• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 14
  • 11
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 64
  • 36
  • 33
  • 33
  • 30
  • 29
  • 28
  • 26
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Circuit Model for Switching Loss Estimation in Voltage Source Converters

Naushath, Mohamed 02 August 2013 (has links)
Insulated Gate Bipolar Transistor (IGBT) based voltage source converter (VSC) applica-tions embedded in power systems are growing. Optimal design of thermal management systems for such converters requires estimation of IGBT losses under various operating conditions, both normal and abnormal. Therefore, development of tools for estimating IGBT losses in EMT simulators is important as converters embedded in large power sys-tems are simulated in EMT simulators. Two circuit models are developed to simulate turn-on and turn-off transients using a be-havioral approach. These circuit models mimic the observed behavior in distinct phases of the turn-on and turn-off transients under the inductive load switching. In this model, the nonlinear nature of the circuit model of the IGBT is treated and converter specific in-fluential parameters are taken in to account. An excellent correlation between the meas-ured and simulated waveforms as well as measured and estimated switching losses is ob-served. Finally, an efficient method to incorporate switching loss calculation in an EMT program in the form of a lookup table created using the developed transient model is pro-posed.
42

Co-ordination of converter controls and an analysis of converter operating limits in VSC-HVdc grids

Zhou, Zheng 23 August 2013 (has links)
This thesis presents an investigation into the power transmission limitations imposed on a VSC-HVdc converter by ac system strength and ac system impedance characteristics, quantified by the short circuit ratio (SCR). An important result of this study is that the operation of the converter is not only affected by the SCR’s magnitude, but is also significantly affected by the ac system’s impedance angle at the fundamental frequency. As the ac impedance becomes more resistive, the minimum SCR required at the rectifier side increases from that required for ideally inductive ac impedance, but it decreases at the inverter side. The finite megavolt ampere (MVA) limit of the VSC imposes a further limitation on power transfer, requiring an increase in the value of the minimum SCR. This limitation can be mitigated if additional reactive power support is provided at the point-common-connection. A state-space VSC model was developed and validated with a fully detailed non-linear EMT model. The model showed that gains of the phased-locked-loop (PLL), particularly at low SCRs greatly affect the operation of the VSC-HVdc converter and that operation at low SCRs below about 1.6 is difficult. The model also shows that the theoretically calculated power-voltage stability limit is not attainable in practice, but can be approached if the PLL gains are reduced. The thesis shows that as the VSC-HVdc converter is subject to large signal excitation, a good controller design cannot rely on small signal analysis alone. The thesis therefore proposes the application of optimization tools to coordinate the controls of multiple converters in a dc grid. A new method, the "single converter relaxation method", is proposed and validated. The design procedure of control gains selection using the single converter relaxation method for a multi-converter system is developed. A new method for selecting robust control gains to permit operation over a range of operation conditions is presented. The coordination and interaction of control parameters of multi-terminal VSC are discussed. Using the SCR information at converter bus, the gain scheduling approach to optimal gains is possible. However, compared to robust control gains setting, this approach is more susceptible to system instability.
43

Series / Parallel Hybrid VSC-LCC for HVdc Transmission Systems

Qahraman, Behzad 10 September 2010 (has links)
This thesis investigates the feasibility of hybrid converter based arrangements for High Voltage direct current (HVdc) transmission systems. The conventional HVdc transmission systems, which use Line Commutated Converter (LCC) technology, require ac voltage and large amounts of reactive power to operate; Voltage-Sourced Converter (VSC) based HVdc schemes, on the other hand, while maintaining most of the advantages of LCC-based systems, have overcome a number of disadvantages inherent to conventional LCC systems. Their ability to provide voltage support to very weak ac networks through generating reactive power, while delivering real power, makes them an ideal option for providing reliable power to remote locations. These converters suffer disadvantages such as higher costs, sensitivity to dc-side faults, and smaller ratings in comparison to conventional converters. This research exploits a new approach and introduces a hybrid configuration of VSC and LCC converters. The hybrid converter combines the advantages of these two converter types, while trying to stay far from their disadvantages. The thesis investigates and discusses the benefits of using VSC-LCC hybrid converters for HVdc transmission systems in stations where support of ac voltage is mostly absent (very weak ac system). It concludes that Series Hybrid Converter (SHC) configuration is a promising option for very weak ac system applications comparing to Parallel Hybrid Converter (PHC) option. Using simplified mathematical models and extensive effort on digital time simulation with PSCAD / EMTDC program, the technical feasibility of implementing SHC has been demonstrated.
44

Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs

Gnanarathna, Udana 04 September 2014 (has links)
The recent introduction of a new converter topology, the modular multilevel converter (MMC) is a major step forward in voltage sourced converter (VSC) technology for high voltage, high power applications. To obtain a multilevel ac output waveform, a large number of semiconductor switches has to be used in the converter. The number of switches in the MMC for HVDC transmission is typically two orders of magnitudes larger than that in a two or three level VSC used in earlier generation. This large device count creates a computational challenge for electromagnetic transients (EMT) simulation programs, as it significantly increases the simulation time. The purpose of this research is to investigate whether the simulation can be speeded up. This research develops an efficient, time-varying Thévenin's equivalent model for the MMC converter based on partitioning the system’s admittance matrix. EMT simulation results show that the proposed equivalent model can drastically reduce the computational time without loss of accuracy. The use of the proposed equivalent method is demonstrated by simulating a point to point MMC based HVDC transmission system successfully with more than 100 levels. This approach enables what was hitherto not practical; the modeling of large MMC based HVDC systems on personal computers. With the assumption of ideal switch operation and using an equivalent average capacitor value based approach, an average valued model of MMC is also proposed in this thesis. The average model can be accurately used in most of the system level studies. The control algorithms and other modeling aspects of MMC applications are also presented in this thesis. One of the advantages of multilevel converters is the low operating losses as the smaller switching frequency of each individual power electronics switch and the low voltage step change during each switching. Using a recently developed, time domain simulation approach, the operating losses of the MMC converter are estimated in this thesis. When comparing the MMC operating losses against the losses of two-level VSC, the power loss for the two-level VSC is found to be significantly higher than the power loss of the MMC.
45

A Circuit Model for Switching Loss Estimation in Voltage Source Converters

Naushath, Mohamed 02 August 2013 (has links)
Insulated Gate Bipolar Transistor (IGBT) based voltage source converter (VSC) applica-tions embedded in power systems are growing. Optimal design of thermal management systems for such converters requires estimation of IGBT losses under various operating conditions, both normal and abnormal. Therefore, development of tools for estimating IGBT losses in EMT simulators is important as converters embedded in large power sys-tems are simulated in EMT simulators. Two circuit models are developed to simulate turn-on and turn-off transients using a be-havioral approach. These circuit models mimic the observed behavior in distinct phases of the turn-on and turn-off transients under the inductive load switching. In this model, the nonlinear nature of the circuit model of the IGBT is treated and converter specific in-fluential parameters are taken in to account. An excellent correlation between the meas-ured and simulated waveforms as well as measured and estimated switching losses is ob-served. Finally, an efficient method to incorporate switching loss calculation in an EMT program in the form of a lookup table created using the developed transient model is pro-posed.
46

Co-ordination of converter controls and an analysis of converter operating limits in VSC-HVdc grids

Zhou, Zheng 23 August 2013 (has links)
This thesis presents an investigation into the power transmission limitations imposed on a VSC-HVdc converter by ac system strength and ac system impedance characteristics, quantified by the short circuit ratio (SCR). An important result of this study is that the operation of the converter is not only affected by the SCR’s magnitude, but is also significantly affected by the ac system’s impedance angle at the fundamental frequency. As the ac impedance becomes more resistive, the minimum SCR required at the rectifier side increases from that required for ideally inductive ac impedance, but it decreases at the inverter side. The finite megavolt ampere (MVA) limit of the VSC imposes a further limitation on power transfer, requiring an increase in the value of the minimum SCR. This limitation can be mitigated if additional reactive power support is provided at the point-common-connection. A state-space VSC model was developed and validated with a fully detailed non-linear EMT model. The model showed that gains of the phased-locked-loop (PLL), particularly at low SCRs greatly affect the operation of the VSC-HVdc converter and that operation at low SCRs below about 1.6 is difficult. The model also shows that the theoretically calculated power-voltage stability limit is not attainable in practice, but can be approached if the PLL gains are reduced. The thesis shows that as the VSC-HVdc converter is subject to large signal excitation, a good controller design cannot rely on small signal analysis alone. The thesis therefore proposes the application of optimization tools to coordinate the controls of multiple converters in a dc grid. A new method, the "single converter relaxation method", is proposed and validated. The design procedure of control gains selection using the single converter relaxation method for a multi-converter system is developed. A new method for selecting robust control gains to permit operation over a range of operation conditions is presented. The coordination and interaction of control parameters of multi-terminal VSC are discussed. Using the SCR information at converter bus, the gain scheduling approach to optimal gains is possible. However, compared to robust control gains setting, this approach is more susceptible to system instability.
47

