frontal-paralela, refinamento iterativo dos pontos de controle e segmentação
adaptativa de elipses, nossa abordagem apresentou melhoria no resultado
do processo de calibração. Além disso, propomos estender o modelo de
otimização ao redefinir a função objetivo, considerando não somente o erro
de reprojeção 2D, mas também o erro de colinearidade 2D. / [en] Crucial for any computer vision or augmented reality application, the
camera calibration is the process in which one gets the intrinsics and the
extrinsics parameters of a camera, such as focal length, principal point
and distortions values. Nowadays, the most used method to deploy the
calibration comprises the use of images of a planar pattern in different
perspectives, in order to extract control points to set up a system of linear
equations whose solution represents the camera parameters, followed by
an optimization based on the 2D reprojection error. In this work, the
ring calibration pattern was chosen because it offers higher accuracy on
the detection of control points. Upon application of techniques such as
fronto-parallel transformation, iterative refinement of the control points and
adaptative segmentation of ellipses, our approach has reached improvements
in the result of the calibration process. Furthermore, we proposed extend
the optimization model by modifying the objective function, regarding not
only the 2D reprojection error but also the 2D collinearity error.
|
75 |
[en] AUTOMATIC SEGMENTATION OF BREAKOUTS IN IMAGE LOGS WITH DEEP LEARNING / [pt] SEGMENTAÇÃO AUTOMÁTICA DE BREAKOUTS EM PERFIS DE IMAGEM COM APRENDIZADO PROFUNDOGABRIELLE BRANDEMBURG DOS ANJOS 02 May 2023 (has links)
[pt] Breakouts são zonas colapsadas nas paredes de poços causadas por falhas
de compressão. A identificação desses artefatos é fundamental para estimar
a estabilidade das perfurações e para obter a orientação e magnitude da
tensão horizontal máxima presente na formação rochosa. Tradicionalmente,
os intérpretes caracterizam os breakouts manualmente em perfis de imagem, o
que pode ser considerado uma tarefa muito demorada e trabalhosa por conta
do tamanho massivo dos dados. Outros aspectos que dificultam a interpretação
estão associados à complexidade das estruturas e a presença de diversos
artefatos ruidosos nos dados de perfil. Sendo assim, métodos tradicionais de
processamento de imagem tornam-se ineficientes para solucionar essa tarefa de
detecção. Nos últimos anos, soluções baseadas em aprendizado profundo tem se
tornado cada vez mais promissoras para problemas de visão computacional, tais
como, detecção e segmentação de objetos em imagens. O presente trabalho tem
como objetivo a classificação pixel a pixel das regiões de breakouts em dados de
perfil de imagem. Para isso foi empregado a rede neural convolucional DC-UNet
de forma supervisionada. Essa arquitetura é uma variação do modelo clássico
U-Net, a qual é uma rede consagrada na segmentação de dados médicos. A
metodologia proposta atingiu uma média de 72.3por cento de F1-Score e, em alguns
casos, os resultados qualitativos mostraram-se melhores que a interpretação
de referência. Após avaliação dos resultados junto a especialistas da área,
o método pode ser considerado promissor na caracterização e segmentação
automática de estruturas em perfis de imagem de poços. / [en] Breakouts are collapsed zones on wellbore walls caused by compressive
failure. Their identification is fundamental for estimating the borehole s stability and obtaining the direction and magnitude of the maximum horizontal
stress in the rock formation. Traditionally, professional interpreters identify
and characterize breakouts manually in image logs, which can be considered a
very laborious and time-consuming task due to the massive size of the wellbore
data. Other aspects that make the interpretation difficult are the complexity
of the structures of interest and several noisy artifacts in the image log data.
Therefore, more than traditional image processing methods are required to
solve this detection task. In recent years, solutions based on deep learning
have become increasingly promising for computer vision problems, such as
object detection and image segmentation. This work explores using a convolutional neural network to create a pixel-by-pixel classification of the breakout
regions in the image log data. The architecture model used in this work for the
supervised training was the DC-UNet. This architecture is a variation of the
classical U-Net, an acknowledged network for medical image segmentation. The
proposed method reached an average F-Score of 72.3 percent and qualitative results
with some prediction cases even better than ground truth. After evaluating the
results, the work can be considered promising for automatically characterizing
and segmenting borehole structures in well image logs.
