• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 15
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Verluste in synchronen Reluktanzmaschinen am Spannungszwischenkreis-Umrichter

Winkler, Stefan, Werner, Ralf 28 February 2020 (has links)
In diesem Beitrag wird gezeigt, welche Auswirkung die Rotorform einer Reluktanzmaschine und die Ansteuerung mittels Umrichter auf den Verlusthaushalt der Maschine hat. Darüber hinaus werden die Möglichkeiten zur Verluststeuerung, welche sich durch den Betrieb von Reluktanzmaschinen ergeben, vorgestellt. / This paper shows the effect of the rotor shape of a reluctance machine and the converter control on the losses of the machine. In addition, it will be shown which possibilities for loss control will result from the operation of reluctance machines.
12

A Distributed Digital Control Architecture for Power Electronics Systems

Celanovic, Ivan 25 September 2000 (has links)
This thesis proposes a novel approach to power electronics system design that is based on the open-architecture distributed digital controller and modular power electronics building blocks (PEBBs). The proposed distributed digital controller partitions the controller in three levels of control authority. The power stage controller, designated as hardware manager, is responsible for low-level hardware oriented tasks; the high level controller, designated as applications manager, performs higher-level application-oriented tasks; and the system level controller handles system control and monitoring functions. Communications between the hardware-oriented controller and the higher-level controller are implemented with the previously proposed 125 Mbits/sec daisy-chained fiber optic communication protocol. Real-time control and status data are communicated by means of communication protocol. The distributed controller on the power converter level makes the system open, flexible and simple to use. Furthermore, this work gives an overview and comparison of current state-of-the-art communication protocols for real-time control applications with emphasis on industrial automation and motion control. All of the studied protocols have been considered as local area networks (LAN) for system-level control in power converter systems. The most promising solution has been chosen for the system level communication protocol. This thesis also provides the details of design and implementation of the distributed controller. The design of both the hardware and software components are explained. A 100 kVA three-phase voltage source inverter (VSI) prototype was built and tested using the distributed controller approach to demonstrate the feasibility of the proposed concept. / Master of Science
13

Control of Power Conversion Systems for the Intentional Islanding of Distributed Generation Units

Thacker, Timothy Neil 13 January 2006 (has links)
Within the past decade, talk has arisen of shifting the utility grid from centralized, radial sources to a distributed network of sources, also known as distributed generation (DG); in the wake of deregulation, the California energy crisis, and northeastern blackouts. Existing control techniques for DG systems are designed to operate a system either in the connected or disconnected (islanding) mode to the utility; thus not allowing for both modes to be implemented and transitioned between. Existing detection and re-closure algorithms can also be improved upon. Dependent upon the method implemented, detection algorithms can either cause distortions in the output or completely miss a disturbance. The present re-closure process to reconnect to the utility is to completely shutdown and wait five minutes. The proposed methods of this study improve upon existing methods, via simulation and hardware experimentation, for DG systems that can intentionally islanding themselves. The proposed, "switched-mode", control allows for continuous operation of the system during disturbances by transitioning the mode of control to reflect the change in the system mode (grid-connected or islanding). This allows for zero downtimes without detrimental transients. The proposed detection method can sense disturbances that other methods cannot; and within 25 ms (approximately 1.5 line-cycles at 60 Hz). This method is an improvement over other methods because it eliminates the need to purposely distort the outputs to sense a disturbance. The proposed re-closure method is an improvement over the existing method due to the fact that it does not require the system to de-energize before re-synchronizing and reconnecting to the utility. This allows for DGs to continuously supply power to the system without having to shut down. Results show that the system is generally ready to reconnect after 2 to 5 line cycles. / Master of Science
14

Sistema de fornecimento de potência a partir de célula a combustível utilizando conversor estático com modulação delta modificada / Power supply system from fuel cell using static converter with modified delta modulation