Series / Parallel Hybrid VSC-LCC for HVdc Transmission Systems

Qahraman, Behzad 10 September 2010 (has links)
This thesis investigates the feasibility of hybrid converter based arrangements for High Voltage direct current (HVdc) transmission systems. The conventional HVdc transmission systems, which use Line Commutated Converter (LCC) technology, require ac voltage and large amounts of reactive power to operate; Voltage-Sourced Converter (VSC) based HVdc schemes, on the other hand, while maintaining most of the advantages of LCC-based systems, have overcome a number of disadvantages inherent to conventional LCC systems. Their ability to provide voltage support to very weak ac networks through generating reactive power, while delivering real power, makes them an ideal option for providing reliable power to remote locations. These converters suffer disadvantages such as higher costs, sensitivity to dc-side faults, and smaller ratings in comparison to conventional converters. This research exploits a new approach and introduces a hybrid configuration of VSC and LCC converters. The hybrid converter combines the advantages of these two converter types, while trying to stay far from their disadvantages. The thesis investigates and discusses the benefits of using VSC-LCC hybrid converters for HVdc transmission systems in stations where support of ac voltage is mostly absent (very weak ac system). It concludes that Series Hybrid Converter (SHC) configuration is a promising option for very weak ac system applications comparing to Parallel Hybrid Converter (PHC) option. Using simplified mathematical models and extensive effort on digital time simulation with PSCAD / EMTDC program, the technical feasibility of implementing SHC has been demonstrated.
48

Synthetic testing of high voltage direct current circuit breakers

Cwikowski, Oliver January 2016 (has links)
The UK is facing two major challenges in the development of its electricity network. First, two thirds of the existing power stations are expected to close by 2030. Second, is the requirement to reduce its CO2 emissions by 80% by 2050. Both of these challenges are significant in their own right. The fact that they are occurring at the same time, generates a significant amount of threats to the existing power system, but also provides many new opportunities. In order to meet both these challenges, significant amounts of offshore wind generation has been installed in the UK. For the wind generation with the longest connections to land, Voltage Source Converter (VSC) based High Voltage Direct Current (HVDC) transmission has to be used. Due to the high power rating of the offshore wind farms, compared to the limited transmission capacity of the links, a large number of point-to-point connections are required. This has lead to the concept of HVDC grids being proposed, in order to reduce the amount of installed assets required. HVDC grids are a new transmission environment and the fundamental question of how they will protect themselves must be answered. Several new technologies are under consideration to provide this protection, one of which is the HVDC circuit breaker. As HVDC circuit breakers are a new technology, they must be tested in a laboratory environment to prove their operation and improve their Technology Readiness Level (TRL). This thesis is concerned with how such HVDC circuit breakers are operated, rated, and tested in a laboratory environment. A review of the existing circuit breaker technologies is given, along with descriptions of several novel circuit breakers developed in this thesis. A standardized method of rating DC circuit breaker and their associated test circuit is developed. Mathematical analysis of several circuit breakers is derived from first principles and low power prototypes are developed to validate these design concepts. A high power test circuit is then constructed and a semiconductor circuit breaker is tested. The key learning outcomes from this testing are provided.
49

Diagnóstico del potencial aporte de enlaces HVDC-VSC para otorgar flexibilidad y mejorar la respuesta dinámica en interconexiones regionales