|
76 |
[en] A STUDY OF THE USE OF OBJECT SEGMENTATION FOR THE APPLICATION OF VIDEO INPAINTING TECHNIQUES / [pt] UM ESTUDO DE USO DE SEGMENTAÇÃO DE OBJETOS PARA A APLICAÇÃO DE TÉCNICAS DE VIDEO INPAINTINGSUSANA DE SOUZA BOUCHARDET 23 August 2021 (has links)
[pt] Nos últimos anos tem ocorrido um notável desenvolvimento de técnicas
de Image Inpainting, entretanto transpor esse conhecimento para aplicações
em vídeo tem se mostrado um desafio. Além dos desafios inerentes a tarefa
de Video Inpainting (VI), utilizar essa técnica requer um trabalho prévio de
anotação da área que será reconstruída. Se a aplicação do método for para
remover um objeto ao longo de um vídeo, então a anotação prévia deve ser
uma máscara da área deste objeto frame a frame. A tarefa de propagar a
anotação de um objeto ao longo de um vídeo é conhecida como Video Object
Segmentation (VOS) e já existem técnicas bem desenvolvidas para solucionar
este problemas. Assim, a proposta desse trabalho é aplicar técnicas de VOS
para gerar insumo para um algoritmo de VI. Neste trabalho iremos analisar o
impacto de utilizar anotações preditas no resultado final de um modelo de VI. / [en] In recent years there has been a remarkable development of Image
Inpainting techniques, but using this knowledge in video application is still
a challenge. Besides the inherent challenges of the Video Inpainting (VI) task, applying this technique requires a previous job of labeling the area that should be reconstructed. If this method is used to remove an object from the video, then the annotation should be a mask of this object s area frame by frame. The task of propagating an object mask in a video is known as Video Object
Segmentation (VOS) and there are already well developed techniques to solve
this kind of task. Therefore, this work aims to apply VOS techniques to create
the inputs for an VI algorithm. In this work we shall analyse the impact in the
result of a VI algorithm when we use a predicted annotation as the input.
|
77 |
[en] A ROBUST REAL-TIME COMPONENT FOR PERSONAL PROTECTIVE EQUIPMENT DETECTION IN AN INDUSTRIAL SETTING / [pt] UM COMPONENTE ROBUSTO EM TEMPO REAL PARA DETECÇÃO DE EQUIPAMENTOS DE PROTEÇÃO INDIVIDUAL EM UM AMBIENTE INDUSTRIALPEDRO HENRIQUE LOPES TORRES 19 July 2021 (has links)
[pt] Em grandes indústrias, como construção, metalúrgica e petróleo,
trabalhadores são continuamente expostos a vários tipos de perigos em
seus locais de trabalho. Segundo a Organização Internacional do Trabalho
(OIT), anualmente ocorrem cerca de 340 milhões de acidentes de trabalho.
Equipamentos de Proteção Individual (EPI) são utilizados para garantir
a proteção essencial da saúde e segurança dos trabalhadores. Com isto,
há um grande esforço para garantir que esses tipos de equipamentos sejam
usados de maneira adequada em ambientes de trabalho. Em tais ambientes, é
comum ter câmeras de circuito fechado de televisão (CFTV) para monitorar
os trabalhadores, pois essas podem ser usadas para verificar o uso adequado
de EPIs. Alguns trabalhos presentes na literatura abordam o problema de
verificação automática de EPIs usando imagens de CFTV como entrada;
no entanto, muitos destes trabalhos não conseguem lidar com a detecção
de uso seguro de múltiplos equipamentos e outros até mesmo pulam a fase
de verificação, fazendo apenas a detecção. Neste trabalho, propomos um
novo componente de análise de segurança cognitiva para um sistema de
monitoramento. Este componente atua para detectar o uso adequado de
EPIs em tempo real, usando fluxo de dados de câmeras de CFTV comuns.
Construímos este componente do sistema com base nas melhores técnicas
de Aprendizado Profundo voltadas para a tarefa de detecção de objetos. A
metodologia proposta é robusta com resultados consistentes e promissores
em termos da métrica Mean Average Precision (mAP) e pode atuar em
tempo real. / [en] In large industries, such as construction, metallurgy, and oil, workers
are continually exposed to various hazards in their workplace. Accordingly
to the International Labor Organization (ILO), there are 340 million occupational
accidents annually. Personal Protective Equipment (PPE) is used
to ensure the essential protection of workers health and safety. There is a
great effort to ensure that these types of equipment are used properly. In
such an environment, it is common to have closed-circuit television (CCTV)
cameras to monitor workers, as those can be used to verify the PPE s proper
usage. Some works address this problem using CCTV images; however, they
frequently can not deal with multiples safe equipment usage detection and
others even skip the verification phase, making only the detection. In this
paper, we propose a novel cognitive safety analysis component for a monitoring
system. This component acts to detect the proper usage of PPE s in
real-time using data stream from regular CCTV cameras. We built the system
component based on the top of state-of-art deep learning techniques for
object detection. The methodology is robust with consistent and promising
results for Mean Average Precision (mAP) and can act in real-time.