Gongora, Vicente de Lima 19 April 2017 (has links)
Este trabalho, constitui-se em uma contribuição para o estudo das estratégias de mo-dulação direta baseadas em histerese e que funcionam em frequência fixa de comutação. Tem como objetivo principal propor a estratégia delta modificada, que diferencia-se na forma de ajuste da largura de banda de histerese, alterando-se seus limites e em como executa o comando de bloqueio das chaves de potência, para que a corrente de saída se mantenha em frequência fixa de operação e apresente rápida resposta dinâmica no sistema controlado. Para tanto, não necessita da utilização de derivadas, nem de uma corrente média de referência, tão pouco, se utiliza dos tempos de comutação. A estratégia proposta, comprova que é possível produzir os adequados pulsos de comando para o processamento da energia proveniente de célula combustível, através do conversor estático de potência, utilizando-se, principalmente, dos valores de ultrapassagem nos limites estabelecidos de histerese. Como objetivo secundário desta pesquisa, desenvolve-se um conversor CC/CC auxiliar para adaptar e estabilizar a energia proveniente da CAC, compondo-se um sistema útil que serve de base para fornecer energia, aos mais diversos tipos de cargas em CC. Além disso, apresenta-se uma revisão das estratégias de modulação em modo direto para o controle da corrente de saída no conversor estático, tendo como base a tensão nos terminais de um indutor. Contudo, outras estratégias são naturalmente citadas, no transcorrer deste trabalho, devido haver combinações entre as diferentes estratégias moduladoras e controladoras comentadas. / This work, is a contribution to the study of direct modulation strategies based on hysteresis and that operate at fixed switching frequency. Its main objective is to propose the modified delta strategy, which differentiates from the others strategies in the form of adjustment of hysteresis bandwidth, changing its limits and in executing the locking command of the power keys, so that the output current is maintain at fixed frequency of operation and a rapid dynamic response in the controlled system. In order to do so, it does not require the use of derivatives or a reference average current and also the switching times are not used. This strategy shows that it is possible to produce the appropriate command pulses for the processing of fuel cell energy by the static power converter using mainly the exceedance limit values. As a secondary objective of this research, an auxiliary DC/DC converter is developed to adapt and stabilize the energy coming from the fuel cell, forming a useful system that serves as a base to supply power to the most diverse types of DC loads. In addition, we present a review of the direct-mode modulation strategies for the control of the output current in the static converter, updating data, and based on the voltage at the terminals of an inductor; how-ever, others strategies are naturally cited because there are combinations between the different modulating strategies and controllers commented on in the course of this work.
15

Implementation and evaluation of V/f and vector control in high–speed PMSM drives / Kruger G.L.

Kruger, Gert Lodewikus. January 2011 (has links)
The McTronX research group, at the Potchefstroom campus of the North–West University, has been researching Active Magnetic Bearings (AMBs). A fully suspended, flywheel energy storage system (FESS) has been developed. Due to excessive unbalance on the rotor, the motor drive could not be tested up to its rated speed. In the interim, until the rotor can be balanced and other rotor dynamic effects have been investigated, the group decided that the existing drive control should be improved and tested on a high–speed permanent magnet synchronous motor (PMSM), using normal roller element bearings. In order to test the motor control a second (identical) PMSM, mechanically coupled to the former, operates in generator mode which serves as the torque load. Two different control algorithms, namely V/f and vector control, are designed and implemented on a rapid control prototyping system, i.e. dSPACE®. The V/f control is an open–loop, position sensorless technique, whilst the vector controller makes use of a position sensor. From the design and implementation it became clear that the vector control is more robust, in the sense that it is less sensitive on parameter variations and disturbances. It can start up reliably even under full load conditions. The V/f control is an attractive alternative to the vector control, especially in AMB systems, where it may be difficult to mount the position sensor, has to operate in a hazardous environment not suited to the sensor or could degrade the reliability of the AMB system. The cost of the position sensor is not really a concern compared to the cost of an AMB system. The V/f control is more suited to fan and pump applications, which has a low dynamic requirement. The V/f control has high startup currents and is not recommended for applications requiring a high starting torque or fast acceleration during operation. The inverter, which drives the PMSM, also had to be developed. With regard to the motor control, the effects of inverter non–idealities had to be accounted, especially for the V/f control. The implemented control algorithms were tested up to 20 krpm. Discrepancies between the expected and actual results are discussed. Overall, the controllers performed as desired. Generally, the project goals have been reached satisfactorily. / Thesis (M.Ing. (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2011.
16

Implementation and evaluation of V/f and vector control in high–speed PMSM drives / Kruger G.L.