Mendoza Robles, Carlos Alfredo January 2018 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica / En la actualidad, la flexibilidad en la operación de sistemas eléctricos, que consiste en la habilidad del sistema de adaptarse dinámicamente a los cambios de condiciones, por ejemplo, balanceando generación y demanda por horas o minutos, o desplegando nueva generación o recursos de transmisión en periodos de años, siendo especialmente atendida en los sistemas actuales con altos niveles de penetración de generación variables como solar y eólica. La flexibilidad de Sistema Eléctricos de Potencia (SEP) mezcla la operación económica y operación técnica, lo cual se ha abordado en esta tesis como una problemática de un proceso maestro-esclavo, siendo la operación económica descrita como el problema maestro y la operación técnica como el problema esclavo. Este último problema se responsabiliza de la estabilidad del sistema y de manejar los recursos para superar cualquier contingencia. Los fenómenos dinámicos que se presentan en los SEP tienen diferente naturaleza así como elementos que los causan, sin embargo lo que los expertos concuerdan es que para que un sistema sea estable, éste debe tener la capacidad de operar en todo instante de tiempo dentro de sus parámetros de tensión, ángulos y frecuencia controlables independientemente de la configuraciones del sistema, contingencias y/o parque generación para abastecer una demanda dada. Los adelantos en los dispositivos IGBT (del inglés Insulated Gate Bipolar Transistor) que son componentes relevantes de la transmisión HVDC-VSC (del inglés High Voltage Direct Current Voltage Source Converter) han introducido importantes mejoras en la estabilidad de SEP comparación a los sistemas HVDC basado en tiristores. En este sentido, la posibilidad de aportar reactivos al sistema y alimentar a redes pasivas ha sido un gran avance principalmente en redes débiles y en islas eléctricas (como los Sistemas Medianos en Chile), son algunos de los ejemplos de estas perfecciones. El objetivo general de esta tesis corresponde a diagnosticar el aporte de los enlaces HVDC-VSC en la flexibilidad de los sistemas interconectados como en el caso de futuras uniones regionales. Para ello primero se analiza de qué manera se debe modelar el enlace para capturar el fenómeno que se requiere estudiar y su respuesta dentro de varios componentes eléctricos. En segundo lugar la definición de estabilidad en SEP y cómo interactúan cada uno de los componentes eléctricos. En tercer lugar las formas actuales de tipo de conexiones existentes y todas las ventajas/desventajas de tomar conexión sincrónica, o en base a solo enlaces HVDC o híbridas. Por último, se presenta la metodología de incorporación de los enlaces HVDC-VSC en SEP para estudios dinámicos/estáticos realizando las simplificaciones y/o mejoras tanto al detalle del modelamiento de sus componentes físicas como de su control. Con lo anterior, se implementan 3 SEP en los cuales se incorporan los enlaces, observando una mejor respuesta dinámica y estática al tener presente los enlaces HVDC-VSC, permitiendo identificar las mejoraras en la flexibilidad. Los sistemas implementados se basaron en desplegar mayores recursos de control para el caso de las simulaciones dinámicas, lo que lleva a un mejor comportamiento dinámico del sistema (mejor coeficiente de amortiguamiento) y en el caso de las simulaciones estáticas se logra re-direccionar flujos lo que entrega una flexibilidad de red de transmisión. Las simulaciones dinámicas demuestran que la incorporación de los enlaces aumenta el amortiguamiento de las oscilaciones electromecánicas incrementa la respuesta dinámica del sistema teniendo mayores recursos que aporte a la estabilidad del SEP, mientras que las simulaciones estáticas demostraron que la flexibilidad de red permite desplegar mayores recursos del sistema mejorando la utilización de sistema de transmisión y por consiguiente mejorar la seguridad del sistema para abastecer la demanda en cualquier línea temporal.
50

Efeito do tratamento periodontal full-mouth e convencional na redução da halitose / Effect of periodontal treatment full-mouth and conventional in the reduction of halitosis