|
78 |
[pt] IDENTIFICAÇÃO NÃO LINEAR DE UM ATUADOR ROBÓTICO COM JUNTA FLEXÍVEL USANDO DADOS PROPRIOCEPTIVOS E DE VÍDEO / [en] NONLINEAR IDENTIFICATION OF A FLEXIBLE JOINT ROBOTIC ACTUATOR USING PROPRIOCEPTIVE AND VIDEO DATAANTONIO WEILLER CORREA DO LAGO 21 November 2024 (has links)
[pt] No contexto de robos colaborativos, há um crescente interesse em Atuadores Elásticos em Série impulsionado pela necessidade de garantir segurança
e funcionalidade. No entanto, as não linearidades inerentes a esses atuadores,
como atrito, folga nas engrenagens e ruído, aumentam significativamente o desafio de controlar e modelar tais dispositivos. Além disso, um elemento elástico
adiciona uma nova não linearidade. Visando essas características, este trabalho
propõe um extenso trabalho de identificação do sistema para obter um modelo para um atuador elástico em série baseado em elastômero de baixo custo
e original. As metodologias propostas investigam diferentes características do
sistema. A primeira se concentra em modelar as não linearidades da junta elástica por meio de um modelo híbrido. A segunda contribuição visa examinar a
precisão de redes neurais informadas por física para identificação de caixa cinza
de parâmetros de atrito. Por último, é proposto uma metodologia para obter
os estados da montagem usando vídeo. A partir dessas estimativas, é proposta
uma identificação de caixa cinza usando vídeo. Todos os três estudos utilizam
os dados da montagem do atuador. As duas primeiras contribuições obtiveram
resultados importantes indicando a eficiência das metodologias propostas. A
terceira contribuição mostrou o potencial da nova abordagem de identificação
baseada em vídeo. / [en] In the context of human interactive robotics, there is a growing interest in
Series Elastic Actuators (SEA), driven by the critical need to ensure safety and
functionality. Moreover, a precise model is required to obtain optimal control.
However, the inherent nonlinearities of those actuators, such as friction, gear
backlash, and noise, greatly increase the challenge of controlling and modeling
such devices. Furthermore, a compliant element adds a new nonlinearity,
making the modeling task more challenging. Aiming to tackle these issues, this
work proposes extensive system identification to obtain mathematical models
characterizing the dynamics of an original low-cost elastomer-based SEA. The
proposed methodologies investigate different characteristics of the system. The
first focuses on modeling the elastic joint s nonlinearities through a hybrid
model. The second contribution aims to examine the accuracy of physics-informed neural networks for gray-box identification of friction parameters.
Lastly, a framework to obtain the states of the assembly using video is
proposed. From these estimations, a gray-box identification using video is
proposed. All three studies use the data from the actuator assembly. The first
two contributions obtained important results indicating the efficiency of the
proposed methodologies. The third contribution showed the potential of the
novel video-based identification approach.
|
79 |
[en] REAL TIME EMOTION RECOGNITION BASED ON IMAGES USING ASM AND SVM / [pt] RECONHECIMENTO DE EMOÇÕES ATRAVÉS DE IMAGENS EM TEMPO REAL COM O USO DE ASM E SVMGUILHERME CARVALHO CUNHA 09 July 2014 (has links)
[pt] As expressões faciais transmitem muita informação sobre um indivíduo, tornando a capacidade de interpretá-las uma tarefa muito importante, com aplicações em diversas áreas, tais como Interação Homem Máquina, Jogos Digitais, storytelling interativo e TV/Cinema digital. Esta dissertação discute o processo de reconhecimento de emoções em tempo real usando ASM (Active Shape Model) e SVM (Support Vector Machine) e apresenta uma comparação entre duas formas comumente utilizadas na etapa de extração de atributos: faces neutra e média. Como não existe tal comparação na literatura, os resultados apresentados são valiosos para o desenvolvimento de aplicações envolvendo expressões de emoção em tempo real. O presente trabalho considera seis tipos de emoções: felicidade, tristeza, raiva, medo, surpresa e desgosto. / [en] The facial expressions provide a high amount of information about a person, making the ability to interpret them a high valued task that can be used in several fields of Informatics such as Human Machine Interface, Digital Games, interactive storytelling and digital TV/Cinema. This dissertation discusses the process of recognizing emotions in real time using ASM (Active Shape Model) and SVM (Support Vector Machine) and
presents a comparison between two commonly used ways when extracting the attributes: neutral face and average. As such comparison can not be found in the literature, the results presented are valuable to the development of applications that deal with emotion expression in real time. The current study considers six types of emotions: happiness, sadness, anger, fear, surprise and disgust.