Kruger, Gert Lodewikus. January 2011 (has links)
The McTronX research group, at the Potchefstroom campus of the North–West University, has been researching Active Magnetic Bearings (AMBs). A fully suspended, flywheel energy storage system (FESS) has been developed. Due to excessive unbalance on the rotor, the motor drive could not be tested up to its rated speed. In the interim, until the rotor can be balanced and other rotor dynamic effects have been investigated, the group decided that the existing drive control should be improved and tested on a high–speed permanent magnet synchronous motor (PMSM), using normal roller element bearings. In order to test the motor control a second (identical) PMSM, mechanically coupled to the former, operates in generator mode which serves as the torque load. Two different control algorithms, namely V/f and vector control, are designed and implemented on a rapid control prototyping system, i.e. dSPACE®. The V/f control is an open–loop, position sensorless technique, whilst the vector controller makes use of a position sensor. From the design and implementation it became clear that the vector control is more robust, in the sense that it is less sensitive on parameter variations and disturbances. It can start up reliably even under full load conditions. The V/f control is an attractive alternative to the vector control, especially in AMB systems, where it may be difficult to mount the position sensor, has to operate in a hazardous environment not suited to the sensor or could degrade the reliability of the AMB system. The cost of the position sensor is not really a concern compared to the cost of an AMB system. The V/f control is more suited to fan and pump applications, which has a low dynamic requirement. The V/f control has high startup currents and is not recommended for applications requiring a high starting torque or fast acceleration during operation. The inverter, which drives the PMSM, also had to be developed. With regard to the motor control, the effects of inverter non–idealities had to be accounted, especially for the V/f control. The implemented control algorithms were tested up to 20 krpm. Discrepancies between the expected and actual results are discussed. Overall, the controllers performed as desired. Generally, the project goals have been reached satisfactorily. / Thesis (M.Ing. (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2011.
17

Sistema de fornecimento de potência a partir de célula a combustível utilizando conversor estático com modulação delta modificada / Power supply system from fuel cell using static converter with modified delta modulation

Vicente de Lima Gongora 19 April 2017 (has links)
Este trabalho, constitui-se em uma contribuição para o estudo das estratégias de mo-dulação direta baseadas em histerese e que funcionam em frequência fixa de comutação. Tem como objetivo principal propor a estratégia delta modificada, que diferencia-se na forma de ajuste da largura de banda de histerese, alterando-se seus limites e em como executa o comando de bloqueio das chaves de potência, para que a corrente de saída se mantenha em frequência fixa de operação e apresente rápida resposta dinâmica no sistema controlado. Para tanto, não necessita da utilização de derivadas, nem de uma corrente média de referência, tão pouco, se utiliza dos tempos de comutação. A estratégia proposta, comprova que é possível produzir os adequados pulsos de comando para o processamento da energia proveniente de célula combustível, através do conversor estático de potência, utilizando-se, principalmente, dos valores de ultrapassagem nos limites estabelecidos de histerese. Como objetivo secundário desta pesquisa, desenvolve-se um conversor CC/CC auxiliar para adaptar e estabilizar a energia proveniente da CAC, compondo-se um sistema útil que serve de base para fornecer energia, aos mais diversos tipos de cargas em CC. Além disso, apresenta-se uma revisão das estratégias de modulação em modo direto para o controle da corrente de saída no conversor estático, tendo como base a tensão nos terminais de um indutor. Contudo, outras estratégias são naturalmente citadas, no transcorrer deste trabalho, devido haver combinações entre as diferentes estratégias moduladoras e controladoras comentadas. / This work, is a contribution to the study of direct modulation strategies based on hysteresis and that operate at fixed switching frequency. Its main objective is to propose the modified delta strategy, which differentiates from the others strategies in the form of adjustment of hysteresis bandwidth, changing its limits and in executing the locking command of the power keys, so that the output current is maintain at fixed frequency of operation and a rapid dynamic response in the controlled system. In order to do so, it does not require the use of derivatives or a reference average current and also the switching times are not used. This strategy shows that it is possible to produce the appropriate command pulses for the processing of fuel cell energy by the static power converter using mainly the exceedance limit values. As a secondary objective of this research, an auxiliary DC/DC converter is developed to adapt and stabilize the energy coming from the fuel cell, forming a useful system that serves as a base to supply power to the most diverse types of DC loads. In addition, we present a review of the direct-mode modulation strategies for the control of the output current in the static converter, updating data, and based on the voltage at the terminals of an inductor; how-ever, others strategies are naturally cited because there are combinations between the different modulating strategies and controllers commented on in the course of this work.
18

Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM Drives

Ramchand, Rijil 07 1900 (has links) (PDF)
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors. Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor. Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis. This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector. Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.
19

Space-Vector-Based Pulse Width Modulation Strategies To Reduce Pulsating Torque In Induction Motor Drives