Léo Guimarães Soares 03 June 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A halitose se caracterizada pela emanação de um odor desagradável onde cerca de 90% de se origina dentro da cavidade oral. Estudos têm demonstrado uma relação direta entre a doença periodontal e o odor ofensivo do hálito. O presente estudo teve como objetivo avaliar a frequência e distribuição de halitose em um grupo de pacientes com doença periodontal em um estudo transversal observacional (n=112) e, em um estudo intervencionista, avaliar o efeito do tratamento periodontal full-mouth e convencional na redução da halitose em um grupo de pacientes com doença periodontal. Os pacientes responderam a uma anamnese, tiveram seu hálito mensurado pelo halímetro e teste organoléptico, além de realizados Índice de placa visível, Índice de sangramento gengival, Índice de saburra lingual e exame periodontal completo. No estudo 2, os pacientes foram submetidos a seis distintas formas de tratamento: terapia periodontal em sessão única, terapia convencional em quadrantes e, um grupo controle, com somente instrução de higiene oral. Todas as modalidades subdivididas: com e sem raspagem lingual diária. No primeiro estudo os resultados mostraram que, tanto para teste organoléptico quanto para o halímetro, houve maior grau de halitose nos grupos de idades mais avançadas, nos que relataram sangramento gengival e escovação menos que três vezes ao dia. Ainda no teste organoléptico a escovação de língua gerou diferença estatística. Não houve diferença estatística entre as medidas de halitose entre teste organoléptico e halímetro. Foram encontrados aproximadamente 75% de pacientes periodontais com halitose. No segundo estudo os resultados mostraram superioridade conforme análise do halímetro para 30, 60 e 90 dias para os grupos de raspagem em sessão única contra raspagem por quadrantes. Sendo todos os grupos superiores ao controle. Não houve diferença na abordagem com ou sem a raspagem de língua. De acordo com o teste organoléptico, não houve diferença entre os quatro tipos de tratamento periodontal comparados aos grupos controle. O mesmo aplica-se ao WTCI, onde os grupos de tratamento foram superiores ao controle, todavia semelhantes entre si. Concluiu-se que a idade e o sangramento gengival, assim como a frequência de escovação podem influenciar no grau de halitose, tanto no teste organoléptico quanto halímetro. A escovação de língua mostrou-se superior apenas na avaliação organoléptica. Quando avaliado através do halímetro o tratamento full-mouth foi superior ao tratamento convencional. Esta diferença não foi observada quando avaliado através do método organoléptico. Todas as modalidades de tratamento periodontal foram superiores aos grupos controle. A raspagem lingual não teve influência nos tratamentos. / Halitosis is characterized by the emission of an unpleasant odor about 90% originates in the oral cavity. Studies have shown a direct relationship between periodontal disease and the offensive odor of breath. The present study aimed to determine the prevalence of halitosis in patients with periodontal disease in an observational cross-sectional study (n = 112) and, in an intervention study, the patients have had six distinct forms of treatment (n = 90) to verify the efficacy of full- vs. partial-mouth disinfection in the control of halitosis. Patients answered an interview, they have had their breath collected by halimeter, they have evaluated by organoleptic test, and visible plaque index, gingival bleeding index, index of tongue coating and periodontal examination. In the second step, patients have been submitted to six different forms of treatment: periodontal therapy in one session, conventional therapy in quadrants, and the control group, with only oral hygiene instruction. All types split: with and without tongue scraping daily. The first study results shown for both organoleptic test as halimeter, a greater degree of halitosis in the older age groups, we have reported that gum bleeding and brushing less than three times per day. Still in organoleptic test brushing of tongue generated statistical difference. There was no statistical difference between the measures between halitosis and organoleptic test halimeter. There was about 75% og periodontal patients with halitosis. In the second study the results shown the superiority analysis as halimeter for 30, 60 and 90 days for groups of scraping in single session against scraping by quadrants. Being all groups superior from control. There was no difference in approach with or without tongue scraping. According to the organoleptic test, there was no difference between the four types of periodontal treatment compared to the control groups. The same applies to WTCI, the treatment groups were superior to the control, but similar to each other. It was concluded that age and gingival bleeding, like brushing frequency can influence the degree of halitosis, both the organoleptic test as halimeter. Brushing the tongue was superior only in organoleptic evaluation. When assessed by halimeter treatment full-mouth was superior to conventional treatment. This difference was not observed when measured by the organoleptic method. All periodontal treatment modalities were superior to control groups. Scraping lingual had no influence on treatments.

Page generated in 0.1035 seconds