|
80 |
[en] EXPLORATION AND VISUAL MAPPING ALGORITHMS DEVELOPMENT FOR LOW COST MOBILE ROBOTS / [pt] DESENVOLVIMENTO DE ALGORITMOS DE EXPLORAÇÃO E MAPEAMENTO VISUAL PARA ROBÔS MÓVEIS DE BAIXO CUSTOFELIPE AUGUSTO WEILEMANN BELO 16 October 2006 (has links)
[pt] Ao mesmo tempo em que a autonomia de robôs pessoais e
domésticos
aumenta, cresce a necessidade de interação dos mesmos com
o ambiente. A
interação mais básica de um robô com o ambiente é feita
pela percepção deste e
sua navegação. Para uma série de aplicações não é prático
prover modelos
geométricos válidos do ambiente a um robô antes de seu
uso. O robô necessita,
então, criar estes modelos enquanto se movimenta e percebe
o meio em que está
inserido através de sensores. Ao mesmo tempo é necessário
minimizar a
complexidade requerida quanto a hardware e sensores
utilizados. No presente
trabalho, um algoritmo iterativo baseado em entropia é
proposto para planejar
uma estratégia de exploração visual, permitindo a
construção eficaz de um modelo
em grafo do ambiente. O algoritmo se baseia na
determinação da informação
presente em sub-regiões de uma imagem panorâmica 2-D da
localização atual do
robô obtida com uma câmera fixa sobre o mesmo. Utilizando
a métrica de
entropia baseada na Teoria da Informação de Shannon, o
algoritmo determina nós
potenciais para os quais deve se prosseguir a exploração.
Através de procedimento
de Visual Tracking, em conjunto com a técnica SIFT (Scale
Invariant Feature
Transform), o algoritmo auxilia a navegação do robô para
cada nó novo, onde o
processo é repetido. Um procedimento baseado em
transformações invariáveis a
determinadas variações espaciais (desenvolvidas a partir
de Fourier e Mellin) é
utilizado para auxiliar o processo de guiar o robô para
nós já conhecidos. Também
é proposto um método baseado na técnica SIFT. Os processos
relativos à obtenção
de imagens, avaliação, criação do grafo, e prosseguimento
dos passos citados
continua até que o robô tenha mapeado o ambiente com nível
pré-especificado de
detalhes. O conjunto de nós e imagens obtidos são
combinados de modo a se criar
um modelo em grafo do ambiente. Seguindo os caminhos, nó a
nó, um robô pode
navegar pelo ambiente já explorado. O método é
particularmente adequado para
ambientes planos. As componentes do algoritmo proposto
foram desenvolvidas e
testadas no presente trabalho. Resultados experimentais
mostrando a eficácia dos
métodos propostos são apresentados. / [en] As the autonomy of personal service robotic systems
increases so has their
need to interact with their environment. The most basic
interaction a robotic agent
may have with its environment is to sense and navigate
through it. For many
applications it is not usually practical to provide robots
in advance with valid
geometric models of their environment. The robot will need
to create these models
by moving around and sensing the environment, while
minimizing the complexity
of the required sensing hardware. This work proposes an
entropy-based iterative
algorithm to plan the robot´s visual exploration strategy,
enabling it to most
efficiently build a graph model of its environment. The
algorithm is based on
determining the information present in sub-regions of a 2-
D panoramic image of
the environment from the robot´s current location using a
single camera fixed on
the mobile robot. Using a metric based on Shannon s
information theory, the
algorithm determines potential locations of nodes from
which to further image the
environment. Using a Visual Tracking process based on SIFT
(Scale Invariant
Feature Transform), the algorithm helps navigate the robot
to each new node,
where the imaging process is repeated. An invariant
transform (based on Fourier
and Mellin) and tracking process is used to guide the
robot back to a previous
node. Also, an SIFT based method is proposed to accomplish
such task. This
imaging, evaluation, branching and retracing its steps
continues until the robot has
mapped the environment to a pre-specified level of detail.
The set of nodes and
the images taken at each node are combined into a graph to
model the
environment. By tracing its path from node to node, a
service robot can navigate
around its environment. This method is particularly well
suited for flat-floored
environments. The components of the proposed algorithm
were developed and
tested. Experimental results show the effectiveness of the
proposed methods.
|
Page generated in 0.0883 seconds