Hari, V S S Pavan Kumar 07 1900 (has links) (PDF)
Voltage source inverter (VSI) is used to control the speed of an induction motor by applying AC voltage of variable amplitude and frequency. The semiconductor switches in a VSI are turned on and off in an appropriate fashion to vary the output voltage of the VSI. Various pulse width modulation (PWM) methods are available to generate the gating signals for the switches. The process of PWM ensures proper fundamental voltage, but introduces harmonics at the output of the VSI. Ripple in the developed torque of the induction motor, also known as pulsating torque, is a prominent consequence of the harmonic content. The harmonic voltages, impressed by the VSI on the motor, differ from one PWM method to another. Space-vector-based approach to PWM facilitates a large number of switching patterns or switching sequences to operate the switches in a VSI. The switching sequences can be classified as conventional, bus-clamping and advanced bus-clamping sequences. The conventional sequence switches each phase once in a half-carrier cycle or sub-cycle, as in case of sine-triangle PWM, third harmonic injection PWM and conventional space vector PWM (CSVPWM). The bus-clamping sequences clamp a phase to one of the DC terminals of the VSI in certain regions of the fundamental cycle; these are employed by discontinuous PWM (DPWM) methods. Popular DPWM methods include 30 degree clamp PWM, wherein a phase is clamped during the middle 30 degree duration of each quarter cycle, and 60 degree clamp PWM which clamps a phase in the middle 60 degree duration of each half cycle. Advanced bus-clamping PWM (ABCPWM) involves switching sequences that switch a phase twice in a sub-cycle besides clamping another phase. Unlike CSVPWM and BCPWM, the PWM waveforms corresponding to ABCPWM methods cannot be generated by comparison of three modulating signals against a common carrier. The process of modulation in ABCPWM is analyzed from a per-phase perspective, and a computationally efficient methodology to realize the sequences is derived. This methodology simplifies simulation and digital implementation of ABCPWM techniques. Further, a quick-simulation tool is developed to simulate motor drives, operated with a wide range of PWM methods. This tool is used for validation of various analytical results before experimental investigations. The switching sequences differ in terms of the harmonic voltages applied on the machine. The harmonic currents and, in turn, the torque ripple are different for different switching sequences. Analytical expression for the instantaneous torque ripple is derived for the various switching sequences. These analytical expressions are used to predict the torque ripple, corresponding to different switching sequences, at various operating conditions. These are verified through numerical simulations and experiments. Further, the spectral properties are studied for the torque ripple waveforms, pertaining to conventional space vector PWM (CSVPWM), 30 degree clamp PWM, 60 degree clamp PWM and ABCPWM methods. Based on analytical, simulation and experimental results, the magnitude of the dominant torque harmonic with an ABCPWM method is shown to be significantly lower than that with CSVPWM. Also, this ABCPWM method results in lower RMS torque ripple than the BCPWM methods at any speed and CSVPWM at high speeds of the motor. Design of hybrid PWM methods to reduce the RMS torque ripple is described. A hybrid PWM method to reduce the RMS torque ripple is proposed. The proposed method results in a dominant torque harmonic of magnitude lower than those due to CSVPWM and ABCPWM. The peak-to-peak torque in each sub-cycle is analyzed for different switching sequences. Another hybrid PWM is proposed to reduce the peak-to-peak torque ripple in each sub-cycle. Both the proposed hybrid PWM methods reduce the torque ripple, without increasing the total harmonic distortion (THD) in line current, compared to CSVPWM. CSVPWM divides the zero vector time equally between the two zero states of a VSI. The zero vector time can optimally be divided to minimize the RMS torque ripple in each sub-cycle. It is shown that such an optimal division of zero vector time is the same as addition of third harmonic of magnitude 0.25 times the fundamental magnitude to the three-phase sinusoidal modulating signals. ABCPWM applies an active state twice in a sub-cycle, with the active vector time divided equally. Optimal division of active vector time in ABCPWM to minimize the RMS torque ripple is evaluated, both theoretically and experimentally. Compared to CSVPWM, this optimal PWM is shown to reduce the RMS torque ripple significantly over a wide range of speed. The various PWM schemes are implemented on ALTERA CycloneII field programmable gate array (FPGA)-based digital control platform along with sensorless vector control and torque estimation algorithms. The controller generates the gating signals for a 10kVA IGBT-based two-level VSI connected to a 5hp, 400V, 4-pole, 50Hz squirrel-cage induction motor. The induction motor is coupled to a 230V, 3kW separately-excited DC generator.
20

Generation Control in Small IsolatedPower Systems

Haji Miragha, Amirhossein January 2005 (has links)
This thesis is concerned with the generation control in small isolated power systems consisting of inverter interfaced generation systems. First the components of an individual distributed generation system (DGS) as well as the corresponding control schemes for active and reactive power flow are discussed and implemented. Then the contribution of multiple DGS to meet the requirement of the loads in both gridconnected and island operations are discussed. Having evaluated the performance of each developed model such as voltage source inverter, PQ and PV controlled as well as reference DGS, the impact of voltage degradation on power load control in isolated systems is analyzed. Finally a new method for generation control in a small power system based on power sharing between multiple DGS with voltage degradation consideration as the last alternative for sustaining the system is proposed and implemented.-11D

Page generated in 0.1146 seconds